Greenwashing the property market: why ‘green star’ ratings don’t guarantee more sustainable buildings


Igor Martek, Deakin University and M. Reza Hosseini, Deakin University

Nothing uses more resources or produces more waste than the buildings we live and work in. Our built environment is responsible for half of all global energy use and half of all greenhouse gas emissions. Buildings consume one-sixth of all freshwater, one-quarter of world wood harvests and four-tenths of all other raw materials. The construction and later demolition of buildings produces 40% of all waste.

The sustainability of our buildings is coming under scrutiny, and “green” rating tools are the key method for measuring this. Deakin University’s School of Architecture and Built Environment recently reviewed these certification schemes. Focus group discussions were held in Sydney and Melbourne with representatives in the field of sustainability – including government, green consultancies and rating tool providers.

Two main concerns emerged from our review:

  1. Sustainability ratings tools are not audited. Most ratings tools are predictive, while those few that take measurements use paid third parties. Government plays no active part.

  2. The sustainability parameters measured only loosely intersect with the building occupants’ sustainability concerns. Considerations such as access to transport and amenities are not included.

Focus group sessions run by Deakin University helped identify problems with current sustainability ratings.
Author provided



Read more:
Construction industry loophole leaves home buyers facing higher energy bills


That’s the backdrop to the sustainability targets now being adopted across Australia. Australia has the highest rate of population growth of any developed country. The population now is 24.8 million. It is expected to reach between 30.9 and 42.5 million people by 2056.

More buildings will be needed for these people to live and work in. And we will have to find ways to ensure these buildings are more sustainable if the targets now being adopted are to be achieved.

Over 80% of local governments have zero-emissions targets. Sydney and Canberra have committed to zero-carbon emissions by 2050. Melbourne has pledged to be carbon-neutral by 2020.

So how do green ratings work?

Each green rating tool works by identifying a range of sustainability parameters – such as water and energy use, waste production, etc. The list of things to be measured runs into the dozens. Tools differ on the parameters measured, method of measurement, weightings given and the thresholds that determine a given sustainability rating.

There are over 600 such rating tools worldwide. Each competes in the marketplace by looking to reconcile the credibility of its ratings with the disinclination of developers to submit to an assessment that will rate them poorly. Rating tools found in Australia include Green Star, NABERS, NatHERS, Circles of Sustainability, EnviroDevelopment, Living Community Challenge and One Planet Communities.

So, it is easy enough to find landmark developments labelled with green accreditations. It is harder to quantify what these actually mean.




Read more:
Green building revolution? Only in high-end new CBD offices


Ratings must be independently audited

Government practice, historically, has been to assure building quality through permits. Planning permits ensure a development conforms with city schemes. Building permits assess structural load-bearing capacity, health and fire safety.

All this is done off the plan. Site inspections take place to verify that the building is built to plan. But once a certificate of occupancy is issued, the government steps aside.

The sustainability agenda promoted by government has been grafted onto this regime. Energy efficiency was introduced into the residential building code in 2005, and then into the commercial building code in 2006. At first, this was limited to new buildings, but then broadened to include refurbishment of existing structures.

Again, sustainability credentials are assessed off the plan and certification issued once the building is up and running. Thereafter, government walks away.

We know of only one longitudinal energy performance study carried out on domestic residences in Australia. It is an as-yet-unpublished project conducted by a retiree from the CSIRO, working with Indigenous communities in Far North Queensland.

The findings corroborate a recent study by Gertrud Hatvani-Kovacs and colleagues from the University of South Australia. This study found that so-called “energy-inefficient” houses, following traditional design, managed under certain conditions to outperform 6- and 8-star buildings.

Sustainability tools must measure what matters

Energy usage is but the tip of the iceberg. Genuine sustainability is about delivering our children into a future in which they have all that we have today.

Home owners, on average, turn their property around every eight years. They are less concerned with energy efficiency than with real estate prices. And these prices depend on the appeal of the property, which involves access to transport, schools, parks and amenities, and freedom from crime.

Commercial property owners, too, are concerned about infrastructure, and they care about creating work environments that retain valued employees.

These are all core sustainability issues, yet do not come up in the rating systems we use.

The ConversationIf government is serious about creating sustainable cities, it needs to let go of its limited, narrow criteria and embrace these larger concerns of “liveability”. It must embody these broader criteria in the rating systems it uses to endorse developments. And it needs an auditing and enforcement regime in place to make it happen.

Igor Martek, Lecturer In Construction, Deakin University and M. Reza Hosseini, Lecturer in Construction, Deakin University

This article was originally published on The Conversation. Read the original article.

Advertisements

The other 99%: retrofitting is the key to putting more Australians into eco-homes


Ralph Horne, RMIT University; Emma Baker, University of Adelaide; Francisco Azpitarte, University of Melbourne; Gordon Walker, Lancaster University; Nicola Willand, RMIT University, and Trivess Moore, RMIT University

Energy efficiency in Australian homes is an increasingly hot topic. Spiralling power bills and the growing problem of energy poverty are set against a backdrop of falling housing affordability, contested carbon commitments and energy security concerns.

