A numbers game: killing rabbits to conserve native mammals



File 20180709 122262 6ap5ri.jpg?ixlib=rb 1.1
Controlling rabbit populations has a key role in conserving Australia’s native plants and animals
William Booth

Euan Ritchie, Deakin University; Damien Fordham, University of Adelaide, and Miguel Lurgi, Centre national de la recherche scientifique (CNRS)

Invasive species have a devastating effect on biodiversity. In Australia, introduced red foxes and feral cats have been implicated in the majority of the extinctions of the native mammal fauna, which has been decimated since European arrival.

But there’s a herbivore that also causes eco-catastrophe. Rabbits both compete with native animals for food and shelter and act as easy prey for abundant populations of cats and foxes. By over-grazing vegetation and reducing habitat complexity, they make hunting easier for introduced predators.




Read more:
Invasive predators are eating the world’s animals to extinction – and the worst is close to home


Food webs are complex. Because of this, once an invasive species is embedded in a food web, simply eradicating them without considering the potential knock-on effects to other species they interact with, could cause unintended and undesirable consequences. We modelled different rates of rabbit population reduction to assess what level of control might be best for aiding the conservation of native mammals and not causing negative outcomes.

Rabbit numbers boom and crash

Rabbits, famously, reproduce rapidly and can cope with a relatively high predation rate. This can cause “hyper-predation”, where rabbit-inflated cat and fox populations indirectly increase the predation pressure on native mammals. This is especially so when rabbit populations intermittently crash due to, for example, extreme environmental events (like severe and prolonged droughts) or disease. This causes predators to switch their diet and eat more native mammals.

Threatened species such as the greater bilby are likely to benefit from rabbit control.
Jasmine Vink

This logically suggests that reducing rabbit numbers might thus help reduce cat and fox populations, by removing their abundant prey. Collectively this should benefit native plants and animals, including many threatened mammal species. However, ecosystem and pest management is a complex game.

When controlling rabbits we need to look beyond one or two species. We should consider the potential consequences for the entire ecological community, which ultimately depend on how changes in one species percolate through the network of ecological interactions between them.

Our new research, recently published in the Journal of Applied Ecology, set out to examine these questions in more detail. We consider other key players in Australia’s arid regions, such as kangaroos and dingoes, when looking at the effects of rabbit control on small native mammals. Our aim was to provide a better understanding of how changes in rabbit populations might affect other species via the food web.

We developed a multi-species ecological network model to describe and quantify how changing rabbit abundance can affect species on different feeding levels. In addition to rabbits, small native mammals, and mesopredators (cats and foxes), our model also considers apex predators (dingo) and large herbivores (kangaroo) as part of the Australian arid food web. This model allowed us to examine changes in predator-prey interactions (including potential prey switching and hyper-predation) and how these could affect the survival of native prey through time.

Our model of an Australian arid ecosystem food web.
Author provided

We found that removing rabbits at rates between 30-40% appeared to benefit small mammals. This is approximately the rate at which rabbits are currently managed in Australia using biocontrol agents (introduced diseases).

Rabbit control in Australia typically involves a “press and pulse” approach. Rabbit populations are suppressed via biocontrol (press) and periods of warren destruction and poisoning (pulse). Finding that reducing rabbit populations by around 40% seems most beneficial to small mammals is important, as it informs how and when we combine these strategies.

The 40% rate corresponds well with the disease-induced (press) mortality rate in rabbit populations due to rabbit haemorrhagic disease and myxomatosis. These are the primary biocontrol agents used in arid Australia to control rabbit populations.

Our study supports rabbit-reduction strategies that involve sustained “press” control, that kill a moderate portion of a rabbit population, with less frequent removal at higher proportions of the population.

To effectively manage invasive species, it’s important to focus on entire communities. Targeting single species might not be enough – every animal exists within a complex web of interactions.




Read more:
Mourn our lost mammals, while helping the survivors battle back


There has been much focus by the current government on controlling feral cats, as a way to conserve many of Australia’s unique and threatened mammal species.

