Why we’re not giving up the search for mainland Australia’s ‘first extinct lizard’



A grassland earless dragon at Jerrabomberra, NSW, November 1991. The search is now on for this species’ Victorian cousin.
CSIRO/Wikimedia Commons, CC BY

Jane Melville, Museums Victoria

You may have seen news in recent days of the suspected demise of the Victorian grassland earless dragon – now thought to be the first lizard species to be driven to extinction by humans in mainland Australia.

That suspicion arose on the basis of a newly published study in Royal Society Open Science by our research team, in which we discovered that the grassland earless dragons of southeastern Australia are not a single species, but four distinct ones: one that lives around Canberra, two in New South Wales, and one restricted to the Melbourne region.

The most recent confident sighting of the Melbourne species was 50 years ago, in 1969 – hence the fears that the Victorian species has already succumbed.

But despite this worrying news, we’re not leaving this lizard for dead just yet. Conservationists are now combing remaining grassland around Melbourne in a search for survivors.




Read more:
EcoCheck: Victoria’s flower-strewn western plains could be swamped by development


Although no lizard species have previously been declared extinct on the Australian mainland, the grassland earless dragons (Tympanocryptis) of southeastern Australia have long been the subject of conservation concern. Even before being split into four separate species, they were already officially listed as endangered.

The Victorian grassland earless dragon (Tympanocryptis pinguicolla) is known only to occur in the native grasslands around Melbourne. A review of historical collections at Museums Victoria show that it was found at several locations including Sunbury, Maribyrnong River (then called “Saltwater River”), and as far west as the Geelong area until the late 1960s.

Although there is little information available about the ecology of this species, it was described by Lucas and Frost in 1894 as:

Inhabiting stony plains and retreating into small holes, like those of the ‘Trap-door Spider,’ in the ground when alarmed […] Often met with under loose basalt boulders.

The last confirmed sighting was near Geelong in July 1969.

First mainland extinction?

Globally, 31 reptiles have been listed as extinct or extinct in the wild, according to the IUCN Red List, the global authority on the status of species. Two skinks and one gecko species have been declared extinct in the wild on Christmas Island, a remote Australian territory in the Indian Ocean. But until now there have been no recorded reptile extinctions on the Australian mainland.

Yet it is too early to give up on the Australian grassland earless dragon. Zoos Victoria researchers have completed a mapping analysis of potential grassland habitats. But this doesn’t give us enough information to say whether or not any grassland earless dragons remain.

There are several factors that leave open the possibility that the Victorian grassland earless dragon is still clinging to survival. There are some remaining habitat areas that have not yet been surveyed, and this species is small, secretive and hard to find. We urgently need more surveys to try and find any remaining populations.




Read more:
Vale ‘Gump’, the last known Christmas Island Forest Skink


If these lizards are not yet extinct, their protection will clearly become an urgent conservation priority. But it is hard to develop a conservation program without knowing where the target species actually lives, or indeed whether it is still alive at all.

Zoos Victoria is now leading a campaign, alongside expert ecologists and local communities, to try and confirm the presence or absence of the Victorian grassland earless dragon. This involves various methods, including habitat mapping, camera trapping, and active searching. The team is also working to identify unsurveyed areas that might potentially be home to these elusive lizards.

Last year the team deployed a series of small pitfall traps at two locations in Little River. Unfortunately, no earless dragons were detected during the survey and few lizards of any species were caught, despite the fact that these locations seemed to offer appropriate food and habitat.

The team is not giving up yet and is committed to continuing the search, with Zoos Victoria researchers having identified sites with suitable habitat both within and outside of the historical distribution, which they aim to survey intensively over the coming years. Meanwhile, reptile keepers at Zoos Victoria are developing husbandry techniques to help look after the grassland earless dragon species from Canberra and NSW.

The conservation challenge has got harder, because where previously we were tasked with looking after one species, we now have to safeguard at least three – and hopefully four!


