Asking people to prepare for fire is pointless if they can’t afford to do it. It’s time we subsidised fire prevention



Shutterstock

David Bowman, University of Tasmania

Once again, Australia is on fire. This year it’s the turn of Western Australia and South Australia, where bushfires are threatening homes and lives. In the south of Tasmania, conditions are dry and the region is entering a period of peak fire danger.

In the lead up to every bushfire season, the mantra is the same each year: prepare, prepare, prepare. Remove the fuel load. Clean out the gutters. Mow lawns, tidy gardens, create a burnbreak between bushland and your house. Identify your strengths and weaknesses. Have a plan.

After 40 years studying the interaction between humans and fire, I have seen this mantra rolled out every year — and watched, every year, as it is comprehensively ignored by large numbers of people. Why? Because they are bad or lazy? No.

The fact is asking people to prepare for fire is pointless if they can’t afford to do it. If you don’t have time or money (or both), it doesn’t matter how many times authorities tell you to prepare. It’s not going to happen. What if we had a system, like Medicare, where the cost of these fire prevention measures was subsidised by the public system?




Read more:
Friday essay: living with fire and facing our fears


We know the current system doesn’t work

Institutions such as local fire authorities, councils or governments can say “we have done our bit and we expect the community to do their part and manage their risk, their property, their bushfire plan”.

But it’s just passing the problem along to the next person, without considering whether they’re able to actually take up that advice.

For years, authorities have essentially handed people a very formidable and expensive checklist of things to do, right up to the level of retrofitting your house to be compliant with modern building standards. These are significant time and financial investments.

The cost of failing to prepare is huge. Bushfire often spreads by embers landing in a series of unprepared properties. If your neighbours don’t make their home defendable, chances are it may cause your house to burn down.

There are many reasons people don’t prepare, and a key one is affordability. If you’re not physically able to get up a ladder to clean your gutters or mow around your property and remove fuel load — and you can’t afford to pay someone to do it — what are you supposed to do?

You might think, “Well, if people choose to live in a bushfire prone area then that’s their problem. Why should they get subsidies?” But there are many reasons people might not be able to prepare, including poverty, old age, and health issues.

And if they don’t prepare, it won’t just affect them; it could create a vector for the fire to spread to other properties. Research suggests disasters, including fires, are more likely to occur in low socioeconomic areas.

A man cleans leaf litter out of gutters.
Many people are not physically able to get up a ladder to clean gutters and can’t afford to pay someone to do it.
Shutterstock

It’s time to look at preventative fire measures the same way we look at preventative healthcare.

Our taxes fund Medicare and public health measures because Australian society recognises it’s cheaper in the long run. It’s cheaper than allowing low-level health problems to fester until they become so threatening they have to be dealt with in the mind-bogglingly expensive emergency department.

In the same way, subsidies for household bushfire preparation would help prevent the vast taxpayer expense incurred for emergency fire-fighting when fire strikes.

What might the system look like?

The system could take many forms.

State governments already give vouchers to citizens to incentivise spending in one area. Think of the NSW government’s Active Kids or Creative Kids voucher systems, or its planned dining and entertainment voucher system.

So why not give vouchers you can use to pay someone to clear your gutters, mow your lawn or clear dry grass and other fuel loads?

Insurers could offer lower premiums to people who take action to reduce fire risk around their home by ember-proofing or installing gutter-guard, for example (in the same way there are insurance benefits if you make your house more resistant to being broken into).

A burnt out house.
Insurers could offer lower premiums to people who take action to reduce fire risk around their home.
Shutterstock

Perhaps councils could offer lower rates for low-income people who, in exchange, pay for measures to reduce their fuel load.

Or we could have a bulk-billing system, where you can ask a service provider to assess your home’s risk and do basic fire load reduction, and it’s charged to a Medicare-style system.

To me, these ideas make a lot more sense than more punitive measures being considered in some places, where authorities could clear a fire risk around a house themselves and simply send the bill to the occupant or land owner.

The punitive system just puts more pressure on people who may not be able to afford to reduce their home’s fire risk, much less deal with going to court to dispute a bill they’ve been sent. It also means people are less likely to trust and cooperate with fire authorities.

That sounds expensive

Yes, I know these ideas are expensive. So is Medicare. So is the pension system. So is the public health response that helped Australia drive the COVID-19 epidemic into submission. But they’re worth it, aren’t they?

And do you know what else is expensive? Doing the same thing every year, even though it doesn’t work.

We have just been through an enormously expensive bushfire royal commission. And as fire expert Kevin Tolhurst points out here, we’ve had 57 formal public inquiries, reviews and royal commissions related to bushfires and fire management since 1939. A huge expense to taxpayers.

We know the cost of the Black Summer fires ran into the billions, with costs to the health system, individuals, businesses and emergency services.

Aerial fire suppression aircraft are expensive. Having 100-day firefighting campaign is an extraordinary drain on the public purse — and that’s before you even start counting the cost of economic disruption that comes with it.




Read more:
As bushfire and holiday seasons converge, it may be time to say goodbye to the typical Australian summer holiday


It sounds a bit radical

I know! But radical change is what’s needed — and it’s possible. In early 2020, I wrote it was time to re-arrange the Australian school calendar around fire seasons and people said this was crazy. But then a few months later we completely rearranged schooling around the pandemic — an idea that, in January, would have seemed completely unworkable.