The ConversationHowever, more focus could be devoted to protecting habitat cover and complexity, by reducing the land clearing and over-grazing that makes hunting easier. We can also manage rabbits sensibly to reduce competition for resources, and indirectly control cats and foxes.

Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Damien Fordham, , University of Adelaide, and Miguel Lurgi, Postdoctoral research fellow, Centre national de la recherche scientifique (CNRS)

This article was originally published on The Conversation. Read the original article.

Advertisements

Indigenous peoples are crucial for conservation – a quarter of all land is in their hands



File 20180715 27039 1gx7t0e.jpg?ixlib=rb 1.1
Maasai women on a conservation project in Kenya.
Joan de la Malla, Author provided

Stephen Garnett, Charles Darwin University; Álvaro Fernández-Llamazares, University of Helsinki; Catherine Robinson, CSIRO; Erle C. Ellis, University of Maryland, Baltimore County; Hayley Geyle, Charles Darwin University; Ian Leiper, Charles Darwin University; James Watson, The University of Queensland; John E. Fa, Manchester Metropolitan University; Kerstin Zander, Charles Darwin University; Micha Victoria Jackson, The University of Queensland; Pernilla Malmer, Stockholm University; Tom Duncan, Charles Darwin University, and Zsolt Molnár, Hungarian Academy of Sciences, Budapest

Indigenous peoples have a deep and unique connection to the lands they inhabit. This connection has persisted throughout the world, despite centuries of colonisation, displacement and suppression of their cultural identities.

What has never been appreciated is the contemporary spatial extent of Indigenous influence – just how much of Earth’s surface do Indigenous peoples still own or manage?




Read more:
Remote Indigenous communities are vital for our fragile ecosystems


Given that Indigenous peoples now make up less than 5% of the global population, you might imagine the answer to be “very little”. But you would be wrong.

In our new research, published in Nature Sustainability, we mapped Indigenous lands throughout the world, country by country. We found that these covered 38 million square kilometres – about a quarter of all land outside Antarctica.

Purple shading shows the percentage of each square degree mapped that is under indigenous management.
Garnett et al. 2018

Some 87 countries around the world, on every inhabited continent, have people who identify as Indigenous and contain land that is still owned, managed or influenced by Indigenous people.

These areas are very valuable for conservation. About 65% of Indigenous lands have not been intensively developed, compared with 44% of other lands. Similarly, just 10% of the world’s urban areas, villages and non-remote croplands are on Indigenous peoples’ lands.

By contrast, Indigenous lands encompass nearly two-thirds of the world’s most remote and least-inhabited regions. These are the places with the lowest levels of built environments, crop land, pasture land, human population density, night-time lights, railways, roads and navigable waterways.

An incredible 40% of lands listed by national governments around the world as being managed for conservation are Indigenous lands. Some of this has official recognition. For instance, Australia would never meet its promises under the Convention on Biological Diversity if its Indigenous peoples had not been prepared to allocate more than 27 million hectares of their land to conservation.

A great contribution

This highlights the great contribution that Indigenous peoples are making to conservation. Many groups have instituted land-management regimes that are already delivering significant conservation benefits.

Yet there is danger in making assumptions about the aspirations of Indigenous peoples for managing their lands. Without proper consultation, conservation projects based on Indigenous stewardship may be unsuccessful at best and risk perpetuating colonial legacies at worst.

Conservation partnerships will only be successful if the rights, knowledge systems and practices of Indigenous peoples are fully acknowledged. Many Indigenous peoples have acknowledged this fact, by calling for partnerships that respect, understand and follow local processes. There is no one size that fits all – Indigenous peoples are hugely diverse.

Indeed, so important are local perspectives to Indigenous relationships with land that we pondered for a year on the ethics of creating a global map. However, we also felt that the story of enduring Indigenous influence needs to be told. Our final map shows that broad swathes of Asia, Africa, the Americas, Australia and the far north of Europe are Indigenous lands.

