Green cement a step closer to being a game-changer for construction emissions

If the cement industry were a country, it would be the third-largest emitter of CO₂ in the world.
Joe Mabel/Wikimedia, CC BY-SA

Yixia (Sarah) Zhang, Western Sydney University; Khin Soe, Western Sydney University, and Yingying Guo, UNSW

Concrete is the most widely used man-made material, commonly used in buildings, roads, bridges and industrial plants. But producing the Portland cement needed to make concrete accounts for 5-8% of all global greenhouse emissions. There is a more environmentally friendly cement known as MOC (magnesium oxychloride cement), but its poor water resistance has limited its use – until now. We have developed a water-resistant MOC, a “green” cement that could go a long way to cutting the construction industry’s emissions and making it more sustainable.

Producing a tonne of conventional cement in Australia emits about 0.82 tonnes of carbon dioxide (CO₂). Because most of the CO₂ is released as a result of the chemical reaction that produces cement, emissions aren’t easily reduced. In contrast, MOC is a different form of cement that is carbon-neutral.

Global CO₂ emissions from rising cement production over the past century (with 95% confidence interval).
Source: Global CO2 emissions from cement production, Andrew R. (2018), CC BY

Read more:
Buildings produce 25% of Australia’s emissions. What will it take to make them ‘green’ – and who’ll pay?

What exactly is MOC?

MOC is produced by mixing two main ingredients, magnesium oxide (MgO) powder and a concentrated solution of magnesium chloride (MgCl₂). These are byproducts from magnesium mining.

Magnesium oxide (MgO) powder (left) and a solution of magnesium chloride (MgCl₂) are mixed to produce magnesium oxychloride cement (MOC).
Author provided

Many countries, including China and Australia, have plenty of magnesite resources, as well as seawater, from which both MgO and MgCl₂ could be obtained.

Furthermore, MgO can absorb CO₂ from the atmosphere. This makes MOC a truly green, carbon-neutral cement.

Read more:
Greening the concrete jungle: how to make environmentally friendly cement

MOC also has many superior material properties compared to conventional cement.

Compressive strength (capacity to resist compression) is the most important material property for cementitious construction materials such as cement. MOC has a much higher compressive strength than conventional cement and this impressive strength can be achieved very fast. The fast setting of MOC and early strength gain are very advantageous for construction.

Although MOC has plenty of merits, it has until now had poor water resistance. Prolonged contact with water or moisture severely degrades its strength. This critical weakness has restricted its use to indoor applications such as floor tiles, decoration panels, sound and thermal insulation boards.

How was water-resistance developed?

A team of researchers, led by Yixia (Sarah) Zhang, has been working to develop a water-resistant MOC since 2017 (when she was at UNSW Canberra).

Adding industrial byproducts fly ash (above) and silica fume (below) improves the water resistance of MOC.
Author provided

To improve water resistance, the team added industrial byproducts such as fly ash and silica fume to the MOC, as well as chemical additives.

Fly ash is a byproduct from the coal industry – there’s plenty of it in Australia. Adding fly ash significantly improved the water resistance of MOC. Flexural strength (capacity to resist bending) was fully retained after soaking in water for 28 days.

To further retain the compressive strength under water attack, the team added silica fume. Silica fume is a byproduct from producing silicon metal or ferrosilicon alloys. When fly ash and silica fume were combined with MOC paste (15% of each additive), full compressive strength was retained in water for 28 days.

Both the fly ash and silica fume have a similar effect of filling the pore structure in MOC, making the cement denser. The reactions with the MOC matrix form a gel-like phase, which contributes to water repellence. The extremely fine particles, large surface area and high reactive silica (SiO₂) content of silica fume make it an effective binding substance known as a pozzolan. This helps give the concrete high strength and durability.

Scanning electron microscope images of MOC showing the needle-like phases of the binding mechanism.
Author provided

Read more:
We have the blueprint for liveable, low-carbon cities. We just need to use it

Although the MOC developed so far had excellent resistance to water at room temperature, it weakened fast when soaked in warm water. The team worked to overcome this by using inorganic and organic chemical additives. Adding phosphoric acid and soluble phosphates greatly improved warm water resistance.

Examples of building products made using MOC.
Author provided

Over three years, the team has made a breakthrough in developing MOC as a green cement. The strength of concrete is rated using megapascals (MPa). The MOC achieved a compressive strength of 110 MPa and flexural strength of 17 MPa. These values are a few times greater than those of conventional cement.

The MOC can fully retain these strengths after being soaked in water for 28 days at room temperatures. Even in hot water (60˚C), the MOC can retain up to 90% of its compressive and flexural strength after 28 days. The values remain as high as 100 MPa and 15 MPa respectively – still much greater than for conventional cement.

Will MOC replace conventional cement?