It turns out radical change is possible when push comes to shove. And for climate change-related fire risk, push really has come to shove.

Our current system involves telling people to create “a defendable space” around your house. I’ve been on Google Earth to look to at how that’s played out in many bushland suburbs; you don’t need to be a genius to work out there they are not defendable spaces.

Climate change adaptation does feel radical, but it’s also necessary.

If we are sitting round going into a hotter, drier, more fire-prone world, what are we doing if we are not enabling people to adapt?


This story is part of a series The Conversation is running on the nexus between disaster, disadvantage and resilience. You can read the rest of the stories here.The Conversation

David Bowman, Professor of Pyrogeography and Fire Science, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Open data shows lightning, not arson, was the likely cause of most Victorian bushfires last summer



Tracy Nearmy/AAP

Dianne Cook, Monash University

As last summer’s horrific bushfires raged, so too did debate about what caused them. Despite the prolonged drought and ever worsening climate change, some people sought to blame the fires largely on arson.

Federal Coalition MPs were among those pushing the arsonist claim. And on Twitter, a fierce hashtag war broke out: “#ClimateEmergency” vs “#ArsonEmergency”.

Fire authorities rejected the arson claims, saying most fires were thought to be caused by lightning.

We dug into open data resources to learn more about the causes of last summer’s bushfires in Victoria, and further test the arson claim. Our analysis suggests 82% of the fires can be attributed to lightning, 14% to accidents and 1% to burning off. Only 4% can be attributed to arson.

Lightning in the sky
Lightning, not arson, caused most Victorian bushfires last summer.
Twitter

What we did

We started with hotspots data taken from the Himawari-8 satellite, which shows heat source locations over time and space, in almost real time. We omitted hotspots unlikely to be bushfires, and used a type of data mining called “spatiotemporal clustering” – where time dimension is introduced to geographic data – to estimate ignition time and location.

We supplemented this with data from other sources: temperature, moisture, rainfall, wind, sun exposure, fuel load, as well as distance to camp sites, roads and Country Fire Authority (CFA) stations.




Read more:
Bushfires, bots and arson claims: Australia flung in the global disinformation spotlight


Victoria’s Department of Environment, Land, Water and Planning (DELWP) holds historical data on bushfire ignition from 2000 to the 2018-19 summer. The forensic research required to determine fire cause is laborious, and remotely sensed data from satellites may be useful and more immediate.

By training our model on the historical data, we can more immediately predict causes of last summer’s fires detected from satellite data. (Note: even though we were analysing events in the past, we use the term “predict” because authorities have not released official data.)

DELWP’s data attributes 41% of fires to lightning, 17% to arson, 34% to accidents and 7% to hazard reduction or back burning which escaped containment lines (which our analysis refers to as burning off).

Causes of fires from 2000-2019. Lightning is most common cause. The number of fires is increasing, and this is mostly due to accidents.
Own work

To make predictions for the 2019-20 bushfires, we needed an accurate model for causes in the historical data. We trained the model to predict one of four causes – lightning, accident, arson, burning off – using a machine learning algorithm.

The model performed well on the historical data: 75% overall accuracy, 90% accurate on lightning, 78% for accidents, and 54% for arson (which was mostly confused with accident, as would make sense).

The most important contributors to distinguishing between lightning and arson (or accident) ignition were distance to CFA stations, roads and camp sites, and average wind speed.

As might be expected, smaller distances to CFA stations, roads and camp sites, and higher than average winds, meant the fire was most likely the result of arson or accident. In the case of longer distances, where bush would have been largely inaccessible to the public, lightning was predicted to be the cause.

Spatial distribution of causes of fires from 2000-2019, and predictions for 2019-2020 season.
Own work

What we found

Our model predicted that 82% of Victoria’s fires in the summer of 2019-2020 were due to lightning. Most fires were located in densely vegetated areas inaccessible by road – similar to the historical locations. (The percentage is double that in the historical data, though, probably because the satellite hotspot data can see fire ignitions in locations inaccessible to fire experts).

All fires in February 2020 were predicted to be due to lightning. Accident and arson were commonly predicted causes in March, and early in the season. Reassuringly, ignition due to burning off was predicted primarily in October 2019, prior to the fire restrictions.

Spatio-temporal distribution of cause predictions for 2019-2020 season. Reassuringly, fires due to burning off primarily occurred in October, prior to fire restrictions. February fires were all predicted to be due to lightning.
Own work

Quicker fire ignition information

Our analysis used open-data and open-source software, and could be applied to fires elsewhere in Australia.

This analysis shows how we can quickly predict causes of bushfires, using satellite data combined with other information. It could reduce the work of fire forensics teams, and provide more complete fire ignition data in future.

The code used for the analysis can be found here. Explore the historical fire data, predictions for 2019-2020 fires, and a fire risk map for Victoria using this app.


This analysis is based on thesis research by Monash University Honours student Weihao Li. She was supervised by the author, and former Principal Inventive Scientist at AT&T Labs Research, Emily Dodwell. The Australian Centre of Excellence for Mathematical and Statistical Frontiers supported Emily’s travel to Australia to start this project. The full analysis is available here.

