Climate change is making ocean waves more powerful, threatening to erode many coastlines


Shutterstock

Thomas Mortlock, Macquarie University; Itxaso Odériz, Universidad Nacional Autónoma de México (UNAM); Nobuhito Mori, Kyoto University, and Rodolfo Silva, Universidad Nacional Autónoma de México (UNAM)Sea level rise isn’t the only way climate change will devastate the coast. Our research, published today, found it is also making waves more powerful, particularly in the Southern Hemisphere.

We plotted the trajectory of these stronger waves and found the coasts of South Australia and Western Australia, Pacific and Caribbean Islands, East Indonesia and Japan, and South Africa are already experiencing more powerful waves because of global warming.

This will compound the effects of sea level rise, putting low-lying island nations in the Pacific — such as Tuvalu, Kiribati and the Marshall Islands — in further danger, and changing how we manage coasts worldwide.

But it’s not too late to stop the worst effects — that is, if we drastically and urgently cut greenhouse gas emissions.

An energetic ocean

Since the 1970s, the ocean has absorbed more than 90% of the heat gained by the planet. This has a range of impacts, including longer and more frequent marine heatwaves, coral bleaching, and providing an energy source for more powerful storms.

Since at least the 1980s, wave power has increased worldwide as more heat is pumped into the ocean.
Shutterstock

But our focus was on how warming oceans boost wave power. We looked at wave conditions over the past 35 years, and found global wave power has increased since at least the 1980s, mostly concentrated in the Southern Hemisphere, as more energy is being pumped into the oceans in the form of heat.

And a more energetic ocean means larger wave heights and more erosive energy potential for coastlines in some parts of the world than before.




Read more:
Ocean warming threatens coral reefs and soon could make it harder to restore them


Ocean waves have shaped Earth’s coastlines for millions of years. So any small, sustained changes in waves can have long-term consequences for coastal ecosystems and the people who rely on them.

Mangroves and salt marshes, for example, are particularly vulnerable to increases in wave energy when combined with sea level rise.

To escape, mangroves and marshes naturally migrate to higher ground. But when these ecosystems back onto urban areas, they have nowhere to go and die out. This process is known as “coastal squeeze”.

These ecosystems often provide a natural buffer to wave attack for low-lying coastal areas. So without these fringing ecosystems, the coastal communities behind them will be exposed to more wave energy and, potentially, higher erosion.

Mangrove forests are among the most imperilled ecosystems as sea levels rise and ocean waves crash harder against the coast.
Shutterstock

So why is this happening?

Ocean waves are generated by winds blowing along the ocean surface. And when the ocean absorbs heat, the sea surface warms, encouraging the warm air over the top of it to rise (this is called convection). This helps spin up atmospheric circulation and winds.

In other words, we come to a cascade of impacts: warmer sea surface temperatures bring about stronger winds, which alter global ocean wave conditions.




Read more:
Curious Kids: why are there waves?


Our research shows, in some parts of the world’s oceans, wave power is increasing because of stronger wind energy and the shift of westerly winds towards the poles. This is most noticeable in the tropical regions of the Atlantic and Pacific Oceans, and the subtropical regions of the Indian Ocean.

But not all changes in wave conditions are driven by ocean warming from human-caused climate change. Some areas of the world’s oceans are still more influenced by natural climate variability — such as El Niño and La Niña — than long-term ocean warming.

In general, it appears changes to wave conditions towards the equator are more driven by ocean warming from human-caused climate change, whereas changes to waves towards the poles remain more impacted by natural climate variability.

Ocean waves are generated by winds blowing across the ocean surface.
Shutterstock

How this could erode the coasts

While the response of coastlines to climate change is a complex interplay of many processes, waves remain the principal driver of change along many of the world’s open, sandy coastlines.

So how might coastlines respond to getting hit by more powerful waves? It generally depends on how much sand there is, and how, exactly, wave power increases.

For example, if there’s an increase in wave height, this may cause increased erosion. But if the waves become longer (a lengthening of the wave period), then this may have the opposite effect, by transporting sand from deeper water to help the coast keep pace with sea level rise.

Sandy beaches, including those around South Australia and Western Australia, may see greater risk of erosion in coming decades as wave power increases.
Shutterstock

For low-lying nations in areas of warming sea surface temperatures around the equator, higher waves – combined with sea level rise – poses an existential problem.

People in these nations may experience both sea level rise and increasing wave power on their coastlines, eroding land further up the beach and damaging property.
These areas should be regarded as coastal climate hotspots, where continued adaption or mitigation funding is needed.

It’s not too late

It’s not surprising for us to find the fingerprints of greenhouse warming in ocean waves and, consequentially, along our coastlines. Our study looked only at historical wave conditions and how these are already being impacted by climate change.

But if warming continues in line with current trends over the coming century, we can expect to see more significant changes in wave conditions along the world’s coasts than uncovered in our backward-looking research.

However, if we can mitigate greenhouse warming in line with the 2℃ Paris agreement, studies indicate we could still keep changes in wave patterns within the bounds of natural climate variability.




Read more:
Seabirds are today’s canaries in the coal mine – and they’re sending us an urgent message


Still, one thing is abundantly clear: the impacts of climate change on waves is not a thing of the future, and is already occurring in large parts of the world’s oceans.