So could MOC replace conventional cement some day? It seems very promising. More research is needed to demonstrate the practicability of uses of this green and high-performance cement in, for example, concrete.

When concrete is the main structural component, steel reinforcement has to be used. Corrosion of steel in MOC is a critical issue and a big hurdle to jump. The research team has already started to work on this issue.

If this problem can be solved, MOC can be a game-changer for the construction industry.

Read more:
The problem with reinforced concrete

The Conversation

Yixia (Sarah) Zhang, Associate Professor of Engineering, Western Sydney University; Khin Soe, Research Associate, School of Computing, Engineering and Mathematics, Western Sydney University, and Yingying Guo, PhD Candidate, School of Engineering and Information Technology, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Greening the concrete jungle: how to make environmentally friendly cement

File 20170818 30813 15wj0zp
With some tweaks to the recipe, cement and concrete can be made kinder to the planet.
Postman Photos/

Rackel San Nicolas, University of Melbourne

Cement is the world’s most widely used material apart from water, largely because it is the key ingredient in concrete, the world’s favourite building material.

But with cement’s success comes a huge amount of greenhouse emissions. For every tonne of cement produced in Australia, 0.82 tonnes of CO₂ is released. That might not sound like much, especially when compared with the 1.8 tonnes emitted in making a tonne of steel. But with a global production of more than 4 billion tonnes a year, cement accounts for 5% of the world’s industrial and energy greenhouse emissions.

Read more: The problem with reinforced concrete.

The electricity and heat demands of cement production are responsible for around 50% the CO₂ emissions. But the other 50% comes from the process of “calcination” – a crucial step in cement manufacture in which limestone (calcium carbonate) is heated to transform it into quicklime (calcium oxide), giving off CO₂ in the process.

A report published by Beyond Zero Emissions (BZE) (on which I was a consultant) outlines several ways in which the sector can improve this situation, and perhaps even one day create a zero-carbon cement industry.

Better recipes

The cement industry has already begun to reduce its footprint by improving equipment and reducing energy use. But energy efficiency can only get us so far because the chemical process itself emits so much CO₂. Not many cement firms are prepared to cut their production to reduce emissions, so they will have to embrace less carbon-intensive recipes instead.

The BZE report calculates that 50% of the conventional concrete used in construction can be replaced with another kind, called geopolymer concrete. This contains cement made from other products rather than limestone, such as fly ash, slag or clay.

Making this transition would be relatively easy in Australia, which has more than 400 million tonnes of fly ash readily available as stockpiled waste from the coal industry, which represents already about 20 years of stocks.

Read more: Eco-cement, the cheapest carbon sequestration on the planet.

These types of concrete are readily available in Australia, although they are not widely used because they have not been included in supply chains, and large construction firms have not yet put their faith in them.

Another option more widely known by construction firm is to use the so-called “high blend” cements containing a mixture of slag, fly ash and other compounds blended with cement. These blends have been used in concrete structures all over the world, such as the BAPS Shri Swaminarayan Mandir Hindu temple in Chicago, the foundation slab of which contains 65% fly ash cement. These blends are available everywhere in Australia but their usage is not as high as it should due to the lack of trust from the industry.

Built on the fly (ash): a Hindu temple in Chicago. Commons, CC BY-SA

It is even theoretically possible to create “carbon-negative cement”, made with magnesium oxide in place of traditional quicklime. This compound can absorb CO₂ from the air when water is added to the cement powder, and its developer Novacem, a spinoff from Imperial College London, claimed a tonne of its cement had a “negative footprint” of 0.6 tonnes of CO₂. But almost a decade later, carbon-negative cement has not caught on.

Capturing carbon

The CO₂ released during cement fabrication could also potentially be recaptured in a process called mineral carbonation, which works on a similar principle as the carbon capture and storage often discussed in relation to coal-fired electricity generation.

This technique can theoretically prevent 90% of cement kiln emissions from escaping to the atmosphere. The necessary rocks (olivine or serpentine) are found in Australia, especially in the New England area of New South Wales, and the technique has been demonstrated in the laboratory, but has not yet been put in place at commercial scale, although several companies around the world are currently working on it.

Read more: The ‘clean coal’ row shouldn’t distract us from using carbon capture for other industries.

Yet another approach would be to adapt the design of our buildings, bridges and other structures so they use less concrete. Besides using the high-performance concretes, we could also replace some of the concrete with other, less emissions-intensive materials such as timber.

The ConversationPreviously, high greenhouse emissions were locked into the cement industry because of the way it is made. But the industry now has a range of tools in hand to start reducing its greenhouse footprint. With the world having agreed in Paris to try and limit global warming to no more than 2℃, every sector of industry needs to do its part.

Rackel San Nicolas, Academic specialist, Infrastructure Engineering, University of Melbourne

This article was originally published on The Conversation. Read the original article.