The Conversation

Dianne Cook, Professor of Business Analytics, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Before and after: 4 new graphics show the recovery from last summer’s bushfire devastation



Airborne Research Australia, Author provided

Jorg Michael Hacker, Flinders University

Two days before Christmas last year, a fire reached our heritage-protected bush property in the Adelaide Hills, and destroyed our neighbour’s house. For the next two weeks we were on constant alert to keep the fire in check.

Green shoots of grass trees after bushfire
Grass trees are some of the first plants to regrow after a bushfire.
Wikimedia, CC BY

A few weeks later, I flew over fire-affected areas in the Adelaide Hills and had my first aerial view of the devastation. Fighting fires around my home, and what I saw on this flight, convinced me to get involved with helping recovery in the aftermath of the fires.

In the past year, I’ve taken high-resolution aerial data to monitor the recovery of fire-affected areas and help with post-fire efforts. This work includes clearing access tracks into burnt forests, locating unburnt areas within burnt forests to serve as refuges for wildlife, or simply documenting the degree of destruction.

I now have a unique dataset – a combination of very high-resolution and detail from three sensors: aerial photography, airborne Lidar (a way to measure distances with laser light) and hyperspectral imaging (looking at the landscape and vegetation with hundreds of narrow wavelengths).

Flying at just 250 metres above the ground, it’s possible to generate complete three-dimensional views and animations of the landscape and its features at resolutions in the 10cm-range.

Usually such airborne data is only available to government agencies, industry and sometimes researchers, but rarely to the general public. So we decided to make the data publicly available, so anyone can download it. It will help you appreciate the level of destruction, and how it varied for different landscapes.

My property, for example, is showing strong regrowth, but most of our neighbour’s block burnt so intensely that even now, after nearly one year, there’s very little regrowth even in terms of ground cover.

Here are a few examples of the landscape’s recovery around Kangaroo Island, generated from our data.



Bushfires decimated almost half of Kangaroo Island. The image sequence above shows a small area on Kangaroo Island before the fires and about one, three and nine months afterwards.

Before the fires, the landscape was dominated by dense bushland, which the fires nearly completely destroyed. The first signs of regrowth were visible after three months, and even more so after nine months.

The imagery is so detailed you can inspect the regrowth even for individual trees and scrubs. And in the slider below, you can more clearly compare how well the bushland regrew between February and October this year.

@media only screen and (max-width: 450px) {
iframe.juxtapose { height: 180px; width: 100%; }
}
@media only screen and (min-width: 451px) and (max-width: 1460px) {
iframe.juxtapose { height: 300px; width: 100%; }
}


Much of Australia’s native flora have evolved to cope with fire. Grass trees are among the first species to recover, and the Lidar data below demonstrates just how dramatic this recovery is.

Thousands of grass trees (“yuccas”) on Kangaroo Island grew up to seven metre-high flowers in the months after the fires. This is a typical phenomenon for this species after fire, and we were lucky enough to see this first hand on our bushland property, too.


@media only screen and (max-width: 450px) {
iframe.juxtapose2 { height: 270px; width: 100%; }
}
@media only screen and (min-width: 451px) and (max-width: 1460px) {
iframe.juxtapose2 { height: 430px; width: 100%; }
}


The video below shows the regrowth in and around a tree plantation on Kangaroo Island, directly after the fires and then after nine months. You can clearly see the intense regrowth on the ground and near the bottom of the burnt trees.

Usually firegrounds are observed via satellite imagery, imagery captured from high-flying survey aircraft and, more recently, using unmanned aerial vehicles (drones). None of these observations can map the landscape at the exceptionally high detail over large areas and with the combination of sensors as we have flown.

High-resolution aerial photographs at pixel sizes as small as five centimetres can be put together in a mosaic, covering many square kilometres. Combined with Lidar, and the hyperspectral scanner, we get detailed animations, such as those in the video, which can zero in on various intricate aspects, such as vegetation health.



How these datasets can help bushfire recovery

With a some moderate funding, we can continue these regular mapping flights next year and beyond to learn how these areas develop. We can put this into context with other factors, such as burn severity, soil structure and vegetation type.

Such detailed datasets would assist researchers assessing flammability and fuel load (dried vegetation) which, in turn, would help prevent and even fight future fires.




Read more:
Fire-ravaged Kangaroo Island is teeming with feral cats. It’s bad news for this little marsupial


Flammability and fuel load, alongside the slope of the landscape, are key parameters in computer simulations of fire behaviour. High resolution datasets depicting landscapes before and after bushfire can verify the simulation results, and help to improve the performance of the models.

Our datasets can also be useful for people needing to access areas directly after the fires, such as identifying where burnt trees have fallen, or are just about to do so.

For our own bushland block in the Adelaide Hills, these detailed imagery and datasets means we can study the regrowth from the Cudlee Creek Fire almost a year ago, as well as from previous fires. For example, some areas were burnt in the 2015 Sampson Flat Fire and had already regrown over the four years — only to be burnt again.

Continuing such flights would require a comparatively low amount of funding. However, this is currently not available in the standard government grant system. You can download data from the mapping flights over Adelaide Hills and Kangaroo Island.




Read more:
Yes, native plants can flourish after bushfire. But there’s only so much hardship they can take


The Conversation


Jorg Michael Hacker, Chief Scientist at Airborne Research Australia (ARA); and Professor, Flinders University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How the size and shape of dried leaves can turn small flames into colossal bushfires


Shutterstock

Jamie Burton, University of Melbourne; Alexander Filkov, University of Melbourne, and Jane Cawson, University of Melbourne

The 2020-21 fire season is well underway, and we’ve watched in horror as places like K’gari (Fraser Island) burn uncontrollably, threatening people and their homes and devastating the environment.




