Why climate change will dull autumn leaf displays



File 20190402 177178 1o0ksl1.jpg?ixlib=rb 1.1
Autumnal displays may be dimmed in the future.
Shutterstock

Matthew Brookhouse, Australian National University

Every autumn we are treated to one of nature’s finest seasonal annual transitions: leaf colour change and fall.

Most of the autumn leaf-shedding trees in Australia are not native, and some are declared weeds. Nevertheless, Australia has a spectacular display of trees, from the buttery tresses of Ginkgo biloba to the translucent oaks, elms and maples.

Autumn colour changes are celebrated worldwide and, when the time is right, autumn leaves reconnect us to nature, driving “leaf-peeping” tourist economies worldwide.

However, recent temperature trends and extremes have changed the growing conditions experienced by trees and are placing autumn displays, such as Canberra’s, at risk.

Autumn leaf colour changes and fall are affected by summer temperatures.
Shutterstock

This year, Canberra, like the rest of Australia, endured its hottest summer on record. In NSW and the ACT, the mean temperature in January was 6°C warmer than the long-term average. So far, autumn is following suit.

These extremes can interrupt the ideal synchronisation of seasonal changes in temperature and day length, subduing leaf colours.

In addition, hotter summer temperatures scorch leaves and, when combined with this and the previous years’ low autumn rainfall, cause trees to shed leaves prematurely, dulling their autumn leaf displays.




Read more:
Smart city planning can preserve old trees and the wildlife that needs them


The subtlety of change

We learnt in childhood autumn colour change follows the arrival of cooler temperatures. Later we learnt the specifics: seasonal changes in day length and temperature drive the depletion of green chlorophyll in leaves. Temperature can also affect the rate at which it fades.

In the absence of chlorophyll, yellows and oranges generated by antioxidants in the leaf (carotenoids) as well as red through to purples pigments (anthocyanins), synthesised from stored sugars, emerge. Temperature plays a role here too – intensifying colours as overnight temperatures fall.

We’ve also come to understand the role of a leaf’s environment. Anthocyanin production is affected by light intensity, which explains why sunny autumns produce such rich colours and why the canopies of our favourite trees blush red at their edges while glowing golden in their interior.

However, early signs show this year’s autumn tones will be muted. After the record-breaking heat of summer and prolonged heat of March, many trees are shrouded in scorched, faded canopies. The ground is littered with blackened leaves.

Of course, we’ve seen it before.

During the Millennium Drought, urban trees sporadically shed their leaves often without a hint of colour change. Fortunately, that was reversed at the drought’s end.

But we’re kidding ourselves if we believe this last summer was normal or recent temperature trends are just natural variability. If this is a sign of seasons future, we need to prepare to lose some of autumn’s beauty.




Read more:
Are more Aussie trees dying of drought? Scientists need your help spotting dead trees


Lost synchronicity

Long-term and experimental data show that the sensitivity of autumn colour change to warmer temperatures varies widely between species. While large-scale meta-analyses point to a delay in the arrival of autumn colours of one day per degree of warming, individual genera may be far more sensitve. Colour change in Fagus is delayed by 6-8 days per degree.

Warming temperatures, then, mean the cohesive leaf-colour changes we’re accustomed to will break down at landscape scales.

In addition, as warm weather extends the growing season and deep-rooted trees deplete soil moisture reservoirs, individual trees are driven by stress rather than seasonal temperature change and cut their losses. They shed leaves at the peripheries of their canopies.

The remainder wait – bronzed by summer, but still mostly green – for the right environmental cue.

For years, careful species selection and selective breeding enhanced autumn colour displays. This rich tapestry is now unravelling as hotter summers, longer autumns and drought affect each species differently.




Read more:
How tree bonds can help preserve the urban forest


Paradoxes and indirect effects

It seems logical warmer temperatures would mean shorter and less severe frost seasons. Paradoxically, observations suggest otherwise – the arrival of frost is unchanged or, worse, occurring earlier.

When not preceded by gradually cooling overnight temperatures, frosts can induce sudden, unceremonious leaf loss. If warm autumn temperatures fail to initiate colour change, autumn displays can be short-circuited entirely.

At the centre of many urban-tree plantings, our long association with elms faces a threat. Loved for the contrast their clear yellow seasonal display creates against pale autumn skies, elm canopies have been ravaged by leaf beetles this year. Stress has made trees susceptible to leaf-eating insects, and our current season delivered an expanse of stressed, and now skeletal, trees.

Autumn leaf displays drive tourism.
Norm Hanson/flickr, CC BY-NC-SA



Read more:
Where the old things are: Australia’s most ancient trees


Change everywhere?

This dulled image of autumn is far from universal. Climates differ between locations. So too will the climate changes we’ve engineered and their impact on autumn displays.

Increased concentration of anthocyanins associated with warmer summers has, for example, created spectacular leaf displays in Britain’s cooler climates.

Of course, we’ll continue to experience radiant autumn displays too.

In years of plentiful rain, our trees will retain their canopies and then, in the clear skies of autumn, dazzle us with seasonal celebrations. However, that too may be tempered by the increased risk of colour-sapping pathogens, such as poplar rust, favoured by warm, moist conditions. And there are also negative consequences for autumn colour associated with elevated carbon dioxide concentrations.

