Four ways our cities can cut transport emissions in a hurry: avoid, shift, share and improve


File 20181122 161615 146fgwv.jpg?ixlib=rb 1.1
Urgent and radical change in urban transport policies and practices will benefit the planet and future generations.
blurAZ/Shutterstock

Hussein Dia, Swinburne University of Technology

The UN Intergovernmental Panel on Climate Change recently warned that global warming could reach 1.5℃ as early as 2030. The landmark report by leading scientists urged nations to do more to avert an impending crisis.

We have 12 years, the report said, to contain greenhouse gas emissions. This includes serious efforts to reduce transport emissions.




Read more:
New UN report outlines ‘urgent, transformational’ change needed to hold global warming to 1.5°C


In Australia, transport is the third-largest source of greenhouse gases, accounting for around 17% of emissions.
Passenger cars account for around half of our transport emissions.

The transport sector is also one of the strongest factors in emissions growth in Australia. Emissions from transport have increased nearly 60% since 1990more than any other sector. Australia is ranked 20th out of 25 of the largest energy-using countries for transport energy efficiency.

Cities around the world have many opportunities to reduce emissions. But this requires renewed thinking and real commitment to change.

Our planet can’t survive our old transport habits

Past (and still current) practices in urban and transport planning are fundamental causes of the transport problems we face today.

Over the past half-century, cities worldwide have grown rapidly, leading to urban sprawl. The result was high demand for motorised transport and, in turn, increased emissions.

The traffic gridlock on roads and motorways was the catalyst for most transport policy responses during that period. The solution prescribed for most cities was to build out of congestion by providing more infrastructure for private vehicles. Limited attention was given to managing travel demand or improving other modes of transport.




Read more:
Stuck in traffic: we need a smarter approach to congestion than building more roads


Equating mobility with building more roads nurtured a tendency towards increased motorisation, reinforcing an ever-increasing inclination to expand the road network. The result was a range of unintended adverse environmental, social and economic consequences. Most of these are rooted in the high priority given to private vehicles.

What are the opportunities to change?

The various strategies to move our cities in the right direction can be grouped into four broad categories: avoid, shift, share, and improve. Major policy, behaviour and technology changes are required to make these strategies work.

Avoid strategies aim to slow the growth of travel. They include initiatives to reduce trip lengths, such as high-density and mixed land use developments. Other options decrease private vehicle travel – for example, through car/ride sharing and congestion pricing. And teleworking and e-commerce help people avoid private car trips altogether.




Read more:
City-wide trial shows how road use charges can reduce traffic jams


Shanghai’s Hongqiao transport hub is a unique example of an integrated air, rail and mixed land use development. It combines Hongqiao’s airport, metro subway lines, and regional high-speed rail. A low-carbon residential and commercial precinct surrounds the hub.

Layout of Shanghai Hongqiao integrated transport hub.
Peng & Shen (2016)/Researchgate, CC BY

Shift strategies encourage travellers to switch from private vehicles to public transport, walking and cycling. This includes improving bus routes and service frequency.

Pricing strategies that discourage private vehicles and encourage other modes of transport can also be effective. Policies that include incentives that make electric vehicles more affordable have been shown to encourage the shift.

Norway is an undisputed world leader in electric vehicle uptake. Nearly a third of all new cars sold in 2017 were a plug-in model. The electric vehicle market share was expected to be as much as 40% within a year.

An electric vehicle charging station in the Norwegian capital Oslo.
Softulka/Shutterstock



Read more:
The new electric vehicle highway is a welcome gear shift, but other countries are still streets ahead


Share strategies affect car ownership. New sharing economy businesses are already moving people, goods and services. Shared mobility, rather than car ownership, is providing city dwellers with a real alternative.

This trend is likely to continue and will pose significant challenges to car ownership models.

Uber claims that its carpooling service in Mumbai saved 936,000 litres of fuel and reduced greenhouse gas emissions by 2,662 metric tonnes within one year. It also reports that UberPool in London achieved a reduction of more than 1.1 million driving kilometres in just six months.

UberPool is available in inner Melbourne suburbs. Trip must begin and end in this area.
Uber

Improve strategies promote the use of technologies to optimise performance of transport modes and intelligent infrastructure. These include intelligent transport systems, urban information technologies and emerging solutions such as autonomous mobility.

Our research shows that sharing 80% of autonomous vehicles will reduce net emissions by up to 20%. The benefits increase with wider adoption of autonomous shared electric vehicles.