Read more:
The K’gari-Fraser Island bushfire is causing catastrophic damage. What can we expect when it’s all over?


To lessen the impact of fires, we need to know when they are likely to burn and how intensely. Central to this is the flammability of litter beds — the layer of dead leaves, needles, twigs and bark on the forest floor.

Every large fire begins as a small fire, igniting and initially spreading through the litter bed, but what makes some litter beds more flammable than others?

Aerated litter beds fuel bigger fires

Over the past few years, fire scientists across the world have been busy tackling this burning question. In tropical forests in the Amazon, oak forests in North America and eucalypt woodlands in Australia, they have been collecting leaf litter beds and burning them in the laboratory to understand why litter beds from some plant species burn differently to others.

Each of these studies focused on leaf litter beds made up of a single species, and each identified a range of drivers of flammability. These drivers relate to both the characteristics of the individual litter particle (leaf, needle or branch) and the litter bed itself.




Read more:
Not all blackened landscapes are bad. We must learn to love the right kind


Our new research sought to consolidate these studies to find the common drivers of flammability between different single-species litter beds from different parts of the world.

From our meta-analysis, we found “litter packing” and “litter bulk density” were key factors in litter bed flammability.

Litter packing is a measure of how many gaps are between the dried leaves, needles and branches, and is important for determining how much air is available for burning. Likewise, litter bulk density is a measure of how much litter there is, and is important for determining how quickly and how long litter burns.

Oak tree litter bed
The litter bed from oak trees. The curly leaves create air gaps throughout the litter bed, which lead to bigger fires.
Jamie Burton, Author provided

We found loosely packed litter beds spread fire faster, burned for shorter periods of time and were more consumed by the flames. Importantly, we found this was universal across different types of litter beds.

We also identified the characteristics of leaves, needles and branches that cause variations in litter packing and litter bulk density.

For example, if the litter particles are “curly” and have a high surface area to volume ratio, then they’ll form litter beds with low packing ratios which burn faster and have higher consumption. Examples include leaves from some oak (Quercus) species.




Read more:
Tree ferns are older than dinosaurs. And that’s not even the most interesting thing about them


At the opposite end, small and less curly leaves form densely packed litter beds which are less aerated. Examples include coast tea tree (Leptospermum laevigatum) and conifers with small needles such as Larix and Picea. This results in slower moving fires, which do not consume all the litter.

For eucalypt litter beds, things are a little more complicated. Some species have thick and flat leaves which pack densely, so fire spreads more slowly and less litter is consumed. Other species, such as the southern blue gum (Eucalyptus globulus), have larger leaves which tend to pack less densely, so fires burn more quickly with taller flames.

Eucalyptus litter bed
The litter bed of eucalyptus trees.
Jamie Burton, Author provided

How can this information help us manage fires?

Of course, under extreme fire weather conditions, any litter bed will burn. However, at the beginning of a fire or under mild conditions, differences in litter characteristics may strongly influence how that fire spreads. Research on this can be useful for many aspects of fire management and planning.

For example, if we know which plants produce less flammable litter, we can select them for planting around houses, landscaping in fire-prone areas and also use them as green firebreaks to reduce the risk to people and homes. If a fire was to start, it may spread less quickly and be less intense, making it easier to contain and put out.

_Allocasuarina_ needle litter
Allocasuarina species with long thin needles tend to pack loosely, leading to faster flame spread and shorter burning times.
Jamie Burton, Author provided

But also it may not be that straightforward. When deciding which species to plant, the flammability of living plants needs to be considered, as well. Some plants that have less flammable litter may actually be highly flammable as a living plant. For example, although coast tea tree may form densely packed litter beds, the high oil content in the leaves makes it highly flammable as a living plant.

Our findings could also be used for predicting fire behaviour. For example, our results could be integrated into fire behaviour models, such as the Forest Flammability Model, which uses information on the composition and structure of the plant community to predict fire behaviour.

Next steps

Our study provides information on what leaf and litter characteristics affect flammability in litter beds composed of a single species. But in many forests, litter beds are made up of a variety of plant species, and more research is needed to understand what happens to litter packing and flammability in these multi-species litter beds.

Sydney red gum
The bark of the Sydney red gum tends to take longer to ignite, but burns for longer than its leaves.
Shutterstock

Besides different species, litter beds also contain different components such as twigs and bark. For example, in a mature wet eucalypt forest, bark and twigs can make up to 44% of the litter bed.

And for some eucalypt species, we already know bark burns differently to leaves. For example, the flaky bark of the Sydney red gum (Angophora costata) tends to take longer to ignite, but burns for a longer time compared to its leaves.

With fires becoming more frequent and fire seasons becoming longer, research into litter bed flammability has never been more needed.




Read more:
‘I felt immense grief’: one year on from the bushfires, scientists need mental health support


The Conversation


Jamie Burton, PhD Candidate, University of Melbourne; Alexander Filkov, Senior research fellow, University of Melbourne, and Jane Cawson, Research Fellow in Bushfire Behaviour and Management, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The K’gari-Fraser Island bushfire is causing catastrophic damage. What can we expect when it’s all over?