This article is based on a blog post that originally appeared here. It was coauthored by Adam Lee and Deon Gilbert of Zoos Victoria.The Conversation

Jane Melville, Senior Curator, Terrestrial Vertebrates, Museums Victoria

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

A report claims koalas are ‘functionally extinct’ – but what does that mean?



Koalas are facing serious threats in the wild.
Mathias Appel/Flickr

Christine Adams-Hosking, The University of Queensland

Today the Australian Koala Foundation announced they believe “there are no more than 80,000 koalas in Australia”, making the species “functionally extinct”.

While this number is dramatically lower than the most recent academic estimates, there’s no doubt koala numbers in many places are in steep decline.

It’s hard to say exactly how many koalas are still remaining in Queensland, New South Wales, Victoria, South Australia and the Australian Capital Territory, but they are highly vulnerable to threats including deforestation, disease and the effects of climate change.

Once a koala population falls below a critical point it can no longer produce the next generation, leading to extinction.




Read more:
Koalas sniff out juicy leaves and break down eucalypt toxins – it’s in their genome


What does ‘functionally extinct’ mean?

The term “functionally extinct” can describe a few perilous situations. In one case, it can refer to a species whose population has declined to the point where it can no longer play a significant role in their ecosystem. For example, it has been used to describe dingoes in places where they have become so reduced they have a negligible influence on the species they prey on.

Dingoes are top predators, and therefore can play a significant role in some ecosystems. Our innocuous, leaf-eating koala cannot be considered a top predator.

For millions of years koalas have been a key part of the health of our eucalyptus forests by eating upper leaves, and on the forest floor, their droppings contribute to important nutrient recycling. Their known fossil records date back approximately 30 million years so they may have once been a food source for megafauna carnivores.

Functionally extinct can also describe a population that is no longer viable. For example in Southport, Queensland, native oyster reef beds are functionally extinct because more than 99% of the habitat has been lost and there are no individuals left to reproduce.

Finally, functionally extinct can refer to a small population that, although still breeding, is suffering from inbreeding that can threaten its future viability. We know that at least some koala populations in urban areas are suffering in this way, and genetic studies on the Koala Coast, located 20kms south-east of Brisbane, show that the population is suffering from reduced genetic variation. In South East Queensland, koalas in some areas have experienced catastrophic declines




Read more:
Safe passage: we can help save koalas through urban design


We also know that koala populations in some inland regions of Queensland and New South Wales are affected by climate extremes such as severe droughts and heatwaves and have declined by as much as 80%.

Exhaustive multi-disciplinary koala research continues apace in an effort to find ways of protecting wild koala populations and ensuring that they remain viable now and into the future. Habitat loss, population dynamics, genetics, disease, diet and climate change are some key areas being studied.

How many koalas are there?

Koala researchers are often asked “how many koalas are in the wild?” It’s a hard question to answer. Koalas are not stationary, are patchily distributed throughout an extremely wide range encompassing urban and rural areas in four states and one territory, and are usually difficult to see.

To determine whether each population of koalas scattered across eastern Australia is functionally extinct would require a gargantuan effort.

Koalas are a key part of eucalyptus forests’ health.
Dave Hunt/Flickr, CC BY-NC-SA

In 2016, in an attempt to determine population trends for the koala within the four states, a panel of 15 koala experts used a structured, four-step question format to estimate bioregional population sizes of koalas, and changes in those sizes.

The estimated percentage of koala population loss in Queensland, New South Wales, Victoria and South Australia was 53%, 26%, 14% and 3%, respectively. The estimated total number of koalas for Australia was 329,000 (within a range of 144,000–605,000), with an estimated average decline of 24% over the past three generations and the next three generations.

Since May 2012, koalas have been listed as vulnerable in Queensland, New South Wales and the Australian Capital Territory because populations in these regions have declined significantly or are at risk of doing so.

In the southern states of Victoria and South Australia, koala populations vary widely from abundant to low or locally extinct. Although not currently listed as vulnerable, these koalas are also experiencing a range of serious threats, including low genetic diversity.

