Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp



Daniel Mariuz/AAP

Corey J. A. Bradshaw, Flinders University; Daniel T. Blumstein, University of California, Los Angeles, and Paul Ehrlich, Stanford University

Anyone with even a passing interest in the global environment knows all is not well. But just how bad is the situation? Our new paper shows the outlook for life on Earth is more dire than is generally understood.

The research published today reviews more than 150 studies to produce a stark summary of the state of the natural world. We outline the likely future trends in biodiversity decline, mass extinction, climate disruption and planetary toxification. We clarify the gravity of the human predicament and provide a timely snapshot of the crises that must be addressed now.

The problems, all tied to human consumption and population growth, will almost certainly worsen over coming decades. The damage will be felt for centuries and threatens the survival of all species, including our own.

Our paper was authored by 17 leading scientists, including those from Flinders University, Stanford University and the University of California, Los Angeles. Our message might not be popular, and indeed is frightening. But scientists must be candid and accurate if humanity is to understand the enormity of the challenges we face.

Girl in breathing mask attached ot plant in container
Humanity must come to terms with the future we and future generations face.
Shutterstock

Getting to grips with the problem

First, we reviewed the extent to which experts grasp the scale of the threats to the biosphere and its lifeforms, including humanity. Alarmingly, the research shows future environmental conditions will be far more dangerous than experts currently believe.

This is largely because academics tend to specialise in one discipline, which means they’re in many cases unfamiliar with the complex system in which planetary-scale problems — and their potential solutions — exist.

What’s more, positive change can be impeded by governments rejecting or ignoring scientific advice, and ignorance of human behaviour by both technical experts and policymakers.

More broadly, the human optimism bias – thinking bad things are more likely to befall others than yourself – means many people underestimate the environmental crisis.

Numbers don’t lie

Our research also reviewed the current state of the global environment. While the problems are too numerous to cover in full here, they include:

  • a halving of vegetation biomass since the agricultural revolution around 11,000 years ago. Overall, humans have altered almost two-thirds of Earth’s land surface

  • About 1,300 documented species extinctions over the past 500 years, with many more unrecorded. More broadly, population sizes of animal species have declined by more than two-thirds over the last 50 years, suggesting more extinctions are imminent




Read more:
What is a ‘mass extinction’ and are we in one now?


  • about one million plant and animal species globally threatened with extinction. The combined mass of wild mammals today is less than one-quarter the mass before humans started colonising the planet. Insects are also disappearing rapidly in many regions

  • 85% of the global wetland area lost in 300 years, and more than 65% of the oceans compromised to some extent by humans

  • a halving of live coral cover on reefs in less than 200 years and a decrease in seagrass extent by 10% per decade over the last century. About 40% of kelp forests have declined in abundance, and the number of large predatory fishes is fewer than 30% of that a century ago.

State of the Earth's environment
Major environmental-change categories expressed as a percentage relative to intact baseline. Red indicates percentage of category damaged, lost or otherwise affected; blue indicates percentage intact, remaining or unaffected.
Frontiers in Conservation Science

A bad situation only getting worse

The human population has reached 7.8 billion – double what it was in 1970 – and is set to reach about 10 billion by 2050. More people equals more food insecurity, soil degradation, plastic pollution and biodiversity loss.

High population densities make pandemics more likely. They also drive overcrowding, unemployment, housing shortages and deteriorating infrastructure, and can spark conflicts leading to insurrections, terrorism, and war.




Read more:
Climate explained: why we need to focus on increased consumption as much as population growth


Essentially, humans have created an ecological Ponzi scheme. Consumption, as a percentage of Earth’s capacity to regenerate itself, has grown from 73% in 1960 to more than 170% today.

High-consuming countries like Australia, Canada and the US use multiple units of fossil-fuel energy to produce one energy unit of food. Energy consumption will therefore increase in the near future, especially as the global middle class grows.

Then there’s climate change. Humanity has already exceeded global warming of 1°C this century, and will almost assuredly exceed 1.5 °C between 2030 and 2052. Even if all nations party to the Paris Agreement ratify their commitments, warming would still reach between 2.6°C and 3.1°C by 2100.

people walking on a crowded street
The human population is set to reach 10 billion by 2050.
Shutterstock

The danger of political impotence

Our paper found global policymaking falls far short of addressing these existential threats. Securing Earth’s future requires prudent, long-term decisions. However this is impeded by short-term interests, and an economic system that concentrates wealth among a few individuals.