Adapted from Garnett et al. 2018.
On every inhabited continent there is a significant overlap between Indigenous management and natural lands.

Our results are particularly important at this time when goals for sustainable development after 2020 are being developed. The results also feed into assessments by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the international body that assesses the health of the world’s wildlife diversity and ecosystems. It is much more than biodiversity that relies on Indigenous management of land. So too do many of the ecosystem services that allow humans to thrive.




Read more:
Friday essay: caring for country and telling its stories


Finally, we should note that, for many countries, the areas we have mapped are the minimum – further work will almost certainly discover that Indigenous influence extends far further than is currently acknowledged.

Yet our crucial message remains the same: that Indigenous peoples hold the future of much of the world’s wilderness in their hands.


The ConversationThe authors acknowledge the contributions of Beau Austin, Benjamin McGowan, Eduardo S. Brondizio and Neil Burgess to this article and the research that underpins it.

Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University; Álvaro Fernández-Llamazares, Researcher, University of Helsinki; Catherine Robinson, Principal Research Scientist, CSIRO; Erle C. Ellis, Professor of Geography and Environmental Systems, University of Maryland, Baltimore County; Hayley Geyle, Research Assistant, Charles Darwin University; Ian Leiper, Geospatial Scientist, Charles Darwin University; James Watson, Professor, The University of Queensland; John E. Fa, Professor of Biodiversity and Human Development, Manchester Metropolitan University; Kerstin Zander, Senior Research Fellow, Charles Darwin University; Micha Victoria Jackson, PhD candidate, The University of Queensland; Pernilla Malmer, Senior Advisor, Stockholm University; Tom Duncan, , Charles Darwin University, and Zsolt Molnár, Scientific Advisor, Hungarian Academy of Sciences, Budapest

This article was originally published on The Conversation. Read the original article.

Crowdfunded campaigns are conserving the Earth’s environment


File 20180530 80623 1w2xoxe.jpg?ixlib=rb 1.1
Crowdfunded campaigns to save the orange-bellied parrot are a rare ray of hope.
Fatih Sam

Eduardo Gallo-Cajiao, The University of Queensland; Carla Archibald, The University of Queensland; Euan Ritchie, Deakin University; Rachel Friedman, The University of Queensland; Richard Fuller, The University of Queensland; Rochelle Steven, The University of Queensland, and Tiffany Morrison, James Cook University

If not for the public’s generosity, the iconic Statue of Liberty might not have the solid and impressive footing she does today. In the late 1800s, government funds for the monument were exhausted. Yet through a fundraising campaign, the New York World newspaper garnered support from over 160,000 residents to cover the pedestal costs.




Read more:
Explainer: What is crowdfunding?


Just as large monuments need solid bases to ensure their long-term existence, so too does the environment. In the case of nature conservation, it requires money to support diverse research projects, on-ground activities, and outreach aimed at protecting and managing species and habitats.

While the health of the environment continues to decline globally, in most regions government funding falls short of what is required to stem the losses. Crowdfunding plays an important and under-appreciated role for biodiversity conservation.

Our new research presents a global analysis of how crowdfunding, still a relatively novel and minor financial mechanism in the conservation community, is contributing to conservation around the world.

Show me the money. What’s being funded and why?

Crowdfunding offers a powerful mechanism for mobilising resources for conservation across borders. We recorded 577 conservation-oriented projects (from 72 crowdfunding platforms), which have raised around US$4.8 million since 2009. The people leading these projects were based in 38 countries, but projects took place across 80 countries.

This pattern has important implications for conservation, because there is often a mismatch between high-priority areas for global conservation and countries with the greatest financial and technical capacity. For instance, we discovered that a third of the projects were delivered in different countries to where their proponents were based. The USA, UK and Australia were the countries with the highest outflow of projects (“project exporters”). Indonesia, South Africa, Costa Rica and Mexico had the highest inflow (“project importers”).

https://greenfirescience.carto.com/builder/c1a70aca-e978-4db7-8e1b-063a590dccf9/embed

Global distribution of crowdfunding for biodiversity conservation: countries where relevant platforms are based, countries where proponents of projects are hosted, and countries where projects are delivered. (Interactive map generated using CARTO)

Crowdfunding could be supporting conservation work of actors that do not have as much capacity for raising funds.