Of course, we need to keep it in perspective – the dulling of autumn’s luminescence is far from the worst climate change impacts. Nevetheless, in weakening our link with nature, the human psyche is suffering another self-inflicted cut as collective action on climate change stalls.The Conversation

Matthew Brookhouse, Senior lecturer, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Plants use advertising-like strategies to attract bees with colour and scent


File 20180411 540 1wj58ue.jpg?ixlib=rb 1.1
A honeybee (left), a scarab beetle (middle), and a fly (right) feeding on flowers of the white rock rose in a Mediterranean scrubland.
Aphrodite Kantsa., Author provided

Aphrodite Kantsa, University of the Aegean and Adrian Dyer, RMIT University

Watching plants and pollinators such as bees can teach us a lot about how complex networks work in nature.

There are thousands of species of bees around the world, and they all share a common visual system: their eyes are sensitive to ultraviolet, blue and green wavelengths of the light spectrum.

This ancient colour visual system predates the evolution of flowers, and so flowers from around the world have typically evolved colourful blooms that are easily seen by bees.

For example, flowers as perceived by ultraviolet-sensitive visual systems look completely different than what humans can see.

However, we know that flowers also produce a variety of complex, captivating scents. So in complex natural environments, what signal should best enable a bee to find flowers: colour or scent?

Our latest research uncovered a surprising outcome. It seems that rather that trying to out-compete each other in colour and scent for bee attention, flowers may work together to attract pollinators en masse. It’s the sort of approach that also works in the world of advertising.




Read more:
Want a better camera? Just copy bees and their extra light-sensing eyes


Daunting amount of field work

Classic thinking would suggest that flowers of a particular species should have reasonably unique flower signatures. It makes sense that this should promote the capacity of a bee to constantly find the same rewarding species of flower, promoting efficient transfer of pollen.

So a competition view of flower evolution for different flower species with the same colour – for example purple – would suggest that each flowering plant species should benefit from having different scents to enable pollinator constancy and flower fidelity. By the same logic, flowers with the same scents should have different colours so they’re easily distinguished.

To know for sure what happens requires a daunting amount of field work. The challenges include measuring flower colours using a spectrophotometer (a very sensitive instrument that detects subtle colour differences) and also capturing live flower scent emissions with special pumps and chemical traps.

A wild bee of the genus Anthophora upon making the decision to visit the flowers of purple viper’s bugloss, in a Mediterranean scrubland in Greece.
Aphrodite Kantsa.

At the same time, in order to record the actual pollinator “clientele” of the flowers, detailed recordings of visits are required. These data are then built into models for bee perception. Statistical analyses allow us to understand the complex interactions that are present in a real world evolved system.

Not what we thought

And what we found was unexpected. In two new papers, published in Nature Ecology & Evolution and in Nature Communications, we found the opposite to competition happens: flowers have evolved signals that work together to facilitate visits by bees.

So flowers of different, completely unrelated species might “smell like purple”, whilst red coloured species share another scent. This is not what is expected at all by competition, so why in a highly evolved classical signal receiver has this happened?

The data suggests that flowers do better by attracting more pollinators to a set of reliable signals, rather than trying to use unique signals to maximise individual species.

By having reliable multimodal signals that act in concert to allow for easy finding of rewarding flowers, even of different species, more pollinators must be facilitated to transfer pollen between flowers of the same species.




Read more:
Which square is bigger? Honeybees see visual illusions like humans do


Lessons for advertising

A lot of research on advertising and marketing is concerned with consumer behaviour: how we make choices. What drives our decision-making when foraging in a complex environment?

While a lot of modern marketing emphasises product differentiation and competition to promote sales, our new research suggests that nature can favour facilitation. It appears that by sharing desirable characteristics, a system can be more efficient.

This facilitation mechanism is sometimes favoured by industry bodies, for example Australian avocados and Australian honey. En masse promotion of the desirable characteristics of similar products can grow supporter base and build sales. Our research suggests evolution has favoured this solution, which may hold important lessons for other complex market based systems.

A successful colour–scent combination targeted at attracting bees can be adopted by several different plant species in the same community, implying that natural ecosystems can function as a “buyers markets”.




Read more:
Curious Kids: Do bees ever accidentally sting other bees?


We also know from research that flowers can evolve and change colours to suit the local pollinators. Colours can thus be changed by flowers if instead of bees pollinating flowers, flies, with different colour perception and preferences, dominate the community.

These findings can also prove useful for identifying those colour-scent combinations that are the most influential for the community. This way, the restoration of damaged or disrupted plant-pollinator communities can become better managed to be more efficient in the future.

The ConversationWhen next enjoying a walk in a blooming meadow, remember plants’ strategies. The colourful flowers and the mesmerising scents you experience may have evolved to cleverly allure the efficient pollinators of the region.

Aphrodite Kantsa, Postdoctoral Researcher, University of the Aegean and Adrian Dyer, Associate Professor, RMIT University

This article was originally published on The Conversation. Read the original article.

Scientists Just Found Out How Chameleons Change Color


TIME

Scientists may have finally unlocked the mystery behind chameleons’ unique ability to change color.

The explanation is that the reptile’s skin is made up of tiny mirror-like crystals, contained within reflective pigment cells called iridophores. That’s according to a new study published in the journal Nature Communications.

When the chameleon gets excited, or anticipates danger, the iridophores expand or contract to enable the crystals to reflect different levels of light, thereby changing its skin color.

The researchers used a combination of microscopy, high-resolution videography and color-based numerical modeling to arrive at this discovery.

“When the skin is in the relaxed state, the nanocrystals in the iridophore cells are very close to each other — hence, the cells specifically reflect short wavelengths, such as blue,” Michel Milinkovitch, a professor of genetics and evolution at the University of Geneva in Switzerland and the lead author of the study, told Live Science

View original post 50 more words