Right-wing populist leaders with anti-environment agendas are on the rise, and in many countries, environmental protest groups have been labelled “terrorists”. Environmentalism has become weaponised as a political ideology, rather than properly viewed as a universal mode of self-preservation.

Financed disinformation campaigns against climate action and forest protection, for example, protect short-term profits and claim meaningful environmental action is too costly – while ignoring the broader cost of not acting. By and large, it appears unlikely business investments will shift at sufficient scale to avoid environmental catastrophe.

Changing course

Fundamental change is required to avoid this ghastly future. Specifically, we and many others suggest:

  • abolishing the goal of perpetual economic growth

  • revealing the true cost of products and activities by forcing those who damage the environment to pay for its restoration, such as through carbon pricing

  • rapidly eliminating fossil fuels

  • regulating markets by curtailing monopolisation and limiting undue corporate influence on policy

  • reigning in corporate lobbying of political representatives

  • educating and empowering women across the globe, including giving them control over family planning.

A coal plant
The true cost of environmental damage should be borne by those responsible.
Shutterstock

Don’t look away

Many organisations and individuals are devoted to achieving these aims. However their messages have not sufficiently penetrated the policy, economic, political and academic realms to make much difference.

Failing to acknowledge the magnitude and gravity of problems facing humanity is not just naïve, it’s dangerous. And science has a big role to play here.

Scientists must not sugarcoat the overwhelming challenges ahead. Instead, they should tell it like it is. Anything else is at best misleading, and at worst potentially lethal for the human enterprise.




Read more:
Mass extinctions and climate change: why the speed of rising greenhouse gases matters


The Conversation


Corey J. A. Bradshaw, Matthew Flinders Professor of Global Ecology and Models Theme Leader for the ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University; Daniel T. Blumstein, Professor in the Department of Ecology and Evolutionary Biology and the Institute of the Environment and Sustainability, University of California, Los Angeles, and Paul Ehrlich, President, Center for Conservation Biology, Bing Professor of Population Studies, Stanford University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia-first research reveals staggering loss of threatened plants over 20 years


Ayesha Tulloch, University of Sydney; Elisa Bayraktarov, The University of Queensland; Hugh Possingham, The University of Queensland; Jaana Dielenberg, Charles Darwin University; Jennifer Silcock, The University of Queensland; Micha Victoria Jackson, The University of Queensland, and Nathalie Butt, The University of Queensland

When it comes to threatened species, charismatic animals usually get the most attention. But many of Australia’s plants are also in grave danger of extinction, and in many cases, the problem is getting worse.

New Australia-first research shows the population sizes of our threatened plants fell by almost three-quarters, on average, between 1995 and 2017. The findings were drawn from Australia’s 2020 Threatened Species Index, which combines data from almost 600 sites.

Plants are part of what makes us and our landscapes unique. They are important in their own right, but also act as habitat for other species and play critical roles in the broader ecosystem.

This massive data-crunching exercise shows that a lot more effort is needed if we want to prevent plant extinctions.

Plants, such as WA’s Endangered Foote’s grevillea, make our landscape unique.
Andrew Crawford / WA Department of Biodiversity Conservation and Attractions

Spotlight on plants

Australia’s plant species are special – 84% are found nowhere else in the world. The index shows that over about 20 years up to 2017, Australia’s threatened plant populations declined by 72%. This is faster than mammals (which declined by about a third), and birds (which declined by about half). Populations of trees, shrubs, herbs and orchids all suffered roughly similar average declines (65-75%) over the two decades.

Of the 112 species in the index, 68% are critically endangered or endangered and at risk of extinction if left unmanaged. Some 37 plant species have gone extinct since records began, though many others are likely to have been lost before scientists even knew they existed. Land clearing, changed fire regimes, grazing by livestock and feral animals, plant diseases, weeds and climate change are common causes of decline.




Read more:
Undocumented plant extinctions are a big problem in Australia – here’s why they go unnoticed


Vulnerable plant populations reduced to small areas can also face unique threats. For example, by the early 2000s Foote’s grevillea (Grevillea calliantha) had dwindled to just 27 wild plants on road reserves. Road maintenance activities such as mowing and weed spraying became a major threat to its survival. For other species, like the button wrinklewort, small populations can lead to inbreeding and a lack of genetic diversity.