The people leading projects were primarily from non-governmental organisations (35%) or universities (30%), or were freelancers (26%). Importantly, among non-governmental organisations, we discovered organisations operating at sub-national levels proposed a majority of projects.

Additionally, crowdfunding for conservation is not all about research. While most of the projects we reviewed focused on research (40%), many tackled raising awareness of conservation-related issues (31%) or boots-on-the-ground activities (21%). This expands the sphere of anecdotal evidence and commentary about crowdfunding related to conservation, which has so far revolved around research. For the first time, we’ve systematically unpacked how these funds are being used for additional activities to support conservation.

Crowdfunding can also support innovative projects that traditional funding agencies deem too risky or unconventional. For example, one project supported buying and training two Maremma sheepdogs to protect penguins against predatory foxes in southeastern Australia. (That might sound familiar to those who’ve seen the movie Oddball.)

Such opportunities for innovation can have important consequences for conservation worldwide; crowdfunding could be considered an incubator for novel ideas before widespread dissemination.




Read more:
Hunting tree kangaroos in the mountains of Papua New Guinea


More than half of the projects we recorded (around 58%) largely focused on species. These included a disproportionate number of threatened bird and mammal species.

Prominent projects to save orange-bellied parrots or Papua New Guinea’s endangered tree kangaroos are important success stories.

This is not to underplay crowdfunding’s importance for ecosystems – whether land-based (20%), marine (9%) or freshwater (4%). Crowfunding is supporting projects ranging from protection of wilderness areas in remote Tasmania to research informing the conservation of the Californian coast.

Crowdfunding benefits extend beyond dollars and cents

The amount of money for conservation via crowdfunding has so far been relatively modest compared to more traditional conservation finance mechanisms. However, the benefits of crowdfunding extend well beyond dollars and cents. Crowdfunding helps communicate environmental issues and empower researchers and communities.

The figure below shows the reach of a single tweet during the Big Roo Count campaign. It shows how conservation-related messages can spread widely and engage communities via social media.

Example tweet (1777 tweets, 512 users) network during the Big Roo Count crowdfunding campaign.
Stuart Palmer

Crowdfunding is an exciting new tool in the conservation toolbox. But, ultimately, traditional funding sources, like government agencies, still have a major role and duty to invest adequately in environmental protection and nature conservation. Considering the current extinction crisis, governments must avoid further outsourcing of such responsibilities.

Examples of conservation projects supported through crowdfunding.

The discussion over novel sources and recipients of conservation funding continues. At the same time, transparency and oversight remain critical for managing expectations and overall effectiveness of funding. Crowdfunding contributes one more building block to democratising conservation funding and increasing transparency.


The ConversationThe authors would like to acknowledge the contribution of Edward Game.

Eduardo Gallo-Cajiao, PhD Candidate, The University of Queensland; Carla Archibald, PhD Candidate, Conservation Science, The University of Queensland; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Rachel Friedman, PhD Candidate, The University of Queensland; Richard Fuller, Professor in Biodiversity and Conservation, The University of Queensland; Rochelle Steven, Postdoctoral Researcher, The University of Queensland, and Tiffany Morrison, Principal Research Fellow, ARC Centre of Excellence for Coral Reef Studies, James Cook University

This article was originally published on The Conversation. Read the original article.

One-third of the world’s nature reserves are under threat from humans



File 20180517 155619 asouxq.jpg?ixlib=rb 1.1
People transporting gasoline by boat in Indonesia’s Kayan Mentarang National Park.
ESCapade/Wikimedia Commons, CC BY-SA

James Watson, The University of Queensland; James Allan, The University of Queensland; Kendall Jones, The University of Queensland; Pablo Negret, The University of Queensland; Richard Fuller, The University of Queensland, and Sean Maxwell, The University of Queensland

In the 146 years since Yellowstone National Park in the northwestern
United States became the world’s first protected area, nations around the world have created more than 200,000 terrestrial nature reserves. Together they cover more than 20 million km², or almost 15% of the planet’s land surface – an area bigger than South America.

