Monarch butterflies raised in captivity can still join the migration


Migrating monarch butterflies rest at Pismo Beach, Calif. on their way to Mexico.
(Shutterstock)

Alana Wilcox, University of Guelph and Ryan Norris, University of GuelphEach year, thousands of hobbyists and educators across North America collect monarch eggs or caterpillars from the wild to raise indoors and patiently wait for butterflies to emerge. Raising monarch butterflies indoors has become an increasingly popular activity that can have numerous benefits.

Captively reared monarchs provide a unique opportunity for people to learn about the complex life cycle of butterflies and, at the same time, help raise awareness about monarch conservation. However, rearing monarchs (and other butterflies) must be done responsibly and in moderation to make sure that it does not have a negative effect on the population.

Monarch butterflies undergo a multi-generational migration in spring and summer that will bring them as far north as Canada and then, in the fall, a new generation of monarchs undergo a unique transformation that prepares them for a single-bout long-distance migration south. These larger, stronger monarch butterflies will travel more than 4,500 kilometres to congregate and overwinter by the millions in the tree canopies high in the Sierra Madre Mountains of Mexico.

A PBS Nature special on overwintering monarch butterflies in Mexico.

Population decline

The overwintering population of eastern monarch butterflies, however, has been dwindling from an occupancy level of 44.95 hectares in 1997 to 14.95 hectares in 2019 to five hectares this year. Some causes of this decline are thought to be loss of milkweed on which caterpillars feed, long-term changes in climate and deforestation at their overwintering sites. This has caused concern about the likelihood of extinction and the loss of the migratory phenomenon.

Rearing monarchs indoors has been touted as a way to help bolster population numbers and mitigate declines. In reality, indoor rearing probably does little to supplement the wild population, but arguably goes a long way towards awareness and education.

The practice of indoor rearing is not without controversy and has been considered potentially harmful due to the negative impact it could have on butterfly health and the risk it could pose to the butterflies’ ability to migrate to Mexico.

However, our recent research provides some evidence that monarchs raised indoors may still be able to migrate south to their overwintering grounds.

Monarch butterfly with a radio-tracking tag
Monarch butterfly with a radio-tracking tag.
(Wilcox), Author provided

Disoriented butterflies

Our team at the University of Guelph raised monarch caterpillars on milkweed indoors in controlled environmental conditions that approximated what monarchs would experience naturally in the wild. Once butterflies emerged from their cocoons, they were tested in a flight simulator, a large open vessel with a digital sensor that recorded which direction the monarchs attempted to fly.

The results from this experiment were consistent with previous research showing that indoor-reared monarchs, on average, did not orient in the proper direction for migration to Mexico.

Monarch butterflies’ inability to orient in the flight simulator could be the result of a lack of exposure to natural and direct sunlight during development. Many animals are equipped with an internal clock that tells the animal when to perform certain activities. For monarch butterflies, this internal clock is located in their antennae and, when coupled with visual information on the sun’s position, tells the monarch which direction it should fly each fall.

an infographic showing the results of the experiment — monarchs released in the wild could re-orient themselves
Monarch butterflies hatched in captivity but released in the wild were found to join the southward migration.
(Wilcox, Newman, Raine, Mitchell and Norris), Author provided

Recalibration in natural light

Given this, our research team went one step further to determine if indoor-reared monarchs exposed to natural environmental conditions and sunlight after they were released could calibrate their internal compass and fly south.

To do so, our team attached tiny radio transmitters to a second group of indoor-reared monarchs and released the butterflies into the wild. The radio transmitters emit a signal during migration and, if a monarch flies close enough, can be received at one of several hundred automatic radio receiving towers scattered across North America, called the Motus telemetry array.

We detected 29 butterflies at the beginning of migration and found that, given some time outdoors, these butterflies were able to get their bearings and fly southward. This suggests that under certain controlled conditions, raising monarchs indoors may not affect their orientation and ability to start migration.

Indoor rearing offers a valuable tool for learning and fostering a connection to nature. Our results help curb concern that indoor rearing negatively impacts monarch orientation.

While more research needs to be conducted to determine how monarchs perform under different indoor conditions and at different rearing locations in North America, our research suggests that monarch enthusiasts may be able to continue enjoying the wonderful experience of raising these butterflies at home.The Conversation

Alana Wilcox, Researcher, Conservation biology, University of Guelph and Ryan Norris, Associate Professor, Member of the Royal Society of Canada’s College of New Scholars, Artists and Scientists, University of Guelph

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tasmanian devils reared in captivity show they can thrive in the wild


Tracey Rogers, UNSW Australia

One of the concerns of any conservation breeding program is how well a species raised in captivity will survive when released into the wild.