Fire, interrupted

Threatened plant conservation in fire-prone landscapes is challenging if a species’ relationship with fire is not known. Many Australian plant species require particular intensities or frequencies of burns for seed to be released or germinate. But since European settlement, fire patterns have been interrupted, causing many plant populations to decline.

Three threatened native pomaderris shrubs on the NSW South Coast are a case in point. Each of them – Pomaderris adnata, P. bodalla and P. walshii – have failed to reproduce for several years and are now found only in a few locations, each with a small number of plants.

Experimental trials recently revealed that to germinate, the seeds of these pomaderris species need exposure to hot-burning fires (or a hot oven). However they are now largely located in areas that seldom burn. This is important knowledge for conservation managers aiming to help wild populations persist.

Endangered sublime point pomaderris (Pomaderris adnata) requires high fire temperatures to germinate.
Jedda Lemmon /NSW DPIE, Saving our Species

Success is possible

A quarter of the species in the threatened plant index are orchids. Orchids make up 17% of plant species listed nationally as threatened, despite comprising just 6% of Australia’s total plant species.

The endangered coloured spider-orchid (Caladenia colorata) is pollinated only by a single thynnine wasp, and relies on a single species of mycorrhizal fungi to germinate in the wild.

Yet even for such a seemingly difficult species, conservation success is possible. In one project, scientists from the Royal Botanic Gardens Victoria, aided by volunteers, identified sites where the wasp was still naturally present. More than 800 spider orchid plants were then propagated in a lab using the correct symbiotic fungus, then planted at four sites. These populations are now considered to be self-sustaining.

In the case of Foote’s grevillea, a plant translocation program has established 500 plants at three new sites, dramatically improving the species’ long-term prospects.

Orchid flower
The coloured spider orchid, found in South Australia and Victoria, is endangered.
Noushka Reiter/Royal Botanic Gardens Victoria

But we aren’t doing enough

Both federal environment laws and the national threatened species strategy are under review. Submissions by research institutions and others have noted a lack of data, recovery actions and conservation funding for plants.

Our research found threatened plant populations at managed sites suffered declines of 60% on average, compared to 80% declines at unmanaged sites. This shows that while management is beneficial, it is not preventing overall declines.

New data on threatened species trends are added to the plant index each year, but many species are missing from the index because they aren’t being monitored.




Read more:
Australia’s threatened birds declined by 59% over the past 30 years


Monitoring of threatened species is undertaken by government and non-government groups, community groups, Indigenous organisations, citizen scientists, researchers and individuals. Without it, we have no idea if species are recovering or heading unnoticed towards extinction.

Woman measuring the height of a plant
Monitoring is essential to know if conservation actions are working.
Rebecca Dillon / WA Department of Biodiversity Conservation and Attractions

Australia has about 1,800 threatened species. Of these, 77% – or 1,342 species – are plants. However the index received monitoring data for only 10% of these plants, compared to 35% of threatened birds, which make up only 4% of threatened species.

If you’re keen to get involved in plant monitoring, it involves just a few simple steps:

  • find a local patch with a threatened plant species

  • revisit it once or twice a year to count the number of individuals in a consistent, well-defined area

  • use the same method and the same amount of effort each visit

  • take great care to not disturb the plant or its habitat when looking for it

  • contribute your data to the index.

Saving Australia’s flora

Australia must urgently change the way we prioritise conservation actions and enact environment laws, if we hope to prevent more plant extinctions.

Critical actions include stopping further habitat loss and more funding for recovery actions as well as extinction risk assessments. It is important that these assessments adhere to consistent criteria. This is something the common assessment method, agreed to by all states and territories, seeks to achieve.

Finally, more funding for research into the impacts of key threats (and how to manage them) will help ensure our unique flora are not lost forever.

Prof Hugh Possingham and Dr Ayesha Tulloch discuss the 2020 findings of the Threatened Plant Index.