Governments establish protected areas so that plants and animals can live without human pressures that might otherwise drive them towards extinction. These are special places, gifts to future generations and all non-human life on the planet.

But in a study published today in Science, we show that roughly one-third of the global protected area estate (a staggering 6 million km²) is under intense human pressure. Roads, mines, industrial logging, farms, townships and cities all threaten these supposedly protected places.

It is well established that these types of human activities are causing the decline and extinction of species throughout the world. But our new research shows how widespread these activities are within areas that are designated to protect nature.




Read more:
The global road-building explosion is shattering nature


We assessed the extent and intensity of human pressure inside the global protected area estate. Our measure of human pressure was based on the “human footprint” – a measure that combines data on built environments, intensive agriculture, pasturelands, human population density, night-time lights, roads, railways, and navigable waterways.

Astoundingly, almost three-quarters of countries have at least 50% of their protected land under intense human pressure – that is, modified by mining, roads, townships, logging or agriculture. The problem is most acute in western Europe and southern Asia. Only 42% of protected land was found to be free of measurable human pressure.

Satellite images reveal the human pressure within many national parks. A: Kamianets-Podilskyi, a city inside Podolskie Tovtry National Park, Ukraine; B: Major roads within Tanzania’s Mikumi National Park; C: Agriculture and buildings within Dadohaehaesang National Park, South Korea.
Google Earth, Author provided

A growing footprint

Across Earth, there is example after example of large-scale human infrastructure within the boundaries of protected areas. Major projects include railways through Tsavo East and Tsavo West national parks in Kenya, which are home to the critically endangered eastern black rhinoceros and lions famous for their strange lack of manes. Plans to add a six-lane highway alongside the railway are well underway.

Construction of the standard gauge railway in Tsavo East and West National Parks, Kenya.
Tsavo Trust, Author provided

Many protected areas across the Americas, including Sierra Nevada De Santa Marta in Colombia and Parque Estadual Rio Negro Setor Sul in Brazil, are straining under the pressure of densely populated nearby towns and rampant tourism. In the US, both Yosemite and Yellowstone are also suffering from the increasingly sophisticated tourism infrastructure being built inside their borders.

In highly developed, megadiverse countries such as Australia, the story is bleak. A classic example is Barrow Island National Park in Western Australia, which is home to endangered mammals such as the spectacled hare-wallaby, burrowing bettong, golden bandicoot and black-flanked rock-wallaby, but which also houses major oil and gas projects.

While government-sanctioned, internationally funded developments like those in Tsavo and Barrow Island are all too common, protected areas also face impacts from illegal activities. Bukit Barisan Selatan National Park in Sumatra – a UNESCO world heritage site that is home to the critically endangered Sumatran tiger, orangutan and rhinoceros – is also now home to more than 100,000 people who have illegally settled and converted around 15% of the park area for coffee plantations.

Fulfilling the promise of protected areas

Protected areas underpin much of our efforts to conserve nature. Currently, 111 nations have reached the global standard 17% target for protected land outlined in the United Nations’ Strategic Plan for Biodiversity. But if we discount the supposedly protected land that is actually under intense human pressure, 74 of these 111 nations would fall short of the target. Moreover, the protection of some specific habitat types – such as mangroves and temperate forests – would decrease by 70% after discounting these highly pressured areas.

Governments around the world claim that their protected areas are set aside for nature, while at the same time approving huge developments inside their boundaries or failing to prevent illegal damage. This is likely a major reason why biodiversity continues to decline despite massive recent increases in the amount of protected land.