Autonomous vehicles can offer first- and last-kilometre solutions, especially in outer suburbs with limited public transport services.
Monopoly919/Shutterstock



Read more:
Utopia or nightmare? The answer lies in how we embrace self-driving, electric and shared vehicles


The urgency and benefits of steering our cities towards a path of low-carbon mobility are unmistakable. This was recognised in the past but progress has been slow. Today, the changing context for how we build future cities – smart, healthy and low-carbon – presents new opportunities.

If well planned and implemented, these four interventions will collectively achieve transport emission reduction targets. They will also improve access to the jobs and opportunities that are preconditions for sound economic development in cities around the world.The Conversation

Hussein Dia, Chair, Department of Civil and Construction Engineering, Swinburne University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

What’s wrong with big solar in cities? Nothing, if it’s done right



File 20180724 76263 9i8ydz.jpg?ixlib=rb 1.1
Residents near big solar projects are often concerned they cause glare and noise.
Electrical and Mechanical Services Department Headquarters rooftop solar, Hong Kong/Wikimedia Commons

Jason Byrne, University of Tasmania

Many of us are familiar with developments of big solar farms in rural and regional areas. These are often welcomed as a positive sign of our transition towards a low-carbon economy. But do large-scale solar installations have a place in our cities?

The City of Fremantle in Western Australia is considering a proposal to use a former landfill site for a large-scale solar farm. The reportedly 4.9 megawatt solar power station on an eight-hectare site would be, it’s said, Australia’s largest urban solar farm. The initiative is part of Fremantle’s ambition to be powered by 100% clean energy within a decade.




Read more:
Solar is now the most popular form of new electricity generation worldwide


The proposal is facing some community opposition, however. Residents are reportedly alarmed by the potential public health consequences of building on a rubbish dump, which risks releasing toxic contaminants such as asbestos into the environment. Other concerns include glare from the solar panels, or excessive noise.

Similar complaints about solar panels in cities are being seen all over the world, with opponents generally of the view “they do not belong in residential areas”. So what are the planning issues associated with large-scale solar installations in cities? And should we be concerned about possible negative impacts?

What is large-scale solar?

According to the Australian Clean Energy Regulator, large-scale solar refers to “a device with a kilowatt (kW) rating of more than 100 kilowatts”. A kilowatt is a measure of power – the rate of energy delivery at a given moment – whereas a kilowatt-hour (kWh) is a measure of the total energy produced (so a 100kW device operating for one hour would produce 100kWh of electricity).

Device here refers to not only the photovoltaic (PV) panels – the actual panels used in solar energy – but also to the infrastructure “behind the electricity meter”. So interconnected panels may still constitute a single device.

By this definition, there may already be large-scale solar installations in Australian cities. In Sydney for example, the recently opened system on top of the Alexandra Canal Transport Depot is by all accounts a large-scale solar system. It combines around 1,600 solar panels with enough battery storage for 500kWh of electricity.




Read more:
Sydney’s closer to being a zero-carbon city than you think


But this is not Sydney’s largest solar installation. That honour is presently held by the Sydney Markets in Flemington, among Australia’s largest rooftop solar installations, which generates around 3 megawatts (that’s 3,000kW). To date, there have been no publicly disclosed complaints received about these facilities.

Large-scale solar (sometimes called “big solar”) can also refer to solar arrays that use mirrors to concentrate sunlight onto solar PV panels. This is different to concentrated thermal solar, which uses mirrors to focus sunlight onto the top of a tower to heat salt, oil or other materials that can then be used to generate steam to power turbines for electricity generation.

What’s the problem with solar in cities?

Internationally, there is increasing recognition cities could be ideal locations for large-scale solar installations due to the amounts of unused land. This includes land alongside freeways and main roads, flood-prone land, and rooftops on factories, warehouses and residences. And locating big solar in cities can also reduce the energy losses that occur with transmitting electricity over long distances.

Australia’s combined rooftop solar installations already supply the equivalent of enough power for all the homes in Sydney. And even former landfill sites – which have few uses other than parkland and are often too contaminated to sustain other land uses such as residential development – can be a good use of space for solar farms. But such sites would need to be carefully managed so contaminants are not released during construction.

Large-scale solar installations can present some challenges for urban planning. For instance, mirrors can cause problems with glare, or even damage if they were misaligned (problems thus far have been in solar thermal plants). Maintenance vehicles may increase traffic in neighbourhoods. Installing solar panels could cause temporary problems with noise and lighting. And views could potentially be disrupted if adjoining residents overlook a large-scale solar installation.