Gabriel Conroy, University of the Sunshine Coast

K’gari (Fraser Island) has been burning for more than seven weeks and, so far, the fires have razed half of the World Heritage-listed island off the coast of Queensland. The devastation will become more pronounced in coming weeks, despite overnight rain.

Much of the commentary on these fires has focused on how these landscapes are “meant to burn”, and that (luckily) there have been no major fires in the fire-sensitive, rainforest-style ecosystems in the island’s centre.

However, the fact remains that a fire of this magnitude will alter the ecological balance on the island. Let’s explore why.

An uphill battle

K’gari is an incredibly biodiverse place, with more than 30 mammal species, 354 types of birds, 60 reptiles and 17 types of frogs.

For thousands of years, the Butchulla traditional owners maintained the island’s ecosystems with patch mosaic burning. The general principle behind patch mosaic burning is that by burning regularly and strategically, you create habitat niches that cater for a wide variety of generalist and specialist species, which favours biodiversity.




Read more:
Australia, you have unfinished business. It’s time to let our ‘fire people’ care for this land


With an absence of this mode of burning during 130 years of logging on the island (ending in 1991), today’s environmental managers have faced an uphill battle to claw back the balance.

This — alongside tinder-dry conditions and large swathes of relatively inaccessible wilderness in the north — is why we unfortunately find ourselves in the situation where an incredibly widespread, intense fire has occurred.

These types of fires can irrevocably alter the nature of even fire-adapted ecosystems (like in the northern half of K’gari) and are likely to become more commonplace in our changing climate.

Let’s take two of K’gari’s rare plant species — the tiny wattle (Acacia baueri) and the much-loved Christmas bells (Blandfordia grandiflora) — as examples of why the Australian landscape’s need for fire isn’t straightforward, and requires patch burning.

Christmas bells
Christmas bells flower for one to three years after a fire, and then disappear underground.
Shutterstock

These species rely on low intensity fire occurring every three to five years to regenerate and avoid local extinction.

However, other fire-adapted species that grow alongside them, such as Banksia robur, would struggle to withstand burning this frequently. Some may not even be able to reach reproductive maturity during that kind of time span.

Invertebrates: the island’s unheralded heroes

K’gari is famous for its wild population of dingoes, which undoubtedly will have suffered in these fires. We won’t know the full impact for these and many other species until the dust has settled.




Read more:
Dingoes and humans were once friends. Separating them could be why they attack


But one of my greatest concerns is for the largely forgotten species propping up ecosystems: invertebrates. In normal circumstances, the island is teeming with highly abundant and diverse invertebrate life if you bother to look for it — and will undoubtedly bite you or keep you awake at night even if you don’t.

Herbivorous species, including insects, are the unheralded heroes that transfer a lot of the the energy generated by plants up through the food chain, for example, by providing food for predators like dingoes.

With 50% (and counting) of the island’s ecosystems already burnt in this fire, the amount of food available for herbivores has reduced. This means significantly less energy can be fed back up the food chain, affecting the entire ecosystem.

A dingo on the beach
Wild dingoes are an important feature of the World Heritage-listed island.
Shutterstock

When there’s nowhere to escape

On mainland Australia, birds, bugs and fast-moving animals like dingoes and wallabies often flee to safe habitats when fires occur, and then later recolonise fire-affected regions.

Although relatively close to the mainland, K’gari is a very long and narrow island, and because the entire northern end of the island has burnt, most terrestrial species have only a narrow interface through the central part of the island to try to escape. These lack of escape routes will likely exacerbate death rates of native fauna.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


To make matters worse, the ecosystems to the north are markedly different to those in the centre of the island. So while we wait to see how the northern regions regenerate, the species that depend on them may have moved further south to find equivalent ecosystems.

Effectively, only 50% of the island now provides habitat and food sources for the entire island’s wildlife, and the remaining habitat is not always a like-for-like replacement.

How will it look when it ‘bounces back’?

When the fires have extinguished and plants begin to regenerate, a sea of green may convince people the ecosystems have bounced back marvellously from the fires. But in actual fact, they may have been irrevocably changed.

Certain species will flourish in the post-fire environment, but because of the fire’s widespread nature, it’s possible the composition of the vegetation will change.




Read more:
Yes, native plants can flourish after bushfire. But there’s only so much hardship they can take


Weeds, for example, love bare ground, and even native species can become “weedy” in nature and can dominate in disturbed areas. In ongoing research, our team has observed this in areas of the island impacted by sand mining in the 1970s, where there’s an overabundance of immature Acacia and Casuarina species.

My greatest hope is that the future of K’gari includes patch mosaic burning (and cultural burns) at a landscape scale.

If we want to ensure K’gari bounces back as much as possible, then we need to use these devastating bushfires as an opportunity to work collaboratively towards a common conservation goal.

The intent from key stakeholders is evident, with productive conversations already occurring between our team at the University of the Sunshine Coast, Queensland Parks and Wildlife Service and the Butchulla Aboriginal Corporation. For this to come to fruition, on-ground efforts will need to be well-resourced and supported by ongoing monitoring and research.The Conversation

Gabriel Conroy, Environmental Management Program Coordinator, University of the Sunshine Coast

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fires shaped Mount Kilimanjaro’s unique environment. Now they threaten it



Fires on Kilimanjaro, October 2020.
Thomas Becker/picture alliance via Getty Images

Andreas Hemp, Bayreuth University

In October, firefighters in Tanzania had to tackle a number of fires on Mount Kilimanjaro, Africa’s tallest mountain and the largest free-standing mountain in the world. The mountain and surrounding forests fall into Kilimanjaro National Park, named a UNESCO World Heritage site in 1987. Andreas Hemp provides a glimpse into the mountain’s natural environment and the challenges it faces.