To date, the present “vulnerable” listing has not achieved any known positive results for koala populations in Queensland and New South Wales. In fact, recent research invariably shows the opposite.




Read more:
Koalas can learn to live the city life if we give them the trees and safe spaces they need


This is because the key threats to koalas remain, and are mostly increasing. The primary threat is habitat loss. Koala habitat (primarily eucalyptus woodlands and forests) continues to rapidly diminish, and unless it is protected, restored, and expanded, we will indeed see wild koala populations become “functionally extinct”. We know what comes after that.The Conversation

Christine Adams-Hosking, Honorary Research Fellow, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Deadly frog fungus has wiped out 90 species and threatens hundreds more



File 20190328 139341 1bs2rtv.jpg?ixlib=rb 1.1
The Mossy Red-eyed Frog is among hundreds of species threatened with extinction at the hands of chytrid fungus.
Jonathan Kolby/Honduras Amphibian Rescue and Conservation Center

Benjamin Scheele, Australian National University and Claire Foster, Australian National University

It started off as an enigma. Biologists at field sites around the world reported that frogs had simply disappeared. Costa Rica, 1987: the golden toad, missing. Australia, 1979: the gastric brooding frog, gone. In Ecuador, Arthur’s stubfoot toad was last seen in 1988.

By 1990, cases of unexplained frog declines were piling up. These were not isolated incidents; it was a global pattern – one that we now know was due to chytridiomycosis, a fungal disease that was infecting and killing a huge range of frogs, toads and salamanders.

Our research, published today in Science, reveals the global number of amphibian species affected. At least 501 species have declined due to chytrid, and 90 of them are confirmed or believed extinct.




Read more:
Where did the frog pandemic come from?


When biologists first began to investigate the mysterious species disappearances, they were at a loss to explain them. In many cases, species declined rapidly in seemingly pristine habitat.

Species declines typically have obvious causes, such as habitat loss or introduced species like rats. But this was different.

The first big breakthrough came in 1998, when a team of Australian and international scientists led by Lee Berger discovered amphibian chytrid fungus. Their research showed that this unusual fungal pathogen was the cause of frog declines in the rainforests of Australia and Central America.

However, there were still many unknowns. Where did this pathogen come from? How does it kill frogs? And why were so many different species affected?

After years of painstaking research, biologists have filled in many pieces of the puzzle. In 2009, researchers discovered how chytrid fungus kills frogs. In 2018, the Korean peninsula was pinpointed as the likely origin of the most deadly lineage of chytrid fungus, and human dispersal of amphibians suggested as a likely source of the global spread of the pathogen.

Yet as the mystery was slowly but surely unravelled, a key question remained: how many amphibian species have been affected by chytrid fungus?

Early estimates suggested that about 200 species were affected. Our new study reveals the total is unfortunately much larger: 501 species have declined, and 90 confirmed or suspected to have been killed off altogether.

The toll taken by chytrid fungus on amphibians around the world. Each bar represents one species; colours reveal the extent of population declines.
Scheele et al. Science 2019

Devastating killer

These numbers put chytrid fungus in the worst league of invasive species worldwide, threatening similar numbers of species as rats and cats. The worst-hit areas have been in Australia and Central and South America, which have many different frog species, as well as ideal conditions for the growth of chytrid fungus.

Large species and those with small distributions and elevational ranges have been the mostly likely to experience severe declines or extinctions.

Together with 41 amphibian experts from around the world, we pieced together information on the timing of species declines using published records, survey data, and museum collections. We found that declines peaked globally in the 1980s, about 15 years before the disease was even discovered. This peak coincides with biologists’ anecdotal reports of unusual amphibian declines that occurred with increasing frequency in the late 1980s.

Encouragingly, some species have shown signs of natural recovery. Twelve per cent of the 501 species have begun to recover in some locations. But for the vast majority of species, population numbers are still far below what they once were.

Most of the afflicted species have not yet begun to bounce back, and many continue to decline. Rapid and substantial action from governments and conservation organisations is needed if we are to keep these species off the extinct list.