Read more:
Pace of renewable energy shift leaves city planners struggling to keep up


But not all of these impacts would be long-term, and they can all potentially be managed through planning approval, permitting processes and development conditions. Installing screens or trees can improve views, for instance. Glare is a potential problem but again can be managed via screening (at the site or on overlooking buildings) or protective films on the panels.

The issue with the proposed solar farm in Fremantle is the fact it’s planned atop a former landfill site, known to contain harmful substances including asbestos, hydrocarbons and heavy metals. Unless carefully managed, construction of the solar farm could disturb these materials and potentially expose nearby residents to health impacts.

Most state environmental protection agencies recognise risks if the use of potentially contaminated land is to be changed, and have developed stringent guidelines for landfill management.

The Algarve Lagos solar farm in Portugal shows how empty land in cities can be used to host energy efficiency platforms.
Wikimedia Commons

The City of Fremantle has approved the proposed development, subject to the preparation of a site management plan among other conditions. Depending on site management, and the characteristics of surrounding neighbourhoods, poorly managed big solar on landfill sites could become an environmental justice issue. From this perspective, residents’ concerns are understandable, and the City of Fremantle will need to ensure it carefully monitors construction.




Read more:
Infrasound phobia spreads … to solar energy cells! What’s next?


Lessons for planning

It is reasonable to expect that cities will increasingly host large-scale solar installations. With careful site selection and management, the multiple benefits of clean energy can accrue to urban residents. Otherwise leftover or marginal land can derive an economic return.

The ConversationOf course care will need to be taken to minimise potential habitat loss or off site impacts such as visual intrusion, noise, and glare. But solar farms also have the potential to provide new habitats both via physical infrastructure (sites for nesting) and as part of site rehabilitation and management.

Jason Byrne, Professor of Human Geography and Planning, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Technology is making cities ‘smart’, but it’s also costing the environment



File 20180724 194131 1q57kz9.jpg?ixlib=rb 1.1
A smart city is usually one connected and managed through computing — sensors, data analytics and other information and communications technology.
from shutterstock.com

Mark Sawyer, University of Western Australia

The Australian government has allocated A$50 million for the Smarter Cities and Suburbs Program to encourage projects that “improve the livability, productivity and sustainability of cities and towns across Australia”.

One project funded under the program is installation of temperature, lighting and motion sensors in buildings and bus interchanges in Woden, ACT. This will allow energy systems to be automatically adjusted in response to people’s use of these spaces, with the aim of reducing energy use and improving safety and security.

In similar ways, governments worldwide are partnering with technology firms to make cities “smarter” by retrofitting various city objects with technological features. While this might make our cities safer and potentially more user-friendly, we can’t work off a blind faith in technology which, without proper design, can break down and leave a city full of environmental waste.




Read more:
Can a tech company build a city? Ask Google


How cities are getting smarter

A “smart city” is an often vague term that usually describes one of two things. The first is a city that takes a knowledge-based approach to its economy, transport, people and environment. The second is a city connected and managed through computing — sensors, data analytics and other information and communications technology.

It’s the second definition that aligns with the interests of multinational tech firms. IBM, Serco, Cisco, Microsoft, Philips and Google are among those active in this market. Each is working with local authorities worldwide to provide the hardware, software and technical know-how for complex, urban-scale projects.

In Rio de Janeiro, a partnership between the city government and IBM has created an urban-scale network of sensors, bringing data from thirty agencies into a single centralised hub. Here it is examined by algorithms and human analysts to help model and plan city development, and to respond to unexpected events.

Tech giants provide expertise for a city to become “smart” and then keep its systems running afterwards. In some cases, tech-led smart cities have risen from the ground up. Songdo, in South Korea, and Masdar, UAE, were born smart by integrating advanced technologies at the masterplanning and construction stages.




Read more:
How does a city get to be ‘smart’? This is how Tel Aviv did it


More often, though, existing cities are retrofitted with smart systems. Barcelona, for instance, has gained a reputation as one of the world’s top smart cities, after its existing buildings and infrastructure were fitted with sensors and processors to monitor and maintain infrastructure, as well as for planning future development.

The city is dotted with electric vehicle charging points and smart parking spaces. Sensors and a data-driven irrigation system monitor and manage water use. The public transport system has interactive touch screens at bus stops and USB chargers on buses.

Barcelona has a reputation of being one of the world’s smartest cities.

