Senate knocks out regulation allowing ARENA to fund carbon capture and blue hydrogen


Michelle Grattan, University of CanberraThe Senate on Tuesday night disallowed a government regulation that would have allowed the Australian Renewable Energy Agency (ARENA) to invest in technologies such as carbon capture and storage and blue hydrogen using fossil fuel.

Labor, Greens and crossbench votes defeated the regulation, so preventing the expansion of ARENA’s remit beyond its present area of solar and wind renewable energy.

The regulation would have enabled ARENA to support a wide range of technologies.

They would have included energy efficiency projects, carbon capture technologies, blue hydrogen from gas using CCS, energy storage technologies to back up renewable energy, technologies that reduce emissions from aluminium and steel, and soil carbon.

The $192.5 million new funding involved included money for electric vehicle charging infrastructure, microgrids in rural and regional areas, and technologies to make heavy trucks more fuel efficient and to reduce the energy consumption of heavy industry.

Energy minister Angus Taylor tweeted after the vote: “Labor have shown their true colours – opposing investment in new clean technologies which will create jobs and economic opportunities”.

Greens leader Adam Bandt said the disallowance was “a massive blow to this coal and gas-fired government”.

“First the Liberals tried to abolish ARENA and then redirect its funds to coal and gas, but by backing the Greens motion, the Senate has just saved ARENA,” Bandt said.

Labor’s energy spokesman Chris Bowen tweeted: “The LNP keeps attacking ARENA and the CEFC [Clean Energy Finance Corporation] and Labor will continue to defend them”.

Mark Vaile declines chancellor position after campaign over coal connection

Education Minister Alan Tudge and outspoken Labor MP Joel Fitzgibbon have condemned the campaign that led former deputy prime minister Mark Vaile to withdrew from becoming University of Newcastle chancellor because of his association with the coal industry.

University staff, alumni and a group of donors to the university reacted strongly at the prospect of Vaile, who is chairman of Whitehaven Coal, taking the position.

The university is committed to becoming carbon neutral by 2025, a policy Vaile had said he supported.

But after the backlash he said, “I’ve just taken the view that it’s in the best interests of the university and the community that it serves if I decline the invitation and withdraw from the process.”

Tudge said it was very concerning Vaile had “been forced to turn down this role because of ideological pressure”.

“At a time when we are trying to promote and enforce free speech and academic freedom on campus, we should not have a very competent person forced out of an important job because of this cancel culture,” Tudge said.

Fitzgibbon, who represents the seat of Hunter, went further. “A new form of McCarthyism has crept into Australian culture and it’s alive and well in the Hunter region, deep in coal economy heartland”, he told parliament on Tuesday night..

He said “this 21st Century version of the Cold War doctrine has been on display at our local university where a quite extraordinary, misleading, ideological, and shrill campaign” resulted in Vaile declining the offer to be chancellor.

Fitzgibbon said “the crime” Vaile had been “publicly shamed for” was his association with the coal industry.

“It’s a slippery slope. Today the excessive progressives target those associated with the coal industry. No doubt tomorrow it will be anyone associated with the oil, gas, and fuel refining industries. What’s next? The meat processing industry? The steel manufacturing sector?”

Fitzgibbon pointed out that while chairing Whitehaven Coal, Vaile also chaired an investment fund which had $1 billion worth of wind and solar technologies under management.

Vaile was deputy prime minister from 2005 to 2007.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The budget should have been a road to Australia’s low-emissions future. Instead, it’s a flight of fancy


Shutterstock

John Quiggin, The University of QueenslandLooking at other nations around the world, the path to cutting greenhouse gas emissions seems clear.

First, develop wind and solar energy and battery storage to replace coal- and gas-fired electricity. Then, replace petrol and diesel cars with electric vehicles running off carbon-free sources. Finally, replace traditionally made steel, cement and other industries with low-carbon alternatives.

In this global context, the climate policies announced in Tuesday’s federal budget are a long-odds bet on a radically different approach. In place of the approaches adopted elsewhere, the Morrison government is betting heavily on alternatives that have failed previous tests, such as carbon capture and storage. And it’s blatantly ignoring internationally proven technology, such as electric vehicles.

The government could have followed the lead of our international peers and backed Australia’s clean energy sector to create jobs and stimulate the post-pandemic economy. Instead, it’s sending the nation on a fool’s errand.

Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg shake hands
Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg should have used the budget to create jobs in the clean economy.
Mick Tsikas/AAP

Carbon-capture folly

The Morrison government is taking a “technology, not taxes” approach to emissions reduction. Rather than adopt a policy such as a carbon price – broadly considered the most effective and efficient way to cut emissions – the government has instead pinned its hopes on a low-emissions technology plan.

That means increased public spending on research and development, to accelerate the commercialisation of low emissions technologies. The problems with this approach are most obvious in relation to carbon capture and storage (CCS).

The budget contains A$263.7 million to fund new carbon capture and storage projects. This technology promises to capture some – but to date, not all – carbon dioxide at the point of emission, and then inject it underground. It would allow continued fossil fuel use with fewer emissions, but the process is complex and expensive.

In fact, recent research found of 39 carbon-capture projects examined in the United States, more than 80% ended in failure.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


The government’s CCS funding is focused on capturing CO₂ from gas projects. This is despite the disappointing experience of Australia’s only CCS project so far, Chevron’s Gorgon gas field off Western Australia.

Some 80% of emissions from the operation were meant to be captured from 2016. But the process was delayed for three years, allowing millions of tonnes of CO₂ to enter the atmosphere. As of January this year, the project was still facing technical issues.

CCS from gas will be expensive even if it can be made to work. Santos, which has proposed a CCS project at its Moomba gas plant in South Australia, suggests a cost of $A30 per tonne of CO₂ captured.

This money would need to come from the government’s Climate Solutions Fund, currently allocated about A$2 billion over four years. If Moomba’s projected emissions reduction of 20 million tonnes a year were realised, this project alone would exhaust the fund.

two men stand over equipment
Plans to capture carbon from Chevron’s Gorgon gas project have not gone to plan.
Chevron Australia

What about electric vehicles?

There is a striking contrast between the Morrison government’s enthusiasm for carbon capture, and its neglect of electric vehicles.

It ought to be obvious that if Australia is to achieve a target of net-zero emissions by 2050 – which Treasurer Josh Frydenberg this week reiterated was his government’s preference – the road transport sector must be decarbonised by then.

The average age of Australian cars is about 10 years. This implies, given fairly steady sales, an average lifespan of 20 years. This in turn implies most petrol or diesel vehicles sold after 2030 will have to be taken off the road before the end of their useful life.

In any case, such vehicles will probably be very difficult to buy within 15 years. Manufacturers including General Motors and Volvo have announced plans to stop selling petrol and diesel vehicles by 2035 or earlier.

But the Morrison government has ruled out consumer incentives to encourage electric vehicle uptake – a policy at odds with many other nations, including the US.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


Despite the “technology, not taxes” mantra, this week’s federal budget ignored electric vehicles. This includes a A$10 billion infrastructure spend which did not include charging stations as part of highway upgrades.

Unless the government takes action soon, Australian motorists will be faced with the choice between a limited range of second-rate petrol and diesel vehicles, or electric vehicles for which key infrastructure is missing.

It’s hard to work out why the government is so resistant to doing anything to help electric vehicles. Public support appears strong. There are no domestic carmakers left to protect.

The car retail industry is generally unenthusiastic about electric vehicles. Its business model is built on combining competitive sticker prices with a high-margin service and repair business, and electric vehicles don’t fit this model.

At the moment (although not for much longer), electric vehicles are more expensive than traditional cars to buy upfront. But they are cheaper to run and service.

There are fears of job losses in car maintenance as electric vehicle uptake increases. However, car dealers have adjusted to change in the past, and can do so in future.

electric vehicle on charge
The budget ignored electric vehicles.
Shutterstock

Wishful thinking

The Morrison government is still edging towards announcing a 2050 net-zero target in time for the United Nations Climate Change Conference in Glasgow this November. But as Prime Minister Scott Morrison himself has emphasised, there’s no point having a target without a strategy to get there.

Yet at this stage, the government’ emissions reduction strategy looks more like wishful thinking than a road map.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


John Quiggin, Professor, School of Economics, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Morrison government wants to suck CO₂ out of the atmosphere. Here are 7 ways to do it



Shutterstock

Annette Cowie, University of New England; Han Weng, The University of Queensland; Lukas Van Zwieten, Southern Cross University; Stephen Joseph, UNSW, and Wolfram Buss, Australian National University

Federal Energy Minister Angus Taylor is on Tuesday expected to outline the Morrison government’s first Low Emissions Technology Statement, plotting Australia’s way forward on climate action. It’s likely to include “negative emissions” technologies, which remove carbon dioxide (CO₂) from the air.