CORRECTION: A previous version of this article incorrectly stated that reviews of federal environment laws and the threatened species strategy found a lack of data, recovery actions and conservation funding for plants. While those problems were identified in public submissions to the reviews, the reviews themselves are not yet finalised.The Conversation

Ayesha Tulloch, DECRA Research Fellow, University of Sydney; Elisa Bayraktarov, Postdoctoral Research Fellow in Conservation Biology, The University of Queensland; Hugh Possingham, Professor, The University of Queensland; Jaana Dielenberg, University Fellow, Charles Darwin University; Jennifer Silcock, Post-doctoral research fellow, The University of Queensland; Micha Victoria Jackson, Postdoctoral research fellow, The University of Queensland, and Nathalie Butt, Postdoctoral Fellow, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans are changing fire patterns, and it’s threatening 4,403 species with extinction



The Leadbeater’s possum, one of thousands of species threatened by changing fire regimes.
Shutterstock

Luke Kelly, University of Melbourne; Annabel Smith, The University of Queensland; Katherine Giljohann, University of Melbourne, and Michael Clarke, La Trobe University

Last summer, many Australians were shocked to see fires sweep through the wet tropical rainforests of Queensland, where large and severe fires are almost unheard of. This is just one example of how human activities are changing fire patterns around the world, with huge consequences for wildlife.

In a major new paper published in Science, we reveal how changes in fire activity threaten more than 4,400 species across the globe with extinction. This includes 19% of birds, 16% of mammals, 17% of dragonflies and 19% of legumes that are classified as critically endangered, endangered or vulnerable.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


But, we also highlight the emerging ways we can help promote biodiversity and stop extinctions in this new era of fire. It starts with understanding what’s causing these changes and what we can do to promote the “right” kind of fire.

How is fire activity changing?

Recent fires have burned ecosystems where wildfire has historically been rare or absent, from the tropical forests of Queensland, Southeast Asia and South America to the tundra of the Arctic Circle.

Exceptionally large and severe fires have also been observed in areas with a long history of fire. For example, the 12.6 million hectares that burnt in eastern Australia during last summer’s devastating bushfires was unprecedented in scale.

The post-fire landscape in Flinders Chase National Park, Kangaroo Island, three months after an extremely large and severe bushfire last summer.
Luke Kelly

This extreme event came at a time when fire seasons are getting longer, with more extreme wildfires predicted in forests and shrublands in Australia, southern Europe and western United States.

But fire activity isn’t increasing everywhere. Grasslands in countries such as Brazil, Tanzania, and the United States have had fire activity reduced.

Extinction risk in a fiery world

Fire enables many plants to complete their life cycles, creates habitats for a wide range of animals and maintains a diversity of ecosystems. Many species are adapted to particular patterns of fire, such as banksias — plants that release seeds into the resource-rich ash covering the ground after fire.

But changing how often fires occur and in what seasons can harm populations of species like these, and transform the ecosystems they rely on.

We reviewed data from the International Union for Conservation of Nature (IUCN) and found that of the 29,304 land-based and freshwater species listed as threatened, modified fire regimes are a threat to more than 4,403.

Most are categorised as threatened by an increase in fire frequency or intensity.

For example, the endangered mallee emu-wren in semi-arid Australia is confined to isolated patches of habitat, which makes them vulnerable to large bushfires that can destroy entire local populations.

Likewise, the Kangaroo Island dunnart was listed as critically endangered before it lost 95% of its habitat in the devastating 2019-2020 bushfires.

Large bushfires threaten many birds, such as the mallee emu-wren.
Ron Knight/Wikimedia, CC BY

However, some species and ecosystems are threatened when fire doesn’t occur. Frequent fires are an important part of African savanna ecosystems and less fire activity can lead to shrub encroachment. This can displace wild herbivores such as wildebeest that prefer open areas.

How humans change fire regimes

There are three main ways humans are transforming fire activity: global climate change, land-use and the introduction of pest species.

Global climate change modifies fire regimes by changing fuels such as dry vegetation, ignitions such as lightning, and creating more extreme fire weather.

What’s more, climate-induced fires can occur before the dominant tree species are old enough to produce seed, and this is reshaping forests in Australia, Canada and the United States.

Humans also alter fire regimes through farming, forestry, urbanisation and by intentionally starting or suppressing fires.

Introduced species can also change fire activity and ecosystems. For example, in savanna landscapes of Northern Australia, invasive gamba grass increases flammability and fire frequency. And invasive animals, such as red foxes and feral cats, prey on native animals exposed in recently burnt areas.