Suppliers of smart systems claim a number of benefits for smart cities, arguing these will result in more equitable, efficient and environmentally sustainable urban centres. Other advocates claim smart cities are more “happy and resilient”. But there are also hidden costs to smart cities.

The downsides of being smart

Cyber-security and technology ethics are important topics. Smart cities represent a complex new field for governments, citizens, designers and security experts to navigate.

The privatisation of civic space and public services is a hidden cost too. The complexity of smart city systems and their need for ongoing maintenance could lead to long-term reliance on a tech company to deliver public services.




Read more:
Sensors in public spaces can help create cities that are both smart and sociable


Many argue that, by improving data collection and monitoring and allowing for real-time responses, smart systems will lead to better environmental outcomes. For instance, waste bins that alert city managers when they need collecting, or that prompt recycling through tax credits, and street lamps that track movement and adjust lighting levels have the potential to reduce energy use.

But this runs contrary to studies that show more information and communication technology actually leads to higher energy use. At best, smart cities may end up a zero-sum game in terms of sustainability because their “positive and negative impacts tend to cancel each other out”.

And then there’s the less-talked-about issue of e-waste, which is a huge global challenge. Adding computers to objects could create what one writer has termed a new “internet of trash” — products designed to be thrown away as soon as their batteries run down.

Computer technology is often short-lived and needs upgrading often.
from shutterstock.com

As cities become smart they need more and more objects — bollards, street lamps, public furniture, signboards — to integrate sensors, screens, batteries and processors. Objects in our cities are usually built with durable materials, which means they can be used for decades.

Computer processors and software systems, on the other hand, are short-lived and may need upgrading every few years. Adding technology to products that didn’t have this in the past effectively shortens their life-span and makes servicing, warranties and support contracts more complex and unreliable. One outcome could be a landscape of smart junk — public infrastructure that has stopped working, or that needs ongoing patching, maintenance and upgrades.




Read more:
Does not compute: Australia is still miles behind in recycling electronic products


In Barcelona, many of the gadgets that made it one of the world’s smartest cities no longer work properly. The smart streetlights on the Passatge de Mas de Roda, which were put in place in 2011 to improve energy efficiency by detecting human movement, noise and climatic conditions, later fell into disrepair.

If smart objects aren’t designed so they can be disassembled at the end of their useful life, electronic components are likely to be left inside where they hamper recycling efforts. Some digital components contain toxic materials. Disposing of these through burning or in landfill can contaminate environments and threaten human health.

The ConversationThese are not insurmountable challenges. Information and communications technology, data and networks have an important place in our shared urban future. But this future will be determined by our attitudes toward these technologies. We need to make sure that instead of being short-term gimmicks to be thrown away when their novelty wears off, they are thoughtfully designed, and that they put they put the needs of citizens and environments first.

Mark Sawyer, Lecturer in Architecture, University of Western Australia

This article was originally published on The Conversation. Read the original article.

Smart city planning can preserve old trees and the wildlife that needs them



File 20180629 117377 112lzty.jpg?ixlib=rb 1.1
Mature trees have horizontal branches that are attractive to wildlife and birds.
from shutterstock.com

Philip Gibbons, Australian National University

Australia’s landscapes are dotted with mature eucalypts that were standing well before Captain Cook sailed into Botany Bay. These old trees were once revered as an icon of the unique Australian landscape, but they’re rapidly becoming collateral damage from population growth. Mature eucalypts are routinely removed to make way for new suburbs.

Good planning can ensure many more mature eucalypts are retained in urban developments.
Philip Gibbons

This has a considerable impact on our native fauna. Unless society is prepared to recognise the value of our pre-European eucalypts, urban growth will continue to irrevocably change our unique Australian landscape and the wildlife it supports.




Read more:
Trees are a city’s air conditioners, so why are we pulling them out?


Why are old eucalypts worth saving?

In urban landscapes, many consider large and old eucalypts a dangerous nuisance that drop limbs, crack footpaths and occupy space that could be used for housing. But when we remove these trees they are effectively lost forever. It takes at least 100-200 years before a eucalypt reaches ecological maturity.

Birds use old eucalypts as places to perch or nest.
Philip Gibbons

As trees mature, their branches become large and begin to grow horizontally rather than vertically, which is more attractive to many birds as perches and platforms where they can construct a nest.

Wildlife also use cavities inside ageing eucalypts. These are formed as the heartwood – the dead wood in the centre – decays. When a limb breaks it exposes cavities where the heartwood once occurred.