The Intergovernmental Panel on Climate Change says negative emissions technologies will be needed to meet the Paris Agreement goal of limiting warming to well below 2℃. In other words, just cutting emissions is not enough – we must also take existing greenhouse gases from the air.

Last week, the government broadened the remit of the Australian Renewable Energy Agency (ARENA) and the Clean Energy Finance Corporation (CEFC). It flagged negative emissions technologies, such as soil carbon, as one avenue for investment.

Some negative emissions ventures are operating in Australia at a small scale, including carbon capture, reforestation and soil carbon management. Here, we examine seven ways to remove CO₂ from the atmosphere, including their pros and cons.

Graphic showing seven negative emissions technologies.
Graphic showing seven negative emissions technologies.
Anders Claassens

1. Managing soil carbon

Up to 150 billion tonnes of soil carbon has been lost globally since farming began to replace natural forests and grasslands. Improved land management could store or “sequester” up to nine billion tonnes of CO₂ each year. It could also improve soil health.

Soil carbon can be built through methods such as:

  • no-till” farming, using techniques that don’t disturb soil
  • planting cover crops, which protect soil between normal cropping periods
  • grazing livestock on perennial pastures, which last longer than annual plants
  • applying lime to encourage plant growth
  • using compost and manure.

It’s important to remember though, that carbon can be hard to store in soils for long periods. This is because microbes consume organic matter, which releases carbon back to the atmosphere.

Tilled fields
Intensive farming has led to global loss of soil carbon.
Shutterstock

2. Biochar

Biochar is a charcoal-like material produced from organic matter such as green waste or straw. It is added to soil to boost carbon stores, by promoting microbial activity and aggregation (soil clumps) which prevents organic plant matter breaking down and releasing carbon.

Biochar has been used by indigenous people in the Amazon to increase food production. More than 14,000 biochar studies have been published since 2005. This includes work by Australian researchers showing how biochar reacts with soil minerals, microbes and plants to improve soil and stimulate plant growth.




Read more:
Earth may temporarily pass dangerous 1.5℃ warming limit by 2024, major new report says


On average, biochar increases crop yields by about 16% and halves emissions of nitrous oxide, a potent greenhouse gas. The production of biochar releases gases that can generate renewable heat and electricity. Research suggests that globally, biochar could store up to 4.6 billion tonnes of CO₂ each year.

However its potential depends on the availability of organic material and land on which to grow it. Also, the type of biochar used must be suitable for the site, or crop yields may fall.

A handful of biochar.
Added to soil, biochar increases carbon stores.
Shutterstock

3. Reforestation

Planting trees is the simplest way to take CO₂ from the atmosphere. Reforestation is limited only by land availability and environmental constraints to growth.

Reforestation could sequester up to ten billion tonnes a year of CO₂. However, carbon sequestered through reforestation is vulnerable to loss. For example, last summer’s devastating bushfires released around 830 million tonnes CO₂.

4. Bioenergy with carbon capture and storage (BECCS)

Plant material can be burned for energy – known as bioenergy. In a BECCS system, the resulting CO₂ is captured and stored deep underground.

Currently, carbon capture and storage (CCS) is only viable at large scale, and opportunities for storage are limited. Only a few CCS facilities operate internationally.

BECCS has the potential to sequester 11 billion tonnes annually. But this is limited by availability of material to burn – which in theory could come from forestry and crop waste, and purpose-grown plants.

The large-scale deployment of CCS will also have to overcome barriers such as high costs, challenges in dealing with leaks, and determining who takes long-term responsibility for the stored carbon.

A bioenergy facility
Bioenergy has big potential but is limited by the amount of material available to burn.
Shutterstock

5. Enhanced weathering of rocks

Silicate rocks naturally capture and store CO₂ from the atmosphere when they weather due to rain and other natural processes. This capturing can be accelerated through “enhanced weathering” – crushing rock and spreading it on land.

The preferred rock type for this method is basalt – nutrient-rich and abundant in Australia and elsewhere. A recent study estimated enhanced weathering could store up to four billion tonnes of CO₂ globally each year.

However low rainfall in many parts of Australia limits the rate of carbon capture via basalt weathering.

6. Direct air carbon capture and storage (DACCS)

Direct air carbon capture and storage (DACCS) uses chemicals that bond to ambient air to remove CO₂. After capture, the CO₂ can be injected underground or used in products such as building materials and plastics.

DACCS is in early stages of commercialisation, with few plants operating globally. In theory, its potential is unlimited. However major barriers include high costs, and the large amount of energy needed to operate large fans required in the process.