Evolutionary changes that are beneficial for an individual while in captivity may reduce its fitness when translocated to the wild.

For some species, like many fish, rapid evolutionary changes can occur within the first generation in captivity. And carnivores raised in captivity have a low chance of surviving the first year following their release.

A review of 45 carnivore translocations, which included 17 different species, including the European lynx, European otter and the swift fox, found that if the animals had been raised in captivity they had on average a 30% chance of survival after release.

Save the devil program

All this was a concern then for efforts to help save the Tasmanian devil.

The devil plays an important functional role within the Tasmanian ecosystem and is the last of the large marsupial carnivores.

But the Tasmanian devil is listed as endangered and their population has declined by 80% over the past ten years. This is due largely to the infectious fatal cancer, the devil facial tumour disease (DFTD).

As part of a conservation effort, a disease-free devil population has been established in captivity.

But given the low rate of survival of released captive-raised carnivores in other conservation programs it was important to identify whether their release could play a viable role in the conservation of the Tasmanian devil.

Captive breeding programs are extremely expensive and resource allocation was very tight. So more than 35 institutions helped to set up the captive devil insurance population.

Different types of enclosure setting were used, some intensive zoo style while others had larger pens to allow for a more free range style. The different enclosure types offered different opportunities for the devils to retain their natural behaviours.

We tested the effect of the various captive-rearing methods on the survival and body mass of captive raised Tasmanian devils that were released on Maria Island, off Tasmania’s east coast.

Our study, published this month in CSIRO Wildlife Research, showed that Tasmanian devils raised in captivity before being translocated into the wild had a high survival success (96%). Most of the devils are still alive two years after their release.

The devils gained weight, are hunting and breeding. This is irrespective of the type of captive-rearing method as both zoo style and free range reared animals are thriving.

Release of the devils.
Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment

Natural born killers

One cause of translocation failure in other programs has been that the released animals starve. The captive-raised animals had not learnt foraging and hunting skills. Some carnivorous mammals can lose this natural foraging behaviour in captivity.

But the captive-raised Tasmanian devils adjusted to the wild better than other carnivorous species. This was not only because they were released in the relative safety of an island, but it suggests that the devils’ foraging behaviour does not need to be learnt.

Devils have bone crushing jaws.
Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment.

Devils have a massive head with bone crushing jaws, large tough molars and strong shoulders and neck. They have a very broad approach to what they will eat.

Their diet includes all major critters such as mammals, birds, reptiles, amphibians and invertebrates. Devils have been seen catching gum moths out of the air, slurping tadpoles out of ponds and digging yabbies out of their burrows.

They also live from the intertidal zone to the sub alpine zone. They climb trees like a possum and are good swimmers.

There was less carrion available on Maria Island than on the mainland. Also the captive-raised devils would not have learnt hunting skills while in captivity so we presumed that they would not eat large prey.

Captive devils feeding upon a carcass.

Initially, after the first release, the devils fed on brushtail possums. But relatively soon after we found the devils started to feed on large prey, such as the common wombat and eastern grey kangaroo. These species are much larger than you would predict for a mammal of the devils’ size to prey on.

What’s planned for the devils?

So what does the success of this wild release say for the future conservation of the Tasmanian devil?

The devil facial tumour disease has been detected across the majority of the devil’s range. The wild devil population has been decimated as the disease moved across Tasmania.

It is time to boost the genetic diversity of the wild population. We need to provide the potential for immunity to develop in the species. That’s why it is exciting to have found that the captive-raised devils adjusted so well in the wild.

The next step will be to supplement the wild Tasmanian mainland population by releasing further captive-raised devils, along with those born wild on Maria Island.

But the devils released on the Tasmanian mainland will face other dangers. Alongside the disease they will have to contend with dogs, rodent poison and car collisions.

Clearly there’s some work still to be done, but the Maria Island and captive devils will continue to be an important part of the fight against the deadly facial tumour.

The Conversation

Tracey Rogers, Associate Professor Evolution & Ecology, UNSW Australia

This article was originally published on The Conversation. Read the original article.

Saola Found in Laos Sadly Died in captivity


Being the size that it is, it is hard to believe that Saolas are rarely seen. Not only is it rarely seen, but the Saola was only discovered in 1992. The Saola is best described as a large antelope-like creature.

The Saola lives in the mountains of the Laos and Vietnam border region.

One of these rare Saolas was captured by Laotian villagers in August 2010 and sadly died in captivity.

For more see:

http://www.wired.com/wiredscience/2010/09/rare-soala-caugh/

http://articles.cnn.com/2010-09-17/world/laos.asian.unicorn.saola_1_villagers-unicorn-laos?_s=PM:WORLD