This is such a ubiquitous process in our forests that around 300 of Australia’s vertebrate species, such as possums, owls, ducks, parrots and bats, have evolved to use these cavities as exclusive places to roost or nest.

Mature trees also support high concentrations of food for animals that feed on nectar, such as honeyeaters, or seed, such as parrots.




Read more:
Concrete jungle? We’ll have to do more than plant trees to bring wildlife back to our cities


One study found that the number of native birds in an urban park or open space declines by half with the loss of every five mature eucalypts.

How can we keep old trees?

Decaying heartwood in older eucalypts leads to some large branches falling. This is when most eucalypts are removed from urban areas. So we remove trees at the exact point in time when they become more attractive to wildlife.

Plantings around the base of a mature eucalypt discourage pedestrian traffic or parked cars.
Philip Gibbons

A well-trained arborist knows that old — or even dead — eucalypts don’t need to be removed to make them safe. A tree is only dangerous if it has what arborists call a target. Unless there is a path, road or structure under a tree, then the probability of something or someone being struck by a falling branch is often below the threshold of acceptable risk.

Progressive arborists first focus on eliminating targets. For example, they might plant shrubs around the base of dead or rapidly ageing trees to minimise pedestrian traffic, rather than eliminating trees.

Where targets can’t be managed, trimming trees can remove branches that have a high risk of falling. Trees can also be structurally supported (braced) to remain stable. Such trees remain suitable as habitat for many native species.

Developers can plan around old trees.
from shutterstock.com

How to design around trees

The removal of mature eucalypts is, in part, due to urban developers not considering these trees early in the planning process.

I have worked with one developer on the outskirts of Canberra to identify important trees. The developer then planned around, rather than in spite of, these trees.

The outcome has been around 80% of mature trees have been retained. This is much greater than the proportion of mature trees retained in other new urban developments in Canberra.




Read more:
Trees versus light rail: we need to rethink skewed urban planning values


The ConversationAustralia’s population is projected to double in 50 years, so our suburbs will continue to infill and expand. This will result in the continued loss of our mature eucalypts unless our approach to planning changes.

Philip Gibbons, Associate professor, Australian National University

This article was originally published on The Conversation. Read the original article.

Working with nature can help us build greener cities instead of urban slums



File 20180622 26558 1aykrte.jpg?ixlib=rb 1.1
Garden roofs (like these in Chengdu, in China’s Sichuan province) need maintenance and community involvement.
from shutterstock.com

Paul Osmond, UNSW

As Australian cities grow and transform, we need to ensure we are not building the slums of the future by making buildings so tall and tight they turn our streets into stark canyons. Sydney’s Wolli Creek, where buildings dominate and tower over a transport hub, is an example of where this is happening. It is now considered one of the city’s densest areas.

Dense, high buildings limit the space available for urban greenery and, unfortunately, the current development boom privileges concrete and glass over vegetation. A more strategic approach to urban growth can ensure our cities maintain adequate green space and become low-carbon, efficient and affordable.

It’s also vital the community and individuals are enthusiastic drivers of such change, with shared ownership of it. Imaginative projects – at times described as urban acupuncture – can all play a role. This is where small-scale interventions (like green balconies) are applied to transform the larger urban context, improve the environment and make the city liveable.




Read more:
Higher-density cities need greening to stay healthy and liveable


Going up or out

Whether you go up (higher) or out (more), or both, there are always challenges and opportunities.

The drawback in going out is that we start creeping into our remaining open space, including important biodiversity hotspots.

Sydney’s Wolli Creek is considered one of the city’s densest areas.
from shutterstock.com

Going out can also encroach on agricultural land. Farmers around the Sydney basin produced up to 20% of the area’s fresh food needs in 2011. But researchers have predicted urban sprawl and rising land prices will lead this to drop to 6% by 2031, losing both produce and jobs.

Going up is an approach driven by proximity to transport, utilities and employment, particularly in Sydney and Melbourne. Major upward developments, like Wolli Creek, are logically being located around transport nodes. But these then become dense and concentrated areas, putting growing pressure on open space and community facilities.

Community projects

Community consultation is key before any major project and redevelopment, as genuine dialogue supports shared ownership of the outcomes. Existing community projects must be celebrated. Having an engaged and empowered community leads to a healthier, happier population.




Read more:
No garden? Five creative ways city dwellers can still grow their own


In Sydney, new precincts like Waterloo are ambitious and have good intentions. These areas aim to deliver new homes, shops, major transport services, community facilities, parks and open spaces over the next 20 years – and they’re located close to the urban centre.