Is this the first time there has been a fire of this magnitude? If there have been fires like this before, what damage was done to the mountain’s vegetation and how long did it take it to recover?

Fires are quite common in the higher areas of Kilimanjaro at the end of the dry seasons, around February to March and September to October. Fire can transform land cover, but it also maintains it. Studies that I’ve done with colleagues (using pollen records buried in the soil that go back 50,000 years) showed that fires always played a role in shaping the vegetation belts on the mountain.

For instance, certain species, such as the giant groundsels (Dendrosenecio) became fire-adapted. Also, without fires opening up the forests many light demanding species, such as the famous giant lobelias, would not be able to grow.

There have, however, been several severe fires on Kilimanjaro over the last few decades that have dramatically changed land cover.

Fires in 1996 and 1997 – years with unusually dry seasons – destroyed vast areas of old cloud forest. These are characteristically moist forests in high altitude areas which create unique environments. The forest was replaced by bush. Vegetation has started to recover and shrubs have sprouted, but it’s far from being a forest, which would take at least 100 years to grow without fire. Since these old forests have an important function of fog water collection, the loss of these forests means a serious impact on the water balance of the mountain, much larger than the impact of the melting glaciers, which is ecologically negligible.

The impact of these former fires was much bigger than that of the recent one, which “only” affected bush land and not forest.

What type of vegetation exists on Mt Kilimanjaro and how unique is it?

Due to its enormous height, Kilimanjaro has several distinct vegetation belts.

It is surrounded on the foothills by cultivation with a unique mix of agriculture, savanna and forest. This harbours very rich biodiversity as well as the tallest trees on the continent.

Higher up the mountain – between about 1,800 and 3,000 metres – a montane forest belt encircles the whole mountain. This is one of the largest forest blocks in East Africa.

Even higher up, between 3,000 and 4,000 metres, there’s a heathland belt typical of the high mountains in East Africa. This vegetation consists of Erica, Protea, Stoebe and many other shrub species, many of them are endemic, occurring only on one or several mountains.

Erica shrubs burn very easily, which makes this vegetation belt particularly flammable. During wet periods without fire, the former forest can re-establish and expand to the tree line at 4000m. During dry periods, with recurring fires (natural and or caused by people), the forest belt shrinks and the ericaceous belt expands.

What challenges does the mountain’s natural environment face and have there been any noticeable changes over the years?

Over the last 150 years, the regional climate has become drier. This has caused the mountain’s glaciers to shrink by almost 90% of their former extent. The drier climate is also the reason for an increase in the frequency and intensity of wild fires in the upper areas of Kilimanjaro, affecting the forests.

Most of these fires are lit by people (such as honey collectors smoking out bees), but these fires would not have been so devastating if the climate was wetter.

There’s an interplay between direct anthropogenic (caused by people) and climatic impacts.

Since 1911 the human population on Kilimanjaro has increased from 100,000 to over 1.2 million. This has resulted in an enormous loss of natural vegetation. Kilimanjaro is becoming an ecological island, isolated and surrounded by agriculture. Over this period it has lost 50% of its forest cover. In the lower areas this is mainly due to logging and clearing. In the upper areas it’s due to fires.

In combination with global climate change, this forest destruction results in a decrease of moisture in the region. This will also affect agriculture in the region because it’s partly irrigated.

Who is responsible for protecting the mountain and how well protected is it?

In 2005, the forest belt was incorporated into the mountain’s existing national park area. This means that it falls under the responsibility of the Tanzania and Kilimanjaro National Park authorities. The forest belt is much better protected than it was before, as a forest reserve.

The banning of camp fires on the tourist routes by the national park authorities helped to reduce the fire risk. But it’s not possible to exclude the risk in this large heathland belt totally. Perhaps the acquisition of larger fire-fighting airplanes could help. Fires are usually fought by hundreds of volunteers and firefighters, using shovels and machetes creating fire breaks by hand. This recent fire was the first time that a helicopter was used to carry water from nearby dams.

What else can be done?

To protect the biodiversity of Kilimanjaro the unique forests of the larger deep river valleys below the National Park should be incorporated into the National Park. Kilimanjaro is becoming an ecological island completely isolated and surrounded by agriculture. This inhibits the exchange of animal populations and affects biodiversity.

It’s all the more important that the wildlife corridor connecting the Amboseli ecosystem in Kenya and Kilimanjaro National Park has to be well protected. It is under great pressure due to grazing and agriculture. This corridor is important for the migration of elephants, which stay now more and more on Kilimanjaro destroying the forest.The Conversation

Andreas Hemp, Research Associate Plant Systematics, Bayreuth University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans are changing fire patterns, and it’s threatening 4,403 species with extinction



The Leadbeater’s possum, one of thousands of species threatened by changing fire regimes.
Shutterstock

Luke Kelly, University of Melbourne; Annabel Smith, The University of Queensland; Katherine Giljohann, University of Melbourne, and Michael Clarke, La Trobe University

Last summer, many Australians were shocked to see fires sweep through the wet tropical rainforests of Queensland, where large and severe fires are almost unheard of. This is just one example of how human activities are changing fire patterns around the world, with huge consequences for wildlife.