Read more:
Radical overhaul needed to halt Earth’s sixth great extinction event


Our results do not tell a happy story. But they do provide a timely chance to be honest about the true condition of the world’s protected areas. If we cannot relieve the pressure on these places, the fate of nature will become increasingly reliant on a mix of nondescript, largely untested conservation strategies that are subject to political whims and difficult to implement on large enough scales. We can’t afford to let them fail.

The ConversationBut we know that protected areas can work. When well-funded, well-managed and well-placed, they are extremely effective in halting the threats that cause species to die out. It is time for the global conservation community to stand up and hold governments to account so they take conservation seriously. This means conducting a full, frank and honest assessment of the true condition of our protected areas.

James Watson, Professor, The University of Queensland; James Allan, PhD candidate, School of Earth and Environmental Sciences, The University of Queensland; Kendall Jones, PhD candidate, Geography, Planning and Environmental Management, The University of Queensland; Pablo Negret, PhD candidate, School of Earth and Environmental Sciences, The University of Queensland, The University of Queensland; Richard Fuller, Professor in Biodiversity and Conservation, The University of Queensland, and Sean Maxwell, PhD candidate, The University of Queensland

This article was originally published on The Conversation. Read the original article.

From drone swarms to tree batteries, new tech is revolutionising ecology and conservation



File 20180508 34006 eyxvq5.jpg?ixlib=rb 1.1
Eyes in the sky: drone footage is becoming a vital tool for monitoring ecosystems.
Deakin Marine Mapping Group

Euan Ritchie, Deakin University and Blake Allan, Deakin University

Understanding Earth’s species and ecosystems is a monumentally challenging scientific pursuit. But with the planet in the grip of its sixth mass extinction event, it has never been a more pressing priority.

To unlock nature’s secrets, ecologists turn to a variety of scientific instruments and tools. Sometimes we even repurpose household items, with eyebrow-raising results – whether it’s using a tea strainer to house ants, or tackling botfly larvae with a well-aimed dab of nail polish.

But there are many more high-tech options becoming available for studying the natural world. In fact, ecology is on the cusp of a revolution, with new and emerging technologies opening up new possibilities for insights into nature and applications for conserving biodiversity.

Our study, published in the journal Ecosphere, tracks the progress of this technological development. Here we highlight a few examples of these exciting advances.

Tiny tracking sensors

Electronically recording the movement of animals was first made possible by VHF radio telemetry in the 1960s. Since then even more species, especially long-distance migratory animals such as caribou, shearwaters and sea turtles, have been tracked with the help of GPS and other satellite data.

But our understanding of what affects animals’ movement and other behaviours, such as hunting, is being advanced further still by the use of “bio-logging” – equipping the animals themselves with miniature sensors.

Bio-logging is giving us new insight into the lives of animals such as mountain lions.

Many types of miniature sensors have now been developed, including accelerometers, gyroscopes, magnetometers, micro cameras, and barometers. Together, these devices make it possible to track animals’ movements with unprecedented precision. We can also now measure the “physiological cost” of behaviours – that is, whether an animal is working particularly hard to reach a destination, or within a particular location, to capture and consume its prey.

Taken further, placing animal movement paths within spatially accurate 3D-rendered (computer-generated) environments will allow ecologists to examine how individuals respond to each other and their surroundings.

These devices could also help us determine whether animals are changing their behaviour in response to threats such as invasive species or habitat modification. In turn, this could tell us what conservation measures might work best.

Autonomous vehicles

Remotely piloted vehicles, including drones, are now a common feature of our skies, land, and water. Beyond their more typical recreational uses, ecologists are deploying autonomous vehicles to measure environments, observe species, and assess changes through time, all with a degree of detail that was never previously possible.

There are many exciting applications of drones in conservation, including surveying cryptic and difficult to reach wildlife such as orangutans

Coupling autonomous vehicles with sensors (such as thermal imaging) now makes it easier to observe rare, hidden or nocturnal species. It also potentially allows us to catch poachers red-handed, which could help to protect animals like rhinoceros, elephants and pangolins.