Read more:
Fire-ravaged Kangaroo Island is teeming with feral cats. It’s bad news for this little marsupial


Importantly, cultural, social and economic changes underpin these drivers. In Australia, the displacement of Indigenous peoples and their nuanced and purposeful use of fire has been linked with extinctions of mammals and is transforming vegetation.

We need bolder conservation strategies

A suite of emerging actions — some established but receiving increasing attention, others new — could help us navigate this new fire era and save species from extinction. They include:

In Africa, reintroducing grazing animals such as rhinoceros create patchy fire regimes.
Sally Archibald, Author provided

Where to from here?

The input of scientists will be valuable in helping navigate big decisions about new and changing ecosystems.

Empirical data and models can monitor and forecast changes in biodiversity. For example, new modelling has allowed University of Melbourne researchers to identify alternative strategies for introducing planned or prescribed burning that reduces the risk of large bushfires to koalas.

New partnerships are also needed to meet the challenges ahead.

At the local and regional scale, Indigenous-led fire stewardship is an important approach for fostering relationships between Indigenous and non-Indigenous organisations and communities around the world.

Frank Lake, a co-author on our new paper, works with Yurok and Karuk fire practitioners, shown here burning under oaks.
Frank Lake, U.S Department of Agriculture Forest Service Pacific Southwest Research Station.

And international efforts to reduce greenhouse gas emissions and limit global warming are crucial to reduce the risk of extreme fire events. With more extreme fire events ahead of us, learning to understand and adapt to changes in fire regimes has never been more important.




Read more:
The world’s best fire management system is in northern Australia, and it’s led by Indigenous land managers


The Conversation


Luke Kelly, Senior Lecturer in Ecology and Centenary Research Fellow, University of Melbourne; Annabel Smith, Lecturer in Wildlife Management, The University of Queensland; Katherine Giljohann, Postdoctoral research fellow, University of Melbourne, and Michael Clarke, Professor of Zoology, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How to reverse global wildlife declines by 2050


Wouter Taljaard/Shutterstock

Michael Obersteiner, University of Oxford; David Leclère, International Institute for Applied Systems Analysis (IIASA), and Piero Visconti, International Institute for Applied Systems Analysis (IIASA)

Species are going extinct at an unprecedented rate. Wildlife populations have fallen by more than two-thirds over the last 50 years, according to a new report from the World Wildlife Fund. The sharpest declines have occurred throughout the world’s rivers and lakes, where freshwater wildlife has plummeted by 84% since 1970 – about 4% per year.

But why should we care? Because the health of nature is intimately linked to the health of humans. The emergence of new infectious diseases like COVID-19 tend to be related to the destruction of forests and wilderness. Healthy ecosystems are the foundation of today’s global economies and societies, and the ones we aspire to build. As more and more species are drawn towards extinction, the very life support systems on which civilisation depends are eroded.

Even for hard-nosed observers like the World Economic Forum, biodiversity loss is a disturbing threat with few parallels. Of the nine greatest threats to the world ranked by the organisation, six relate to the ongoing destruction of nature.

A digger tears down trees in a Malaysian rainforest.
New infectious diseases tend to emerge in places at the forefront of environmental destruction.
Rich Carey/Shutterstock

Economic systems and lifestyles which take the world’s generous stocks of natural resources for granted will need to be abandoned, but resisting the catastrophic declines of wildlife that have occurred over the last few decades might seem hopeless. For the first time, we’ve completed a science-based assessment to figure out how to slow and even reverse these trends.

Our new paper in Nature featured the work of 60 co-authors and built on efforts steered by the Intergovernmental Panel on Biodiversity and Ecosystem Services. We considered ambitious targets for rescuing global biodiversity trends and produced pathways for the international community to follow that could allow us to meet these goals.




Read more:
How forest loss has changed biodiversity across the globe over the last 150 years


Bending the curve

The targets of the UN Convention on Biological Diversity call for global trends of terrestrial wildlife to stop declining and start recovering by 2050 or earlier. Changes in how land is used – from pristine forest to cropland or pasture – rank among the greatest threats to biodiversity on land worldwide. So what are the necessary conditions for biodiversity to recover during the 21st century while still supporting growing and affluent human societies?