Waterloo already has three community gardens, which bring together public housing residents through growing and sharing fresh produce. This approach is important to continue and initiate new projects.

Green roofs can become community gardens.
from shutterstock.com

Around the world there have also been successes with city farming where the community grows and sells agricultural produce locally. In skyscraper Singapore, they are farming vertically at Sky Greens, providing an alternative to importing food for this densely peopled city-state.

Green roofs are another alternative where communities can grow flowers and vegetables while providing training and jobs. A good example is the Uncommon Ground rooftop farm in Chicago.




Read more:
Australian cities are lagging behind in greening up their buildings


In Australia, the Grounds is a former pie factory in the industrial heart of Sydney’s Alexandria. In 2012, the site began to metamorphose into a cafe, restaurant, bakery, organic mini-farm and more. This is a successful example of how a little greenery has turned a bleak post-industrial site into an enjoyable destination, where young and old from far and wide come to enjoy the plants, animals and coffee.

The Grounds in Sydney’s Alexandria was transformed from an industrial site into an enjoyable destination.
Herry Lawford/Flickr, CC BY

A domestic garden, a green balcony or a green wall can all play a role – but these need ongoing care and attention, which means individuals and engaged communities must drive the enthusiasm.

Nature in the city

So, for a start, let’s not build fast and furiously without grasping the place as a whole and making the most of what is already there. This means preserving mature trees and shrubs, leaving open space unpaved and protecting areas of deep soil for future planting.

Maintaining, enhancing and creating urban green space not only fulfils the requirements for urban acupuncture, but – to mix medical metaphors – provides a kind of urban vaccination against the emergence of slums, where nothing can grow and depression sets in.

The ConversationWe can combine building development with what Stefan Boeri Architects have described as “vertical densification of nature within the city” to achieve a new kind of urban nature – nature in the city to transform the nature of the city.

Paul Osmond, Senior Lecturer and Director, Sustainable Built Environment program, UNSW

This article was originally published on The Conversation. Read the original article.

Australian cities are lagging behind in greening up their buildings


File 20180620 137734 1d98wbz.jpg?ixlib=rb 1.1
Green rooftops give a backyard feel to smaller housing units in Sydney
Author Provided , Author provided

Sara Wilkinson, University of Technology Sydney; Paul J Brown, University of Technology Sydney, and Sumita Ghosh, University of Technology Sydney

Covering roofs and walls of buildings with vegetation is a good way of reducing greenhouse gas emissions. And these green roofs and walls make cities look nicer. Toronto’s central business district adopted a policy of establishing green roofs on around half of all city buildings in 2009. Research shows this could reduce maximum city temperatures by up to 5℃.

We spent the past 12 months analysing the case for more greenery on Australian city buildings, drawing on international comparisons. We’ve shown that a mandatory policy, coupled with incentives to encourage new and retrofitted green roofs and walls, will provide environmental, social and business benefits.




Read more:
Green roofs and walls – a growth area in urban design


These include improved air quality, energy conservation and reductions in stormwater run-off from buildings, which would decrease flash flooding. Green roofs and walls also become new habitats for biodiversity and can be pleasant spaces for social interaction in dense urban areas.

We found numerous studies confirming that greenery on inner-city buildings reduces the urban heat island effect, which is when city centres are hotter than surrounding suburban and outer-urban areas.

Green roofs are great social spaces.
Author provided, Author provided

What other countries are doing

We examined international case studies of cities embracing green roofs and walls to review policy frameworks which could be suitable for Australia. A range of measures and policies exist and vary depending on building types (buildings need specific features to host vegetation) and the degree to which policies can be enforced.

Singapore is leading in this area. It markets itself as a “garden city” to attract investment, visitors and commerce. Green roofs and walls are a vital and visual manifestation of this policy.

Green walls are aesthetically pleasing.
Author provided

Greenery is ingrained in Singapore’s development sector and is boosted by incentives, grants, awards, certification schemes and government-led development. Through this voluntary-heavy (yet supported) effort, Singapore increased its number of green roofs and spaces nine-fold between 2006 and 2016.

Rotterdam’s efforts weren’t as extensive as Singapore’s, but the city more than doubled its green roof area from 2012-2017 through incentives, grants, tax benefits and demonstration projects.

London increased its total green-roof area more than four-fold from 2005-2016. This was partially achieved through a biodiversity action plan.

And Toronto has the second-largest area of green roofs of the four cities we studied. This has been delivered through a mandatory policy, introduced in 2009, that requires all new developments with roofs of 2,000m² or more to install green roofs.