7. Ocean fertilisation and alkalinisation

The ocean absorbs around nine billion tonnes of CO₂ from the air each year.

The uptake can be enhanced by fertilisation – adding iron to stimulate growth of marine algae, similar to reforestation on land. The ocean can also take up more CO₂ if we add alkaline materials, such as silicate minerals or lime.

However ocean fertilisation is seen as a risk to marine life, and will be challenging to regulate in international waters.

Liddell coal-fired power station
Negative emissions technologies will be needed to address climate change, but deep emissions reductions are the highest priority.
Dan Himbrechts/AAP

Looking ahead to a zero-carbon world

The foreshadowed government investment in negative emissions technologies is a positive step, and will help to overcome some of the challenges we’ve described. Each of the technologies we outlined has the potential to help mitigate climate change, and some offer additional benefits.

But all have limitations, and alone they will not solve the climate crisis. Deep emissions reduction across the economy will also be required.

Correction: a previous version of this article said biochar could store up to 4.6 million tonnes of CO₂ each year. The correct figure is 4.6 billion tonnes.




Read more:
‘A dose of reality’: Morrison government’s new $1.9 billion techno-fix for climate change is a small step


The Conversation


Annette Cowie, Adjunct Professor, University of New England; Han Weng, Research academic, The University of Queensland; Lukas Van Zwieten, Adjunct Professor, Southern Cross University; Stephen Joseph, Visiting Professor, School of Material Science and Engineering, UNSW, and Wolfram Buss, Postdoctoral fellow, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Morrison government lays down five technologies for its clean energy investment


Michelle Grattan, University of Canberra

The Morrison government will tell its refocused clean energy agencies and the clean energy regulator to give priority to investment in five low emissions technologies and report how they are accelerating them.

The technologies are clean hydrogen, energy storage, low carbon steel and aluminium, carbon capture and storage, and soil carbon.

The government last week announced it would legislate to extend the remit of the Australian Renewable Energy Agency (ARENA) and the Clean Energy Finance Corporation (CEFC) beyond renewables.

On Tuesday it will indicate the “priority low emissions technologies” they, and the Clean Energy Regulator (CER) – which is responsible for administering the government’s emissions reduction fund – should concentrate on.

Energy Minister Angus Taylor, in a Tuesday speech on low emissions technology, will say the government is putting technologies into four categories. Apart from the priority low emissions technologies, the other categories are emerging and enabling technologies, “watching brief” technologies, and mature technologies.

Priority technologies “are those expected to have transformational impacts here and globally and are not yet mature,” Taylor says in his speech, released ahead of delivery.

“They are priorities where government investments can make a difference in reducing costs and improving technology readiness.

“Technologies where we, as a government, will not only prioritise our investments but where we will streamline regulation and legislation to encourage investment.

“Investors will have confidence that identified priority technologies are of long-term strategic importance for the government.”

Emerging and enabling technologies, such as those for energy efficiency and infrastructure for electric and hydrogen vehicle charging/ refuelling, will also be included in the mandate of the government’s investment agencies.

In the “watching brief” category are those that are for the longer run or are longer odds, such as direct air capture and small nuclear modular reactors. (There is a moratorium on nuclear power in Australia at the moment but the government is watching developments in Europe and the United Kingdom.)

Notably, key renewables and key fossil fuels are in the “mature” category, which includes coal, gas, solar and wind.

The government says it will only invest in them where there is market failure or where such investments secure jobs in key industries.

Last week Scott Morrison threatened to build a gas power station in the Hunter region if private investors left a supply gap for when the Liddell coal-fired station closes, while he also indicated renewables could now stand on their own feet.

Taylor will release an overarching technology roadmap, which he says “arms the government with “four levers to enact change”: an investment lever, a legislative lever, a regulator lever, and international co-operation and collaboration.

“The roadmap will guide the deployment of the $18 billion that will be invested, including through the CEFC, ARENA, the Climate Solutions Fund [which will evolve from the Emissions Reduction Fund] and the CER.

“This will turn that into at least $50 billion through the private sector, state governments, research institutions and other publicly funded bodies. That will drive around 130 000 jobs to 2030,” Taylor says.

The legislative level “is about flexibility and accountability.

“We don’t currently have that. Our agencies are restricted by legislation and regulation to invest in the new technologies of 2010 not the emerging technologies of 2020.”

The regulator lever “is about enablement”.

Taylor says the government’s plan is not based on ideology but “balance and outcomes”.