Read more:
Saving amphibians from a deadly fungus means acting without knowing all the answers


In Australia, chytrid fungus has caused the decline of 43 frog species. Of these, seven are now extinct and six are at high risk of extinction due to severe and ongoing declines. The conservation of these species is dependent on targeted management, such as the recovery program for the iconic corroboree frogs.

The southern corroboree frog: hopefully not a disappearing icon.
Corey Doughty

Importantly, there are still some areas of the world that chytrid has not yet reached, such as New Guinea. Stopping chytrid fungus spreading to these areas will require a dramatic reduction in the global trade of amphibians, as well as increased biosecurity measures.

The unprecedented deadliness of a single disease affecting an entire class of animals highlights the need for governments and international organisations to take the threat of wildlife disease seriously. Losing more amazing species like the golden toad and gastric brooding frog is a tragedy that we can avoid.The Conversation

Benjamin Scheele, Research Fellow in Ecology, Australian National University and Claire Foster, Research Fellow in Ecology and Conservation, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why extinct species seem to be returning from the dead



File 20190307 82677 143viqj.jpg?ixlib=rb 1.1
The first Fernandina giant tortoise seen in over 112 years.
Galapagos National Park Directorate

David Roberts, University of Kent

Like something out of a zombie movie, species that were once thought extinct seem to be rising from the dead. Between February 21 and March 4 2019, three notable rediscoveries were announced – the Fernandina Island Galápagos tortoise (Chelonoidis phantasticus), which was last seen in 1906; Wallace’s giant bee (Megachile pluto), which had supposedly disappeared in 1980; and the Formosan clouded leopard (Neofelis nebulosa brachyura), which disappeared after the last sighting in 1983 and was officially declared extinct in 2013.

These rediscoveries suggest we may know very little about some of the world’s rarest species, but they also raise the question of how species are declared extinct in the first place. The IUCN Red List collates a global register of threatened species and measures their relative risks of extinction. The Red List has a set of criteria to determine the threat status of a species, which are only listed as “Extinct” when…

… there is no reasonable doubt that the last individual has died.

According to the Red List, this requires…

… exhaustive surveys in known and/or expected habitat, at appropriate times… throughout its historic range [which] have failed to record an individual. Surveys should be over a time frame appropriate to the taxon’s life cycle and life form.

Given all the evidence – or rather, lack of evidence – that’s needed, it’s surprising that any species is ever declared extinct. The criteria show that to understand whether a species is extinct, we need to know what it was doing in the past.

The world’s largest bee was presumed extinct before rediscovery in Indonesia in February 2019.
Stavenn/Wikipedia, CC BY-SA

Sightings at a certain time and in a certain place make up our knowledge of a species’ survival, but when a species becomes rare, sightings are increasingly infrequent so that people start to wonder whether the species still exists.

People often use the time since the last sighting as a measure of likelihood when deciding if a species has died out, but the last sighting is rarely the last individual of the species or the actual date of extinction.

Instead, the species may persist for years without being seen, but the length of time since the last sighting strongly influences assumptions as to whether a species has gone extinct or not.

But what is a sighting? It can come in a variety of forms, from direct observation of a live individual in the flesh or in photographs, indirect evidence such as foot prints, scratches and faeces, and oral accounts from interviews with eyewitnesses.

The Formosan clouded leopard is endemic to Taiwan and considered extinct, but eyewitness accounts keep speculation alive.
Joseph Wolf/Wikipedia

But these different lines of evidence aren’t all worth the same – a bird in the hand is worth more than a roomful of recollections from people who saw it in the past. Trying to determine what are true sightings and what are false complicates the declaration of extinction.

The idea of a species being “rediscovered” can confuse things further. Rediscovery implies that something was lost or forgotten but the term often gives the impression that a species has returned from the dead – hence the term “lazarus species”. This misinterpretation of lost or forgotten species means the default assumption is extinction for any species that hasn’t been seen for a number of years.

So, what does this mean for the three recently “rediscovered” species?