The case in Australia

We modelled what could be delivered in the City of Sydney and the City of Melbourne based on the measures taken in Singapore (which is voluntary-heavy), London (voluntary-light), Rotterdam (voluntary-medium) and Toronto (mandatory).

We combined this with data on actual green building projects in 2017 in Sydney and Melbourne to show the potential increase of projects in each city based on the four policies.

In the Sydney local government area, 123 green roof and wall projects were under way in 2016. The below table uses this base to estimate what the numbers of such projects would be for three time periods, based on the policies in the four scenarios modelled.

https://datawrapper.dwcdn.net/7ff2z/3/

In the Melbourne local government area, 28 green roof and wall projects were under way in 2016. The table below shows how these could increase based on policies of the four case studies modelled.

https://datawrapper.dwcdn.net/s2Efy/1/

How Australia can get on board

Sydney and Melbourne have green roof and green wall policies aligned with their 2030 and 2040 sustainability targets, launched in 2012 and 2015 respectively. Sydney has the Green Roofs and Walls Policy Implementation Plan, while Melbourne has the Growing Green Guide 2014.

These policies appear most aligned with the voluntary-light approach adopted in London. Sydney had a 23% increase in green roofs since its policy launch, although this was from a very low starting point. Melbourne also reports an increase in green roofs and walls, though the amount of uptake isn’t publicly available.

There are, of course, barriers to greening up buildings. These include costs as well as lack of experience in the industry, especially in terms of construction and management. Professional capacity for green roofs is still in a developing phase and further training and skill development are needed.

Green wall adds vegetation to an aged care home in Sydney.

Around 87% of the building stock Australia will have in 2050 is already here, and a large proportion of existing buildings could be retrofitted. We recommend a voluntary approach using a mix of initiatives for building owners, such as tax benefits and credits in green building tools.




Read more:
If planners understand it’s cool to green cities, what’s stopping them?


Focusing on new buildings is likely to lead to more modest growth rates in the short to medium term, relative to alternative approaches such as retrofitting. The annual growth rate of new stock is around 1-3%, which means that policies focusing on new stock will have a substantial impact over the long term.

However, in the short to medium term, a retrofit policy would have greater impact given the numbers of existing buildings suitable for this.

The ConversationLocal government areas can also promote the evidence showing the lift in property values in areas with more green infrastructure – in some instances up to 15%. This should encourage voluntary uptake.

Sara Wilkinson, Associate Professor, School of the Built Environment, University of Technology Sydney; Paul J Brown, Senior Lecturer – Creative Intelligence | Faculty of Transdisciplinary Innovation & Senior Lecturer – Accounting | UTS Business School, University of Technology Sydney, and Sumita Ghosh, Senior Lecturer, School of the Built Environment, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Our legacy of liveable cities won’t last without a visionary response to growth



File 20180327 188613 1komx6d.jpg?ixlib=rb 1.1
Historic investments in green open space along the Yarra created a legacy of liveability in Melbourne.
Ispas Vlad/Shutterstock

Chris Chesterfield, Monash University

Australia’s major cities are growing more rapidly than ever before, gaining three million residents in a decade. Concerns about the risks to their long-term liveability and health are growing too. Is the consistent placing of Australian cities at the top of most liveable city rankings a reason for complacency?

The fastest-growing city, Melbourne, is experiencing unprecedented growth and yet has topped The Economist Intelligence Unit global liveability ranking for seven years running. However, much like Australia’s remarkable record of 26 years of continuous economic growth, many of the policy and institutional reforms that delivered this liveability legacy occurred decades ago.




Read more:
Three charts on Australia’s population shift and the big city squeeze


Australia is now undergoing its third great wave of population growth, putting pressure on infrastructure, services and the environment. During the past two waves of growth, in the late-19th and mid-20th centuries, cities implemented visionary responses. It’s largely because of these past phases of planning and investment that our cities have until now been able to sustain their liveability and a reasonably healthy natural environment.

A third wave of planning and investment in open space and green infrastructure is now needed to underpin liveability as our cities grow. The past offers important lessons about what made Melbourne, in particular, so liveable.

Can we repeat the leadership of yesterday?

In the early 19th century, European settlers ignored and displaced the Indigenous knowledge and connections with country. What grew in their place were initially little more than shambolic frontier towns.

In the Port Phillip colony, the gold rush, the subsequent population and property booms and the lack of city services led to Melbourne gaining an international reputation as “Smellbourne”.