The government is announcing several “stretch goals” (see table for details). Stretch goals are the point at which new technologies become competitive with existing alternatives. The government announced the hydrogen stretch goal earlier in the year.

“Getting these technologies right will strengthen our economy and create jobs,” Taylor says.

“This will significantly reduce global emissions, across sectors that emit 45 billion tonnes annually.

“Australia alone will avoid 250 million tonnes of emissions by 2040.”

He says “Australia can’t and shouldn’t damage its economy to reduce emissions”.

The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Bioenergy carbon capture: climate snake oil or the 1.5-degree panacea?



File 20181018 41122 1eburnl.jpg?ixlib=rb 1.1
Bioenergy Carbon Capture and Sequestration, known as BECCS, is one of the technologies we may need to limit warming to 1.5 degrees.
from http://www.shutterstock.com, CC BY-ND

Paul Behrens, Leiden University

With the release of the latest special report by the Intergovernmental Panel on Climate Change, it’s time we talk frankly about Bioenergy Carbon Capture and Sequestration, known as BECCS. It is one of the key technologies many models say we will need to limit warming to 1.5℃.




Read more:
The UN’s 1.5°C special climate report at a glance


BECCS involves growing plants which remove carbon dioxide as they grow and are then burned in power stations to produce electricity. The resulting carbon dioxide from this combustion is captured and stored underground. The result is carbon dioxide removal from the atmosphere.

It is the not-so-high-tech wonder many are waiting for, but it comes at a high price. It also risks delaying policies that actually reduce emissions in the first place.

Mapping the future, now

According to models, BECCS is the technology we are banking on to fix our climate disruption and safeguard our future. The models have doubled down on BECCS, but it is an unproven solution on a large scale – and one that has significant and damaging side effects.

There are three choices on the table (we will likely see a mix of at least two):

  • Equitable sustainability Massive amounts of low-carbon energy (solar, wind, batteries, electric vehicles), huge improvements in energy efficiency, a revolution of the food systems and a transition of society towards lower growth, both in population and economy.

  • Hypothetical backstop Continue down the road we are on, and hope to “overcorrect” the problem in the future by sucking carbon dioxide out of the atmosphere. A lack of political will and intense lobbying has meant what was once a fairly manageable problem has become an exercise in inventing heroic backstops.

  • Cowboy optimism Engineer the planet (even further) to ease the impacts of climate disruption, but not the underlying causes themselves.

The first choice means we change ourselves and alter the way we do things. The second means we continue polluting as we do now, and hope to clean up later. This option is a bit like the plastic clean-up trial currently underway in the Pacific.

Choice three means we simply paper over the cracks, perhaps saving some aspects of human civilisation but pushing large parts of nature to extinction.

It’s worth noting that in any scenario, massive investment by richer countries on behalf of poorer countries will be necessary. This is already a significant problem).

Given the delay, the majority of 1.5℃ and 2℃ scenarios run by models have doubled down on the second choice. But this lessens the need for unprecedented changes today.




Read more:
New UN report outlines ‘urgent, transformational’ change needed to hold global warming to 1.5°C


The reliance is so heavy that, on average, current models for meeting 2℃ suggest we will be using BECCS and afforestation to mop up total, annual global emissions by around 2070 (or 2055 for 1.5℃). This results in a massive growth in BECCS power plants through this period, from three today to 700 by 2030, and 16,000 by 2060.

Bonfire of the BECCS

But large-scale BECCS is a monumentally tricky idea. BECCS aims to fix one thing – climate disruption – but makes many other things worse.

BECCS on an industrial scale needs many resources. Plants need land, water and fertilisers (sometimes) to grow, and infrastructure to get low-density plant matter from one place to another. We already struggle to do this sustainably.

Related to this, it is reasonable to think that BECCS will increase food prices. We have to produce 70% extra food by 2050 to just keep up with population and food demand increases. Can we do this while using vast tracts of land for BECCS production? Perhaps only if we have a big change in dietary habits which frees up land?

While BECCS will provide some electricity, you don’t get much bang for your buck – it has the lowest power density of any other type of energy.

BECCS make use of thermal power plants so inherit many problems related to running them. Power plants are heat engines and need water for cooling.
We already have problems with water cooling, and it is getting worse with climate change.

Finally, BECCS power plants will produce ash, which is a “better” version than the ash from coal plants (it doesn’t take much), but will still need attention.