While a living specimen of the Fernandina Island Galápagos tortoise had not been seen since 1906, indirect observations of tortoise faeces, footprints and tortoise-like bite marks out of prickly pear cacti had been made as recently as 2013.

The uncertainty around the quality of these later observations and the long time since the last living sighting probably contributed to it being declared “Critically Endangered (Possibly Extinct)” in 2015. In the natural world, a species is presumed extinct until proven living.

Thought to be the last of its kind, this Fernandina Island Galápagos tortoise specimen was collected in 1906.
John Van Denburgh/Wikipedia

Wallace’s giant bee may not have been recorded in the last 38 years but it was never actually declared extinct according to the IUCN Red List. In fact, for many years it languished under the criteria of Data Deficient and was only recently assessed as Vulnerable.

So, while this is an exciting find for something that hadn’t been seen for so long, its rediscovery shows how little is known about many rare species in the wild, rather than how scarce they are.

The Formosan clouded leopard, meanwhile, was actually listed as Extinct. The last sighting of the species was in 1983, based on interviews with 70 hunters, and extensive camera trapping during the 2000s failed to detect its presence. It was officially declared extinct in 2013.

While the giant tortoise and bee were proclaimed alive after living specimens were found, the clouded leopard’s rediscovery is more uncertain. Based on sightings on two separate occasions by two sets of wildlife rangers, the evidence is compelling. But whether the Formosan Clouded Leopard has really risen from the dead will require considerably more effort to prove.The Conversation

David Roberts, Reader in Biodiversity Conservation, University of Kent

This article is republished from The Conversation under a Creative Commons license. Read the original article.

An end to endings: how to stop more Australian species going extinct



File 20190305 48435 o1z6b8.jpg?ixlib=rb 1.1

John Gerrard Keulemans. Published by Muséum national d’histoire naturelle (France)

John Woinarski, Charles Darwin University; Sarah Legge, Australian National University, and Stephen Garnett, Charles Darwin University

This is part of a major series called Advancing Australia, in which leading academics examine the key issues facing Australia in the lead-up to the 2019 federal election and beyond. Read the other pieces in the series here.


We need nature. It gives us inspiration, health, resources, life. But we are losing it. Extinction is the most acute and irreversible manifestation of this loss.

Australian species have suffered at a disproportionate rate. Far more mammal species have become extinct in Australia than in any other country over the past 200 years.

The thylacine is the most recognised and mourned of our lost species, but the lesser bilby has gone, so too the pig-footed bandicoot, the Toolache wallaby, the white-footed rabbit-rat, along with many other mammals that lived only in Australia. The paradise parrot has joined them, the robust white-eye, the King Island emu, the Christmas Island forest skink, the southern gastric-brooding frog, the Phillip Island glory pea, and at least another 100 species that were part of the fabric of this land, part of what made Australia distinctive.

And that’s just the tally for known extinctions. Many more have been lost without ever being named. Still others hover in the graveyard – we’re not sure whether they linger or are gone.




Read more:
What makes some species more likely to go extinct?


The losses continue: three Australian vertebrate species became extinct in the past decade. Most of the factors that caused the losses remain unchecked, and new threats are appearing, intensifying, expanding. Many species persist only in slivers of their former range and in a fraction of their previous abundance, and the long-established momentum of their decline will soon take them over the brink.

The toolache wallaby is just one of Australia’s many extinct species.
John Gould, F.R.S., Mammals of Australia, Vol. II Plate 19, London, 1863

Unnecessarily extinct

These losses need not have happened. Almost all were predictable and preventable. They represent failures in our duty of care, legislation, policy and management. They give witness to, and warn us about, the malaise of our land and waters.

How do we staunch the wound and maintain Australia’s wildlife? It’s a problem with many facets and no single solution. Here we provide ten recommendations, based on an underlying recognition that more extinctions will be inevitable unless we treat nature as part of the essence of this country, rather than as a dispensable tangent, an economic externality.