But then, over several decades, visionary plans set aside a great, green arc of parklands and tree-lined boulevards around the city grid.

Melbourne constructed one of the world’s earliest sewerage systems. The forested headwaters of the Yarra River were reserved for water supply. Melbourne is today one of a handful of major cities in the world drawing its natural water supplies from closed catchments.

And so, together with profound social and cultural changes, the shambolic frontier town transformed into “Marvellous Melbourne”. Sydney and Australia’s other capital cities followed similar trajectories.




Read more:
All the signs point to our big cities’ need for democratic, metro-scale governance


Then came the world wars and intervening Great Depression. These were times of austerity and sacrifice. Remarkably little investment in open space and green infrastructure occurred over these decades.

The 1956 Melbourne Olympics was perhaps the event that signalled the awakening from that somewhat bleak period. It was again time for optimism and vision, with the post-war population boom well under way.

Australia’s population was booming at the time of the 1956 Melbourne Olympics, with growth averaging 2.7% a year from 1945-1960 (the 2007-17 average is 1.7%).
Tidningarnas Telegrambyrå/Wikimedia

The 1954 Melbourne Metropolitan Planning Scheme reflected this growing optimism and highlighted the potential for a network of open spaces across the rapidly expanding city. But it took time to build momentum for its implementation.

By the 1970s sprawling development had virtually doubled the metropolitan area of Melbourne. Services such as the sewerage system had not kept up. The Yarra and other waterways and Port Phillip Bay were becoming grossly polluted. There was community pressure to tackle pollution caused by industry and unsewered suburbs.

In 1971, the Victorian Environment Protection Authority, the second EPA in the world, was created to regulate industry. State and federal governments made a huge investment in sewering the suburbs.

The city’s planners revived the earlier vision for Melbourne’s open space network, along with the idea of green wedges and development corridors. Greater prosperity and community expectation secured the investment needed to deliver it.

Historic decisions to protect the Yarra River have had lasting benefits for Melbourne.
Dorothy Chiron/Shutterstock

The 1971 metropolitan plan identified open-space corridors for waterways including the Yarra. Land began to be acquired to build this green network and the trail systems that connect it. Victoria became known as the “Garden State” in the 1970s.

This period stands out as the city’s second great wave of visionary planning and investment. It created the wonderful legacy of a world-class network of open space, much of it around waterways and Port Phillip Bay.

Where to today?

Sustaining or improving urban liveability is a massive challenge. It calls for a new vision and a commitment by governments to deliver it over many decades. Do we have policies and institutions capable of doing this?

Rather than “shaping” our cities, many state institutions are dominated by cost and efficiency goals that drive a “city servicing” mindset.

Melbourne, for instance, is in danger of exhausting the legacy of the last “city shaping” phase of visionary planning and investment. This all but ended in the 1980s.

By 1992, the Melbourne and Metropolitan Board of Works had been abolished. It once had responsibility for town planning, parks, waterways and floodplain management as well as water and sewerage services. It used the Metropolitan Improvement Fund (raised from city-wide property levies) to plan and deliver the city’s green infrastructure, including land acquisitions.

Where is the equivalent capability today? Our practitioners have the knowledge, skills and understanding to better plan for complex city needs, but this is not enough to shape a better future for coming generations. Without a vision and effective policies and institutions to deliver it, we risk ad hoc and wasteful decision-making and investment. The result will be poorer community well-being and less economic prosperity.




Read more:
City planning suffers growth pains of Australia’s population boom


The entrenched cost-efficiency or “city servicing” mindset is an all-too-narrow and short-term policy setting in an era of unprecedented urban population growth.

Expanding suburban fringes will lack amenity and a healthy environment, which may entrench disadvantage. Existing suburbs also need to improve quality, access and connectivity of public open space.

Green streetscapes, open space and tree cover are important for amenity. This includes countering urban heat in a warming climate. Co-ordinated investment in green infrastructure can also unlock new economic opportunities for our cities.

But, as the past has shown, little will happen without an effective city-shaping capability. Significant policy and institutional reforms, guided by a new vision, are essential to ensure a healthy environment, community well-being and the liveability and prosperity of our cities for decades to come.

The ConversationAlternatively, we may find ourselves tumbling down the ranks of world’s most liveable cities. Our best and brightest will be drawn to greener pastures while the world asks in astonishment, “How did they let that happen?”

Chris Chesterfield, Director Strategic Engagement, CRC for Water Sensitive Cities, Monash University

This article was originally published on The Conversation. Read the original article.