The role of Integrated Assessment Models

The origin story for BECCS has been told elsewhere, but how did we end up in a situation where the large majority of models point to this one problematic solution? These models are called Integrated Assessment Models, and come in two main varieties: simple and complex.

The complex ones are mostly used for investigating technology choices. The simple ones are often used to explore what the cost of carbon could be. This year’s Nobel Prize winner in economics, Bill Nordhaus, works with these simple models.

The overall weaknesses of these models have been covered in compelling and entertaining ways. Given the depth of the complex models, it is difficult to be sure why BECCS dominates. Most would agree that there are three likely possibilities.

First, these models discount future benefits and costs to a large extent. That is, they assume that future benefits and costs are much less in the future than they are today. The default rate at which models discount is 5% per year, meaning that to avoid $100 of climate damage in 2100 is only worth $3 to us today. Many have argued that this is much too high, ethically inappropriate, and misleading.

I know of only one study which performs a sensitivity analysis using so-called discount rates. It finds that carbon dioxide removal is significantly reduced with lower discount rates.

Second, these models are very sensitive to prices and since a very low price for BECCS is assumed, this is the technology that dominates. The problem is that we don’t actually know what these prices might be, especially on a large scale.

Third, these models have a difficult job estimating the damage from climate change. The risk from emitting now and paying later is fat-tailed – there is a non-negligible increased risk of catastrophe even if we do manage to implement choice two at a large scale.

Taking off the BECCS blinders

Are there technologies other than BECCS? If we must hypothesise backstop technologies, then direct air capture is a possibility. As the name implies, it sucks carbon directly from the air.

Although it doesn’t generate energy in the process (in fact it uses large amounts of energy), it doesn’t have as many of the problems faced by BECCS. A possible future consists of solar-powered direct air capture in the Middle Eastern desert pulling carbon dioxide from the atmosphere and pumping it underground into reservoirs from which oil was once pumped. This is speculative though, comes with it’s own big problems, and as yet doesn’t feature much in modelling efforts due to its high cost (though they are coming down quickly though).




Read more:
The science is clear: we have to start creating our low-carbon future today


Fortunately, there are an increasing number of studies which take a non-backstop approach. These still use integrated assessment modelling, but investigate other options, like very low-energy demand scenarios and large-scale behaviour change (for example to plant-based diets) which reduce other, non-CO₂ gases quickly.

There is nothing to be lost by committing to the first choice as fast as possible. In fact, many of the important solutions are better for our health too (such as using bikes instead of cars, plant-based diets, and insulating houses). And if we end up needing BECCS, then so be it, but the earlier we start moving to low-carbon economies, the more potential catastrophes we avoid.The Conversation

Paul Behrens, Assistant Professor of Energy and Environmental Change, Leiden University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The ‘clean coal’ row shouldn’t distract us from using carbon capture for other industries



Image 20170413 25901 1ez4ed
Has carbon capture and storage been tarnished by its association with the coal industry?
Peabody Energy/Wikimedia Commons, CC BY-SA

Alfonso Martínez Arranz, Monash University

Since the February blackouts in South Australia, the Australian government has increased its interest in carbon dioxide capture and storage (CCS). However, in Australia and elsewhere, CCS is closely associated to so-called “clean coal” technologies. The media sometimes treats them as one and the same thing. The Conversation

Given the negativity with which the general public, and expert commentators view “clean coal”, this confusion is distracting attention from other sectors where CCS can make a unique and substantial contribution.

CCS is vital for “clean coal”. Even the most efficient coal-fired power plants emit huge amounts of carbon dioxide. Unless these emissions are captured and stored in rock formations thanks to CCS, meeting climate targets with coal power is impossible.

But here’s the thing: carbon dioxide can be captured from any large-scale source. This means that CCS has a valuable role to play in other industrial sectors – as long as clean coal’s bad reputation doesn’t drag CCS down with it.

Other industries

About half of the global potential for CCS by 2050 has been estimated to lie in industry. Some sectors like synthetic fuels and hydrogen production may not grow as predicted. But others such as cement, steel and ammonia, are here to stay.

Several recent UK reports on industrial decarbonisation argue that CCS brings emissions reductions beyond the 50% needed by 2050 required in most sectors and countries.

For cement in the UK, the report argues, efficiency and other measures could deliver a roughly 20% emissions reduction by 2050. But adding CCS could bring this figure to 54%.

Meanwhile, the British steel industry could cut emission reductions by 60% compared to 34% without CCS. For UK chemical manufacturers, these figures are 78.8% versus 34%. These processes often produce a high-purity stream of carbon dioxide that avoids the costly capture methods used for power applications.