The extent to which these changes continue and the risk this poses to global coastlines will be closely linked to decarbonisation efforts over the coming decades.

This story is part of Oceans 21

Our series on the global ocean opened with five in depth profiles. Look out for new articles on the state of our oceans in the lead up to the UN’s next climate conference, COP26. The series is brought to you by The Conversation’s international network.The Conversation

Thomas Mortlock, Senior Risk Scientist, Risk Frontiers, Adjunct Fellow, Macquarie University; Itxaso Odériz, Research assistant, Universidad Nacional Autónoma de México (UNAM); Nobuhito Mori, Professor, Kyoto University, and Rodolfo Silva, Professor, Universidad Nacional Autónoma de México (UNAM)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change may change the way ocean waves impact 50% of the world’s coastlines


Mark Hemer, CSIRO; Ian Young, University of Melbourne; Joao Morim Nascimento, Griffith University, and Nobuhito Mori, Kyoto University

The rise in sea levels is not the only way climate change will affect the coasts. Our research, published today in Nature Climate Change, found a warming planet will also alter ocean waves along more than 50% of the world’s coastlines.

If the climate warms by more than 2℃ beyond pre-industrial levels, southern Australia is likely to see longer, more southerly waves that could alter the stability of the coastline.

Scientists look at the way waves have shaped our coasts – forming beaches, spits, lagoons and sea caves – to work out how the coast looked in the past. This is our guide to understanding past sea levels.




Read more:
Rising seas threaten Australia’s major airports – and it may be happening faster than we think


But often this research assumes that while sea levels might change, wave conditions have stayed the same. This same assumption is used when considering how climate change will influence future coastlines – future sea-level rise is considered, but the effect of future change on waves, which shape the coastline, is overlooked.

Changing waves

Waves are generated by surface winds. Our changing climate will drive changes in wind patterns around the globe (and in turn alter rain patterns, for example by changing El Niño and La Niña patterns). Similarly, these changes in winds will alter global ocean wave conditions.




Read more:
Curious Kids: why are there waves?


Further to these “weather-driven” changes in waves, sea level rise can change how waves travel from deep to shallow water, as can other changes in coastal depths, such as affected reef systems.

Recent research analysed 33 years of wind and wave records from satellite measurements, and found average wind speeds have risen by 1.5 metres per second, and wave heights are up by 30cm – an 8% and 5% increase, respectively, over this relatively short historical record.

These changes were most pronounced in the Southern Ocean, which is important as waves generated in the Southern Ocean travel into all ocean basins as long swells, as far north as the latitude of San Francisco.

Sea level rise is only half the story

Given these historical changes in ocean wave conditions, we were interested in how projected future changes in atmospheric circulation, in a warmer climate, would alter wave conditions around the world.

As part of the Coordinated Ocean Wave Climate Project, ten research organisations combined to look at a range of different global wave models in a variety of future climate scenarios, to determine how waves might change in the future.

While we identified some differences between different studies, we found if the 2℃ Paris agreement target is kept, changes in wave patterns are likely to stay inside natural climate variability.

However in a business-as-usual climate, where warming continues in line with current trends, the models agreed we’re likely to see significant changes in wave conditions along 50% of the world’s coasts. These changes varied by region.

Less than 5% of the global coastline is at risk of seeing increasing wave heights. These include the southern coasts of Australia, and segments of the Pacific coast of South and Central America.

On the other hand decreases in wave heights, forecast for about 15% of the world’s coasts, can also alter coastal systems.

But describing waves by height only is the equivalent of describing an orchestra simply by the volume at which it plays.

Some areas will see the height of waves remain the same, but their length or frequency change. This can result in more force exerted on the coast (or coastal infrastructure), perhaps seeing waves run further up a beach and increasing wave-driven flooding.

Similarly, waves travelling from a slightly altered direction (suggested to occur over 20% of global coasts) can change how much sand they shunt along the coast – important considerations for how the coast might respond. Infrastructure built on the coast, or offshore, is sensitive to these many characteristics of waves.

While each of these wave characteristics is important on its own, our research identified that about 40% of the world’s coastlines are likely to see changes in wave height, period and direction happening simultaneously.

While some readers may see intense waves offering some benefit to their next surf holiday, there are much greater implications for our coastal and offshore environments. Flooding from rising sea levels could cost US$14 trillion worldwide annually by 2100 if we miss the target of 2℃ warming.




Read more:
Droughts and flooding rains already more likely as climate change plays havoc with Pacific weather


How coastlines respond to future climate change will be a response to a complex interplay of many processes, many of which respond to variable and changing climate. To focus on sea level rise alone, and overlooking the role waves play in shaping our coasts, is a simplification which has great potential to be costly.


The authors would like to acknowledge the contribution of Xiaolan Wang, Senior Research Scientist at Environment and Climate Change, Canada, to this article.The Conversation

Mark Hemer, Principal Research Scientist, Oceans and Atmosphere, CSIRO; Ian Young, Kernot Professor of Engineering, University of Melbourne; Joao Morim Nascimento, PhD Candidate, Griffith University, and Nobuhito Mori, Professor, Kyoto University

This article is republished from The Conversation under a Creative Commons license. Read the original article.