3D printing

Despite 3D printing having been pioneered in the 1980s, we are only now beginning to realise the potential uses for ecological research. For instance, it can be used to make cheap, lightweight tracking devices that can be fitted onto animals. Or it can be used to create complex and accurate models of plants, animals or other organisms, for use in behavioural studies.

3D printing is shedding new light on animal behaviour, including mate choice.

Bio-batteries

Keeping electronic equipment running in the field can be a challenge. Conventional batteries have limited life spans, and can contain toxic chemicals. Solar power can help with some of these problems, but not in dimly lit areas, such as deep in the heart of rainforests.

“Bio-batteries” may help to overcome this challenge. They convert naturally occurring sources of chemical energy, such as starch, into electricity using enzymes. “Plugging-in” to trees may allow sensors and other field equipment to be powered cheaply for a long time in places without sun or access to mains electricity.

Combining technologies

All of the technologies described above sit on a continuum from previous (now largely mainstream) technological solutions, to new and innovative ones now being trialled.

Illustrative timeline of new technologies in ecology and environmental science. Source and further details at DOI: 10.1002/ecs2.2163.
Euan Ritchie

Emerging technologies are exciting by themselves, but when combined with one another they can revolutionise ecological research. Here is a modified exerpt from our paper:

Imagine research stations fitted with remote cameras and acoustic recorders equipped with low-power computers for image and animal call recognition, powered by trees via bio-batteries. These devices could use low-power, long-range telemetry both to communicate with each other in a network, potentially tracking animal movement from one location to the next, and to transmit information to a central location. Swarms of drones working together could then be deployed to map the landscape and collect data from a central location wirelessly, without landing. The drones could then land in a location with an internet connection and transfer data into cloud-based storage, accessible from anywhere in the world.

Visualisation of a future smart research environment, integrating multiple ecological technologies. The red lines indicate data transfer via the Internet of things (IoT), in which multiple technologies are communicating with one another. The gray lines indicate more traditional data transfer. Broken lines indicate data transferred over long distances. (1) Bio-batteries; (2) The Internet of things (IoT); (3) Swarm theory; (4) Long-range low-power telemetry; (5) Solar power; (6) Low-power computer; (7) Data transfer via satellite; and (8) Bioinformatics. Source and further details at DOI: 10.1002/ecs2.2163.
Euan Ritchie

These advancements will not only generate more accurate research data, but should also minimise the disturbance to species and ecosystems in the process.

Not only will this minimise the stress to animals and the inadvertent spread of diseases, but it should also provide a more “natural” picture of how plants, animals and other organisms interact.




Read more:
‘Epic Duck Challenge’ shows drones can outdo people at surveying wildlife


Realising the techno-ecological revolution will require better collaboration across disciplines and industries. Ecologists should ideally also be exposed to relevant technology-based training (such as engineering or IT) and industry placements early in their careers.

The ConversationSeveral initiatives, such as Wildlabs, the Conservation Technology Working Group and TechnEcology, are already addressing these needs. But we are only just at the start of what’s ultimately possible.

Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University and Blake Allan, , Deakin University

This article was originally published on The Conversation. Read the original article.

Australia among the world’s worst on biodiversity conservation



File 20171102 26430 45tyt3.jpg?ixlib=rb 1.1
A long-term monitoring project in Simpson Desert provides crucial information about the ecosystem.
Mina Guli/Flickr, CC BY-NC

Noel D Preece, James Cook University

Australia is among the top seven countries worldwide responsible for 60% of the world’s biodiversity loss between 1996 and 2008, according to a study published last week in the journal Nature.

The researchers examined the conservation status of species in 109 countries and compared that to conservation funding. Australia ranks as the second worst of the group, with a biodiversity loss of 5-10%.

The study clearly linked adequate conservation funding to better species survival, which makes it all the more concerning that one of Australia’s most valuable national environmental monitoring programs will lose funding next month.