So why aren’t industries like these the stars of carbon capture and storage right now?

Money and hype

Unlike the power sector, which is under pressure to reduce emissions, other high-carbon industries currently have little incentive to pay the estimated cost of US$50-150 per tonne of carbon dioxide captured. Carbon pricing has been hard to introduce even far below such levels.

However, if CCS is to be deployed by mid-century, concept demonstration and confirmation of suitable storage sites needs to start now, and on a wide enough scale to deliver useful emissions cuts. Other strategies may be needed to incentivise it.

CCS was first mooted in 1976, but it only caught world leaders’ attention in the mid-2000s. However, over the past decade its popularity seems to have waned, perhaps because of the “clean coal” issue.

In 2005, WWF joined Europe’s CCS platform, and the following year the environmentalist George Monbiot described the technology as crucial.

But over the ensuing ten years, as a “hype process” around CCS for clean coal developed, industrial CCS was largely ignored. At its peak in 2007, proponents announced some 39 CCS power projects, most of them coal-fired, aiming to capture an average per project of 2.2 million tonnes (Mt) of carbon dioxide per year.

Yet by early 2017, only two large-scale power projects have been completed around the world: Boundary Dam, capturing 1Mt per year, and Petra Nova, capturing 1.4Mt per year.

Number of carbon capture and storage projects by type since first concept. Mature refers to projects in sectors in which capture is routinely commercial, such as in natural gas processing. Immature refers to projects in sectors where capture is not the norm, including power generation, steelmaking, and certain chemicals. The share of power generation projects among immature is highlighted.

Cynicism around the technology has grown, with the Australia-founded Global CCS Institute recently being described as a “coal lobby group”. Unfortunately for CCS, the focus has been mostly on the gap between announced and successful “clean coal” projects, rather than on its contribution to industrial emissions reduction.

Last year, Emirates Steel Industries completed its steelmaking CCS project, which now captures 0.8Mt of CO₂ per year.

Australia will soon be host to the world’s largest CCS development, at the Gorgon LNG Project, which will store 4Mt a year from 2018.

Steel, gas-produced ammonia and other industrial products will be fixtures of the 21st century, whereas coal-fired electricity has no such certainty. Economies that aspire to 100% renewable energy will have no room at all for coal, “clean” or otherwise.

Even if our electricity and transport were to become 100% renewables-based, there will be parts of the economy where greenhouse emissions are hard to eliminate. It is important that the unpopularity of “clean coal” does not distract from the importance of CCS in decarbonising other industries.

Alfonso Martínez Arranz, Lecturer, Monash University

This article was originally published on The Conversation. Read the original article.

Carbon capture and storage is unlikely to save coal in the long run


Gary Ellem, University of Newcastle

As the world moves to combat climate change, it’s increasingly doubtful that coal will continue to be a viable energy source, because of its high greenhouse gas emissions. But coal played a vital role in the Industrial Revolution and continues to fuel some of the world’s largest economies. This series looks at coal’s past, present and uncertain future.

Coal is the greatest contributor to climate change of all our energy sources. This means that if the world acts to limit global warming to well below 2℃, coal will likely be constrained – unless its greenhouse gas emissions can be removed.

One of the great hopes of the industry is carbon capture and storage (CCS), a way to burn coal, remove the carbon dioxide (CO₂) emissions and store it safely away from the atmosphere. While there have been several breakthroughs, the technology remains expensive.

Advances in energy technologies mean that adding CCS doesn’t just need to work; it needs to work at a lower cost than its growing legion of competitors. And while the alternatives are good news for avoiding dangerous climate change, it’s a substantial challenge for the coal industry.

Capturing carbon

The current range of CCS technologies can be grouped into “pre-combustion” and “post-combustion” methods.

Pre-combustion methods typically react the carbon in the fuel with high-pressure steam to make hydrogen CO₂. The CO₂ is then separated (captured) from the hydrogen before the hydrogen is burned in the power station to make energy, with the only emissions being water vapour.

Post-combustion technologies try to capture the carbon after it has been burned and becomes CO₂. If the fuel is burned in air, then the CO₂ needs to be separated from the exhaust gas stream which, like air, is mostly composed of nitrogen gas. This is usually done by passing the gas stream through a liquid that dissolves the CO₂ but not the nitrogen.