  1. We should commit to preventing any more extinctions. As a society, we need to treat our nature with more respect – our plants and animals have lived in this place for hundreds of thousands, often millions, of years. They are integral to this country. We should not deny them their existence.

  2. We should craft an intergenerational social contract. We have been gifted an extraordinary nature. We have an obligation to pass to following generations a world as full of wonder, beauty and diversity as our generation has inherited.

  3. We should highlight our respect for, and obligation to, nature in our constitution, just as that fusty document could be refreshed and some of its deficiencies redressed through the Uluru Statement from the Heart. Those drafting the blueprint for the way our country is governed gave little or no heed to its nature. A constitution is more than a simple administrative rule book. Countries such as Ecuador, Palau and Bhutan have constitutions that commit to caring for their natural legacy and recognise that society and nature are interdependent.

  4. We should build a generation-scale funding commitment and long-term vision to escape the fickle, futile, three-year cycle of contested government funding. Environmental challenges in Australia are deeply ingrained and longstanding, and the conservation response and its resourcing need to be implemented on a scale of decades.

  5. As Paul Keating stated in his landmark Redfern speech, we should all see Australia through Aboriginal eyes – more deeply feel the way the country’s heart beats; become part of the land; fit into the landscape. This can happen through teaching curricula, through reverting to Indigenous names for landmarks, through reinvigorating Indigenous land management, and through pervasive cultural respect.

  6. We need to live within our environmental limits – constraining the use of water, soil and other natural resources to levels that are sustainable, restraining population growth and setting a positive example to the world in our efforts to minimise climate change.

  7. We need to celebrate and learn from our successes. There are now many examples of how good management and investments can help threatened species recover. We are capable of reversing our mismanagement.

  8. Funding to prevent extinctions is woefully inadequate, of course, and needs to be increased. The budgeting is opaque, but the Australian government spends about A$200 million a year on the conservation of threatened species, about 10% of what the US government outlays for its own threatened species. Understandably, our American counterparts are more successful. For context, Australians spend about A$4 billion a year caring for pet cats.

  9. Environmental law needs strengthening. Too much is discretionary and enforcement is patchy. We suggest tightening the accountability for environmental failures, including extinction. Should species die out, formal inquests should be mandatory to learn the necessary lessons and make systemic improvements.

  10. We need to enhance our environmental research, management and monitoring capability. Many threatened species remain poorly known and most are not adequately monitored. This makes it is hard to measure progress in response to management, or the speed of their collapse towards extinction.




Read more:
Eulogy for a seastar, Australia’s first recorded marine extinction


Extinction is not inevitable. It is a failure, potentially even a crime – a theft from the future that is entirely preventable. We can and should prevent extinctions, and safeguard and celebrate the diversity of Australian life.The Conversation

John Woinarski, Professor (conservation biology), Charles Darwin University; Sarah Legge, Professor, Australian National University, and Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Maybe we can, but should we? Deciding whether to bring back extinct species



File 20170518 24725 1kmsqco
Immortalised on a stamp, New Zealand’s stout-legged wren went extinct in the 1990s.
Boris15/www.shutterstock.com

Gwenllian Iacona, The University of Queensland and Iadine Chadès, CSIRO

De-extinction – the science of reviving species that have been lost – has moved from the realm of science-fiction to something that is now nearly feasible. Some types of lost mammals, birds or frogs may soon be able to be revived through de-extinction technologies. The Conversation

But just because we can, does it mean we should? And what might the environmental and conservation impacts be if we did?

Prominent conservation biologist Stuart Pimm has been one of the vocal opponents of de-extinction because, among other concerns,

Without an answer to “where do we put them?” — and to the further question, “what changed in their original habitat that may have contributed to their extinction in the first place?” — efforts to bring back species are a colossal waste.

These are valid concerns, and difficult to consider in light of the many competing factors involved.

We’ve recently outlined a deliberate way to tackle this problem. Our new paper shows that an approach known as “decision science” can help examine the feasibility of de-extinction and its likely impact on existing environmental and species management programs.