Read more: We need our country; our country needs us


Established in 2011, the long-term ecological research network (LTERN) monitors alpine grasslands, tall wet forests, temperate woodlands, heathlands, tropical savannas, rainforests and deserts. It coordinates 1,100 monitoring sites run by numerous researchers, bringing together decades of experience. There’s nothing else like it in Australia, and at an annual cost of A$1.5 million it delivers extraordinary value for money.

Long term ecological research stations across Australia.
TERN

The value of long-term research

Our continent has a hyper-variable environment, with catastrophic bushfires, alarming species extinctions, and widespread loss of habitat.


Read more: Half the world’s ecosystems at risk from habitat loss, and Australia is one of the worst


In the battle to manage and predict the future of our ecosystems, the LTERN punches above its weight.

In the Northern Territory it was long thought that the ecosystems centred on Kakadu National Park were intact. But instead, long-term monitoring showed alarming and unexpected crashes towards extinction of native mammals of the region since the 1990s, driven by fire regime changes, feral animals, disease, cane toads, climate change and grazing.

Likewise, the 70-year-old network of monitoring sites in Australia’s alpine regions revealed the impact of climate change on flowering pollination, and the fact that livestock grazing actually increases fire risk. Without these insights it would not be possible to manage these ecosystems sustainably.

In the Simpson Desert – the only LTERN site that captures the remote outback – the dynamic of boom and bust has been monitored since 1990. It reveals a long-running and cyclical explosion of life. Intermittent downpours support flushes of wildflowers, booming marsupial populations and flocks of budgerigars, which are then ravaged by feral foxes and cats. Spending only one year in the desert would mean missing this dynamic, which has driven dozens of native species to extinction.

Several of these monitoring sites are likely to close when funding stops next month, as alternative support is not available. Without the network, coordination among the remaining sites will become much harder.

We should be able to predict environmental changes

The National Collaborative Research Infrastructure Scheme, which ultimately funds the LTERN, has called for the development of a national environmental prediction system to forecast ecosystem changes.

But without long-term data, the development of a reliable and accurate environmental prediction system is impossible, particularly for biodiversity.

The journal Science reported in August that researchers working with LTERN are trying to find alternative funding, possibly for a more comprehensive network. But with limited funding commitment and opaque long-term plans from government, this seems ambitious.

After 40 years working in Australian ecosystem management, assessment, investigation and research, I am deeply concerned about terminating the existing system and starting again. It takes time to understand ecosystems, and the accumulated knowledge of up to 70 years of monitoring is invaluable. It risks destroying one of the few successes in long-term monitoring of our ecosystems and species.

Australia is infamous for commencing new initiatives and then stopping them. Australia’s surveillance and monitoring efforts are already recognised as inadequate. Breaks in continuity of long-term ecological datasets significantly reduce their value and disrupt key information on environmental and ecosystem change.

Out of step with the world

In a letter to Science, 69 Australian scientists described the decision to defund the LTERN as “totally out of step with international trends and national imperatives”. Indeed, the United States has recently expanded its long-term monitoring network, which has been running for nearly 30 years.

Not only is Australia’s decision against the international trend, it also defies Australia’s own stated goals. Australia’s Biodiversity Conservation Strategy explicitly commits to establishing a national long-term biodiversity monitoring system. The strategy’s five-year review admits to failing to achieve this outcome.


Read more: The environment needs billions of dollars more: here’s how to raise the money


The loss of the LTERN will undermine assessments of the sustainability of key industries such as grazing and forestry. Without it, we can’t robustly evaluate the success of taxpayer-funded environmental management.

A$1.5 million a year is a very small price to pay for crucial insights into our continent’s changing environments and biodiversity. But reinstating this paltry sum will not solve the very real crisis in Australian ecosystem knowledge.

The ConversationWe urgently need a comprehensive national strategy, as pledged in Australia’s Biodiversity Conservation Strategy. The evidence is in: investment in biodiversity conservation pays off.

Noel D Preece, Adjunct Principal Research Fellow at Charles Darwin and, James Cook University

This article was originally published on The Conversation. Read the original article.