In a major new paper published in Science, we reveal how changes in fire activity threaten more than 4,400 species across the globe with extinction. This includes 19% of birds, 16% of mammals, 17% of dragonflies and 19% of legumes that are classified as critically endangered, endangered or vulnerable.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


But, we also highlight the emerging ways we can help promote biodiversity and stop extinctions in this new era of fire. It starts with understanding what’s causing these changes and what we can do to promote the “right” kind of fire.

How is fire activity changing?

Recent fires have burned ecosystems where wildfire has historically been rare or absent, from the tropical forests of Queensland, Southeast Asia and South America to the tundra of the Arctic Circle.

Exceptionally large and severe fires have also been observed in areas with a long history of fire. For example, the 12.6 million hectares that burnt in eastern Australia during last summer’s devastating bushfires was unprecedented in scale.

The post-fire landscape in Flinders Chase National Park, Kangaroo Island, three months after an extremely large and severe bushfire last summer.
Luke Kelly

This extreme event came at a time when fire seasons are getting longer, with more extreme wildfires predicted in forests and shrublands in Australia, southern Europe and western United States.

But fire activity isn’t increasing everywhere. Grasslands in countries such as Brazil, Tanzania, and the United States have had fire activity reduced.

Extinction risk in a fiery world

Fire enables many plants to complete their life cycles, creates habitats for a wide range of animals and maintains a diversity of ecosystems. Many species are adapted to particular patterns of fire, such as banksias — plants that release seeds into the resource-rich ash covering the ground after fire.

But changing how often fires occur and in what seasons can harm populations of species like these, and transform the ecosystems they rely on.

We reviewed data from the International Union for Conservation of Nature (IUCN) and found that of the 29,304 land-based and freshwater species listed as threatened, modified fire regimes are a threat to more than 4,403.

Most are categorised as threatened by an increase in fire frequency or intensity.

For example, the endangered mallee emu-wren in semi-arid Australia is confined to isolated patches of habitat, which makes them vulnerable to large bushfires that can destroy entire local populations.

Likewise, the Kangaroo Island dunnart was listed as critically endangered before it lost 95% of its habitat in the devastating 2019-2020 bushfires.

Large bushfires threaten many birds, such as the mallee emu-wren.
Ron Knight/Wikimedia, CC BY

However, some species and ecosystems are threatened when fire doesn’t occur. Frequent fires are an important part of African savanna ecosystems and less fire activity can lead to shrub encroachment. This can displace wild herbivores such as wildebeest that prefer open areas.

How humans change fire regimes

There are three main ways humans are transforming fire activity: global climate change, land-use and the introduction of pest species.

Global climate change modifies fire regimes by changing fuels such as dry vegetation, ignitions such as lightning, and creating more extreme fire weather.

What’s more, climate-induced fires can occur before the dominant tree species are old enough to produce seed, and this is reshaping forests in Australia, Canada and the United States.

Humans also alter fire regimes through farming, forestry, urbanisation and by intentionally starting or suppressing fires.

Introduced species can also change fire activity and ecosystems. For example, in savanna landscapes of Northern Australia, invasive gamba grass increases flammability and fire frequency. And invasive animals, such as red foxes and feral cats, prey on native animals exposed in recently burnt areas.




Read more:
Fire-ravaged Kangaroo Island is teeming with feral cats. It’s bad news for this little marsupial


Importantly, cultural, social and economic changes underpin these drivers. In Australia, the displacement of Indigenous peoples and their nuanced and purposeful use of fire has been linked with extinctions of mammals and is transforming vegetation.

We need bolder conservation strategies

A suite of emerging actions — some established but receiving increasing attention, others new — could help us navigate this new fire era and save species from extinction. They include:

In Africa, reintroducing grazing animals such as rhinoceros create patchy fire regimes.
Sally Archibald, Author provided

Where to from here?

The input of scientists will be valuable in helping navigate big decisions about new and changing ecosystems.

Empirical data and models can monitor and forecast changes in biodiversity. For example, new modelling has allowed University of Melbourne researchers to identify alternative strategies for introducing planned or prescribed burning that reduces the risk of large bushfires to koalas.

New partnerships are also needed to meet the challenges ahead.

At the local and regional scale, Indigenous-led fire stewardship is an important approach for fostering relationships between Indigenous and non-Indigenous organisations and communities around the world.

Frank Lake, a co-author on our new paper, works with Yurok and Karuk fire practitioners, shown here burning under oaks.
Frank Lake, U.S Department of Agriculture Forest Service Pacific Southwest Research Station.

And international efforts to reduce greenhouse gas emissions and limit global warming are crucial to reduce the risk of extreme fire events. With more extreme fire events ahead of us, learning to understand and adapt to changes in fire regimes has never been more important.