Applied to the question of possible de-extinction programs in New Zealand, this approach showed that it would take money away from managing extant (still alive) species, and may lead to other species going extinct.

Solving complex problems

The potential to reverse species extinction is exciting from both a science and a curiosity perspective. But there is also great concern that in the passionate rush to implement new technology, we don’t properly consider environmental, economic and social issues.

Balancing these multiple objectives requires decision makers to understand how various project endpoints relate to all the different project goals.

Decision science methods simplify complex problems into parts that describe the benefit, cost and feasibility of the different possible solutions. They allow for “apples to apples” comparisons to be made about different but essential aspects of the projects being considered.

Decision science in action

When applied to de-extinction projects, decision science lets researchers:

  • compare different possible outcomes of de-extinction approaches
  • better understand future expected costs and benefits, and
  • see impacts of using de-extinction technology on other species that we care about.

New Zealand and New South Wales are home to more than 1,100 threatened species of conservation concern between them.

Over the past decade their management agencies have built on a decision science approach to prioritise their conservation efforts, and increase the number of species they are able to put on the road to recovery.

New Zealand in particular is a prime candidate for considering de-extinction because they have had many recent extinctions, such as the huia.

The New Zealand native bird ‘huia’ went extinct in 1907.
Photographed by Kendrick, J. L. and with thanks from NZ Department of Conservation, Author provided

These lost species fit many of the criteria for species appropriate for de-extinction technologies.

A recent study took the process that was developed to rank New Zealand species according to priority for action, and included 11 possible candidates for de-extinction in the ranking process. These were birds, frogs and plants, including the little bush moa, Waitomo frog and laughing owl.

By applying a decision science process, the authors found that adding these species to the management worklist would reduce their ability to adequately fund up to three times the number of currently managed species, and essentially could lead to additional species going extinct.

The study also showed that private agencies wishing to sponsor the return of resurrected extinct species into the wild, could instead use the money to fund conservation of over eight times as many species, potentially saving them from extinction.

Crucially, this study could not examine the initial costs of using genetic technology to resurrect extinct species, which is unknown but likely to be substantial. If it could have included such costs, de-extinction would have come out as an even less efficient option.

The laughing owl went extinct in New Zealand in 1914.
Photographed by Kendrick, J. L. and with thanks from NZ Department of Conservation, Author provided

Could de-extinction ever be the right option?

The New Zealand example is not a particularly rosy picture, but it may not always be the case that de-extinction is a terrible idea for conservation.

Hypothetically, there are situations where the novelty and excitement of a de-extinct species could act as a “flagship species” and actually attract public interest or funding to a conservation project.

There also is an interesting phenomenon where even just the possibility of having a management action such as de-extinction may change how conservation problems are formulated.

Conservation management currently aims to do the best it can, while operating under the constraint that biodiversity is a non-renewable resource. With this constraint we can apply theory that is used for managing the extraction of non-renewable resources like oil or diamonds to determine the best strategy for management.

However, if extinction was no longer forever, the problem could be considered as one that would be managing a renewable resource, like trees or fish.

Of course, the ability to revive species is nowhere near as simple as regrowing trees, and a species being revived does not necessarily equate to conservation.

But changing the way that conservation managers think about the problem could present conservation gains in addition to losses.

Theoretically, different methods may be used for conservation benefit and there may be different strategies to produce the best outcomes. For example, species that could easily be de-extinct may get less funding attention that the ones for which the de-extinction technology isn’t available, or are too costly to produce.

This research does not advocate for or against de-extinction, rather, it provides strategies to deal with alternatives from the start with a clear representation of the trade-offs.

This work aims to step back and take a realistic look at the implications of new technology, including its costs and its risks, within the context of other conservation actions. Decision theory helps to do just that.

Gwenllian Iacona, Postdoctoral Research Fellow, The University of Queensland and Iadine Chadès, Leader of the Conservation Decisions Team and Senior research scientist, CSIRO

This article was originally published on The Conversation. Read the original article.