Another technique, called “oxyfuelling”, separates oxygen out of the air and then uses it to burn the fuel in an atmosphere of oxygen and recycled CO₂. The exhaust gas stream from this process is close enough to pure CO₂ that it can be sent directly to the storage process.

Several options have been explored for storing the carbon. These include the deep ocean, depleted oil and gas wells, deep saline aquifers, as manufactured mineralised carbonate rock, or as naturally mineralised carbonate by injection into basalt reservoirs.

Regardless of the technique, the outcomes for coal combustion are similar. The amount of emissions is reduced by 80-100%, while the cost of coal-fired electricity generation increases by at least the same amount.

These costs come from building the capture plant, CO₂ transport pipelines and the sequestration plant. More than double the amount of coal must be burned to make up for the energy cost of the CCS process itself.

When CCS was first considered as an emissions solution, competition from renewables, such as solar and wind, was weak. Costs were high and production volumes were negligible.

How cheap?

In the 1990s, many believed that renewables (other than existing hydro, geothermal and biomass for heating) might never be able to replace coal cheaply. The future of energy was going to be a centralised grid, rather than the distributed power models being discussed today, and there were only two widely backed horses in the technology race: CCS and nuclear.

But the early part of this century has seen an energy revolution in both renewables and fossil fuels. Among renewables, solar and wind have both taken enormous strides in reducing production costs and building manufacturing scale.

For fossil fuels, the expansion in gas pipeline infrastructure, the development of liquefied natural gas (LNG) shipping and the growth of both conventional and unconventional gas production have encouraged fuel switching from coal in European and US markets in particular.

Trying to compare the costs of different types of electricity can be tricky. Power stations require capital to build and have heavy financing, operational and decommissioning costs. Nuclear and fossil fuel power stations also have to buy fuel.

Analysts use the term “levelised cost of electricity (LCOE)” to aggregate and describe this combination of factors for different methods of electricity generation.

A significant challenge for coal and CCS is that the LCOE for wind and solar at a comparable scale is already competitive with coal generation in many places. This is because the cost of manufacturing has fallen as production has increased.

While this seems not to bode well for coal and CCS, there’s a caveat: a coal with CCS power station makes power when the sun doesn’t shine and the wind doesn’t blow.

It’s easier for wind and solar to compete when traditional fossil fuel power stations are there to back them up, but not so easy when renewables become dominant generators and the cost of storage needs to be taken into account to ensure a consistent supply.

A game changer?

That was until batteries came along and offered the ability to store renewable energy for when the sun doesn’t shine. There is considerable hype around the entry of the Tesla Powerwall into the home electricity market.

But that is only one of numerous home battery solutions from the likes of Samsung, LG, Bosch, Panasonic, Enphase and others. All are designed to store excess solar power for use at night.

The emerging breakthrough of these products is the price, which is bringing batteries into the realm of competition with centralised electricity generation.

While a battery won’t take your family entirely off-grid at first, such batteries mean most suburban households can become largely energy-independent. They need only top up from the grid now and then when a run of cloudy days comes along during the shorter days of winter.

In the longer term, there’s a clear pathway for most homes to disconnect completely from the grid, should battery prices continue to fall.

Why are batteries a threat?

The reason that batteries can compete with centralised generation is because the cost of transmission and distribution from a coal-fired power station to your home is considerable.

These costs are not normally considered in the LCOE calculations, because it is assumed that all power generators have access to the same, centralised electricity grid.

But a battery in your home means that these costs are largely avoided. That makes home energy generation and storage much more competitive with traditional power generation in the longer term.

For developing nations without a strong centralised grid it also means that energy systems can be built incrementally, without large investments in infrastructure.

This is an ill wind for the competitive future of CCS, which depends on the centralised generation model and a lack of low-cost competitors to stay viable.

That doesn’t mean the coal industry should give up on CCS. Having a range of options for a low-emission future is a good thing. Affordable energy is at the heart of our modern civilisation and standards of living.

CCS may also lay the foundations for Bioenergy with Carbon Capture and Storage (BECCS), one of the few (albeit expensive) technologies with the potential to recoup significant amounts of CO₂ from the atmosphere. But this points to a renewable biomass future, not a coal future.

The odds that CCS will keep coal alive as an industry into the future are getting longer each year.

What we are seeing is the start of the great transition from fossil fuel mining to manufacturing as the basis for our energy systems. It’s not dominant yet, but you would be starting to get very nervous if you were betting against it.

The Conversation

Gary Ellem, Conjoint Academic in Sustainability, University of Newcastle

This article was originally published on The Conversation. Read the original article.