Most people agree we need modern, comfortable, eco-efficient homes. This article is not about the relatively few, new, demonstration “eco-homes” dotted around Australia. It is about the rest of our housing.

These mainly ageing homes might have had energy efficiency improvements done over the years, but invariably are in need of upgrading to meet modern standards of efficiency and comfort.




Read more:
Thinking about a sustainable retrofit? Here are three things to consider


Since 2006, all new-build housing must meet higher energy efficiency standards. But we add only around 1% to the new housing stock each year.

Policies to improve energy efficiency in the other 99% are more fragmented. The focus is almost entirely on market-based incentives to “retrofit”. By this we mean material upgrades to improve housing energy and carbon performance.

The transition has begun

Nevertheless, a major retrofit transition is under way. In the last decade, around one in five Australian households has installed solar panels. More than three million upgrades have been carried out through the Victorian Energy Efficiency Target (now Victorian Energy Upgrades) initiative.

These impressive numbers describe a nationally important intervention. But does this mean we will soon all get to live in eco-homes, rather than just a lucky few?

Current retrofitting activity has occurred unevenly and may contribute to longer-term inequalities.

For example, rebates for deeper retrofits often are more accessible to the better-off home owners. They have matching cash and also rights to make major upgrades (as opposed to renters). This entrenches the existing reality that low-income renters tend to live in less energy-efficient homes.

Similarly, in the UK, retrofit incentives haven’t always successfully targeted those most in need. The distribution of costs has contributed to pushing up energy prices for those already in energy poverty. In Australia, up to 20% of households were already in energy poverty before recent price rises.

Thus, if poorly targeted and funded, energy efficiency initiatives might make existing dynamics worse and add to the cumulative vulnerabilities of housing affordability stress.




Read more:
Housing stress and energy poverty – a deadly mix?


Keeping track of how homes rate

We cannot effectively monitor this. This is because Australia has no robust, longitudinal national database of property condition. There is no established, widespread practice of property owners obtaining property condition reports that set out the energy-efficiency performance and the most viable improvements that could be made.

This means we do not have a systematic way of knowing what we should do next to our homes, even if we are lucky enough to own them and have some cash available, as well as the time and motivation to retrofit.

To the rescue, at least in Victoria, is the new Victorian Residential Efficiency Scorecard. This is an advance on previous attempts (as in the ACT and Queensland) to develop comparable assessments of the energy efficiency and comfort levels of your home. Although voluntary, the scorecard will provide owners with a report on their home and a list of measures they can consider to transform it “eco-homewards”.

So, is the scorecard the answer to our problems? Will it bring forward the date when we can all live in comfy eco-homes? It will certainly help.

Since 2010, the European Union has mandated ratings of how a building performs for energy efficiency and CO₂ emissions.

The European Union has had a mandatory system since the Energy Performance in Buildings Directive. The evidence suggests this has raised awareness of energy efficiency by literally putting labels of buildings in your face when you are deciding where to buy. It’s much like Australians have become used to energy efficiency labels on fridges and other appliances. However, evidence of this awareness actually leading to upgrade activity is more mixed and, in some cases, disappointing.

In short, we need the scorecard and should welcome it. However, we also need a set of other measures if we are to make the transformations to match our national policy objectives and our desires for a comfy eco-home.

What else needs to be done?

The research agenda is also shifting to explore the social and equity dimensions of the retrofit transition.

In areas where installation work on energy-efficiency/low-carbon retrofits is increasing, how is this working in households? Who makes decisions? How do they decide and with what resources? What or who do they call upon? And, more broadly, what are the positive or problematic consequences for equity and, therefore, for policy?




Read more:
What about the people missing out on renewables? Here’s what planners can do about energy justice


Emerging retrofit technologies and behaviours have broader social and economic contexts. This means we need to understand the wider meanings and practices of homemaking, the uneven social and income structures of households, and the home improvement service industry.

While the retrofit transition is arguably under way, its consequences and dynamics are still largely unknown. We need to refocus away from simply counting solar systems towards understanding retrofitting better. This depends on understanding both the households that are retrofitting their homes and the industries and organisations that supply them.

The ConversationTo get energy policies right and overcome energy poverty, we need to bring together studies and initiatives in material consumption, sustainability and social justice.

Ralph Horne, Deputy Pro Vice Chancellor, Research & Innovation; Director of UNGC Cities Programme; Professor, RMIT University; Emma Baker, Associate Professor, School of Architecture and Built Environment, University of Adelaide; Francisco Azpitarte, Ronald Henderson Research Fellow Melbourne Institute of Applied Economic and Social Research & Brotherhood of St Laurence, University of Melbourne; Gordon Walker, Professor at the DEMAND Centre and Lancaster Environment Centre, Lancaster University; Nicola Willand, Research Consultant, Sustainable Building Innovation Laboratory, RMIT University, and Trivess Moore, Research Fellow, RMIT University

This article was originally published on The Conversation. Read the original article.