Read more:
The world’s best fire management system is in northern Australia, and it’s led by Indigenous land managers


The Conversation


Luke Kelly, Senior Lecturer in Ecology and Centenary Research Fellow, University of Melbourne; Annabel Smith, Lecturer in Wildlife Management, The University of Queensland; Katherine Giljohann, Postdoctoral research fellow, University of Melbourne, and Michael Clarke, Professor of Zoology, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

3 billion animals were in the bushfires’ path. Here’s what the royal commission said (and should’ve said) about them


Ashleigh Best, University of Melbourne; Christine Parker, University of Melbourne, and Lee Godden, University of Melbourne

The Black Summer bushfires were devastating for wildlife, with an estimated three billion wild animals killed, injured or displaced. This staggering figure does not include the tens of thousands of farm animals who also perished.

The bushfire royal commission’s final report, released on October 30, recognised the gravity of the fires’ extraordinary toll on animals.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


It recommended governments improve wildlife rescue arrangements, develop better systems for understanding biodiversity and clarify evacuation options for domestic animals.

While these changes are welcome and necessary, they’re not sufficient. Minimising such catastrophic impacts on wildlife and livestock also means reducing their exposure to these hazards in the first place. And unless we develop more proactive strategies to protect threatened species from disasters, they’ll only become more imperilled.

What the royal commission recommended

The royal commission recognised the need for wildlife rescuers to have swift and safe access to fire grounds.

In the immediate aftermath of the bushfires, some emergency services personnel were confused about the roles and responsibilities of wildlife rescuers. This caused delays in rescue operations.

To address this issue, the royal commission sensibly suggested all state and territory governments integrate wildlife rescue functions into their general disaster planning frameworks. This would improve coordination between different response agencies.




Read more:
The bushfire royal commission has made a clarion call for change. Now we need politics to follow


Another issue raised by the commission was that Australia does not have a comprehensive, central source of information about its native flora and fauna. This is, in part, because species listing processes are fragmented across different jurisdictions.

For example, a marsupial, the white-footed dunnart, is listed as vulnerable in NSW, but is not on the federal government’s list of threatened species.

To better manage and protect wild animals, governments need more complete information on, for example, their range and population, and how climate change threatens them.

As a result, the royal commission recommended governments collect and share more accurate information so disaster response and recovery efforts for wildlife could be more targeted, timely and effective.

A wildlife rescuer holds a koala with burnt feet in a burnt forest
Adelaide wildlife rescuer Simon Adamczyk takes a koala to safety on Kangaroo Island.
AAP Image/David Mariuz

Helping animals help themselves

While promising, the measures listed in the royal commission’s final report will only tweak a management system for wildlife already under stress. Current legal frameworks for protecting threatened species are reactive. By the time governments intervene, species have often already reached a turning point.

Governments must act to allow wild animals the best possible chances of escaping and recovering on their own.

This means prioritising the protection and restoration of habitat that allows animals to get to safety. As a World Wildlife Fund report explains, an animal’s ability to flee the fires and find safe, unburnt habitat — such as mesic (moist) refuges in gullies or near waterways — directly influenced their chances of survival.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


Wildlife corridors also assist wild animals to survive and recover from disasters. These connect areas of habitat, providing fast moving species with safe routes along which they can flee from hazards.

And these corridors help slow moving species, such as koalas, to move across affected landscapes after fires. This prevents them from becoming isolated, and enables access to food and water.

Hazard reduction activities, such as removing dry vegetation that fuels fires, were also a focus for the royal commission. These can coexist with habitat conservation when undertaken in ecologically-sensitive ways.

As the commission recognised, Indigenous land and fire management practices are informed by intimate knowledge of plants, animals and landscapes. These practices should be integrated into habitat protection policies in consultation with First Nations land managers.

The commission also suggested natural hazards, such as fire, be counted as a “key threatening process” under national environment law. But it should be further amended to protect vulnerable species under threat from future stressors, such as disasters.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


Governments also need to provide more funding to monitor compliance with this law. Another new World Wildlife Fund report warns that unless it is properly enforced, a further 37 million native animals could be displaced or killed as a result of habitat destruction this decade.

And, as we saw last summer, single bushfire events can push some populations much closer to extinction. For example, the fires destroyed a large portion of the already endangered glossy black-cockatoo’s remaining habitat.

What about pets and farm animals?

Pets and farm animals featured in the commission’s recommendations too.

During the bushfires, certain evacuation centres didn’t cater for these animals. This meant some evacuees chose not to use these facilities because they couldn’t take their animals with them.

To guide the community in future disasters, the commission said plans should clearly identify whether or not evacuation centres can accommodate people with animals.




Read more:
Seven ways to protect your pets in an emergency


Evacuation planning is crucial to effective disaster response. However, it is unfortunately not always feasible to move large groups of livestock off properties at short notice.

For this reason, governments should help landholders to mitigate the risks hazards pose to their herds and flocks. Researchers are already starting to do this by investigating the parts of properties that were burnt during the bushfires. This will help farmers identify the safest paddocks for their animals in future fire seasons.

Disasters are only expected to become more intense and extreme as the climate changes. And if we’re to give our pets, livestock and unique wildlife the best chance at surviving, it’s not enough only to have sound disaster response. Governments must preemptively address the underlying sources of animals’ vulnerability to hazards.




Read more:
How we plan for animals in emergencies


The Conversation


Ashleigh Best, PhD Candidate and Teaching Fellow, University of Melbourne; Christine Parker, Professor of Law, University of Melbourne, and Lee Godden, Director, Centre for Resources, Energy and Environmental Law, Melbourne Law School, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.