Rising carbon dioxide is making the world’s plants more water-wise


Pep Canadell, CSIRO; Francis Chiew, CSIRO; Lei Cheng, CSIRO; Lu Zhang, CSIRO, and Yingping Wang, CSIRO

Land plants are absorbing 17% more carbon dioxide from the atmosphere now than 30 years ago, our research published today shows. Equally extraordinarily, our study also shows that the vegetation is hardly using any extra water to do it, suggesting that global change is causing the world’s plants to grow in a more water-efficient way.

Water is the most precious resource needed for plants to grow, and our research suggests that vegetation is becoming much better at using it in a world in which CO₂ levels continue to rise.

The ratio of carbon uptake to water loss by ecosystems is what we call “water use efficiency”, and it is one of the most important variables when studying these ecosystems.

Our confirmation of a global trend of increasing water use efficiency is a rare piece of good news when it comes to the consequences of global environmental change. It will strengthen plants’ vital role as global carbon sinks, improve food production, and might boost water availability for the well-being of society and the natural world.

Yet more efficient water use by the world’s plants will not solve our current or future water scarcity problems.

Changes in global terrestrial uptake of carbon dioxide, water use efficiency and ecosystem evapotranspiration during 1982-2011.

Boosting carbon uptake

Plants growing in today’s higher-CO₂ conditions can take up more carbon – the so-called CO₂ fertilisation effect. This is the main reason why the terrestrial biosphere has taken up 17% more carbon over the past 30 years.

The enhanced carbon uptake is consistent with the global greening trend observed by satellites, and the growing global land carbon sink which removes about one-third of all CO₂ emissions generated by human activities.

Increasing carbon uptake typically comes at a cost. To let CO₂ in, plants have to open up pores called stomata in their leaves, which in turn allows water to sneak out. Plants thus need to strike a balance between taking up carbon to build new leaves, stems and roots, while minimising water loss in the process. This has led to sophisticated adaptations that has allowed many plant species to conquer a range of arid environments.

One such adaptation is to close the stomata slightly to allow CO₂ to enter with less water getting out. Under increasing atmospheric CO₂, the overall result is that CO₂ uptake increases while water consumption does not. This is exactly what we have found on a global scale in our new study. In fact, we found that rising CO₂ levels are causing the world’s plants to become more water-wise, almost everywhere, whether in dry places or wet ones.

Growth hotspots

We used a combination of plot-scale water flux and atmospheric measurements, and satellite observations of leaf properties, to develop and test a new water use efficiency model. The model enables us to scale up from leaf water use efficiency anywhere in the world to the entire globe.

We found that across the globe, boreal and tropical forests are particularly good at increasing ecosystem water use efficiency and uptake of CO₂. That is due in large part to the CO₂ fertilisation effect and the increase in the total amount of leaf surface area.

Importantly, both types of forests are critical in limiting the rise in atmospheric CO₂ levels. Intact tropical forest removes more atmospheric CO₂ than any other type of forest, and the boreal forests of the planet’s far north hold vast amounts of carbon particularly in their organic soils.

Meanwhile, for the semi-arid ecosystems of the world, increased water savings are a big deal. We found that Australian ecosystems, for example, are increasing their carbon uptake, especially in the northern savannas. This trend may not have been possible without an increase in ecosystem water use efficiency.

Previous studies have also shown how increased water efficiency is greening semi-arid regions and may have contributed to an increase in carbon capture in semi-arid ecosystems in Australia, Africa and South America.

Trends in water use efficiency over 1982-2011.
CREDIT, Author provided

It’s not all good news

These trends will have largely positive outcomes for the plants and the animals (and humans) consuming them. Wood production, bioenergy and crop growth are (and will be) less water-intensive under climate change than they would be without increased vegetation water use efficiency.

But despite these trends, water scarcity will nevertheless continue to constrain carbon sinks, food production and socioeconomic development.

Some studies have suggested that the water savings could also lead to increased runoff and therefore excess water availability. For dry Australia, however, more than half (64%) of the rainfall returning to the atmosphere does not go through vegetation, but through direct soil evaporation. This reduces the potential benefit from increased vegetation water use efficiency and the possibility for more water flowing to rivers and reservoirs. In fact, a recent study shows that while semi-arid regions in Australia are greening, they are also consuming more water, causing river flows to fall by 24-28%.

The ConversationOur research confirms that plants all over the world are likely to benefit from these increased water savings. However, the question of whether this will translate to more water availability for conservation or for human consumption is much less clear, and will probably vary widely from region to region.

Pep Canadell, CSIRO Scientist, and Executive Director of the Global Carbon Project, CSIRO; Francis Chiew, Senior Principal Research Scientist, CSIRO; Lei Cheng, Postdoctoral research fellow, CSIRO; Lu Zhang, Senior Principal Research Scientist, CSIRO, and Yingping Wang, Chief research scientist, CSIRO

This article was originally published on The Conversation. Read the original article.