Two key areas of action stand out from the rest. First, there must be renewed ambition from the world’s governments to establish large-scale conservation areas, placed in the most valuable hotspots for biodiversity worldwide, such as small islands with species found nowhere else. These reserves, in which wildlife will live and roam freely, will need to cover at least 40% of the world’s land surface to help bend the curve from decline to recovery for species and entire ecosystems.

The location of these areas, and how well they are managed, is often more important than how big they are. Habitat restoration and conservation efforts need to be targeted where they are needed most – for species and habitats on the verge of extinction.

A downward sloping line showing wildlife declines splits into three alternative trajectories, where biodiversity increases, plateaus and crashes by 2050.
The next 30 years will prove pivotal for Earth’s biodiversity.
Leclère et al. (2020), Author provided

Second, we must transform our food systems to produce more on less land. If every farmer on Earth used the best available farming practices, only half of the total area of cropland would be needed to feed the world. There are lots of other inefficiencies that could be ironed out too, by reducing the amount of waste produced during transport and food processing, for example. Society at large can help in this effort by shifting towards healthier and more sustainable diets, and reducing food waste.

This should happen alongside efforts to restore degraded land, such as farmland that’s becoming unproductive as a result of soil erosion, and land that’s no longer needed as agriculture becomes more efficient and diets shift. This could return 8% of the world’s land to nature by 2050. It will be necessary to plan how the remaining land is used, to balance food production and other uses with the conservation of wild spaces.

Without a similar level of ambition for reducing greenhouse gas emissions, climate change will ensure the world’s wildlife fares badly this century. Only a comprehensive set of policy measures that transform our relationship with the land and rapidly scale down pollution can build the necessary momentum. Our report concludes that transformative changes in our food systems and how we plan and use land will have the biggest benefits for biodiversity.

But the benefits wouldn’t end there. While giving back to nature, these measures would simultaneously slow climate change, reduce pressure on water, limit nitrogen pollution in the world’s waterways and boost human health. When the world works together to halt and eventually reverse biodiversity loss, it’s not only wildlife that will thrive.The Conversation

Michael Obersteiner, Director, Environmental Change Institute, University of Oxford; David Leclère, Researcher in Ecosystem Services and Management (ESM) Program, International Institute for Applied Systems Analysis (IIASA), and Piero Visconti, Research Scholar, Ecosystem Services and Management Programme, International Institute for Applied Systems Analysis (IIASA)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New research reveals these 20 Australian reptiles are set to disappear by 2040



Cape Melville leaf-tailed gecko
Conrad Hoskin, Author provided

Hayley Geyle, Charles Darwin University and David Chapple, Monash University

Action came too late for the Christmas Island forest skink, despite early warnings of significant declines. It was lost from the wild before it was officially listed as “threatened”, and the few individuals brought into captivity died soon after.

Australia is home to about 10% of all known reptile species — the largest number of any country in the world. But many of our reptiles are at risk of the same fate as the Christmas Island forest skink: extinction.

In new research published today, we identified the 20 terrestrial snakes and lizards (collectively known as “squamates”) at greatest risk of extinction in the next two decades, assuming no changes to current conservation management.

Preventing extinctions of Australian lizards and snakes.

While all 20 species meet international criteria to be officially listed as “threatened”, only half are protected under Australian environmental legislation— the Environment Protection and Biodiversity Conservation (EPBC) Act. This needs urgent review.

Many of these reptiles receive little conservation action, but most of their threats can be ameliorated. By identifying the species at greatest risk of extinction, we can better prioritise our recovery efforts — we know now what will be lost if we don’t act.

Six species more likely than not to go extinct

Our research team — including 27 reptile experts from universities, zoos, museums and government organisations across the country — identified six species with greater than 50% likelihood of extinction by 2040.

This includes two dragons, one blind snake and three skinks. Experts rated many others as having a 30-50% likelihood of extinction over the next 20 years.

More than half (55%) of the 20 species at greatest risk occur in Queensland. Three live on islands: two on Christmas Island and one on Lancelin Island off the Western Australian coast.

Two more species are found in Western Australia, while the Northern Territory, the Australian Capital Territory, Victoria and New South Wales each have one species.




Read more:
Australia’s smallest fish among 22 at risk of extinction within two decades


Each of the 20 species at greatest risk occur in a relatively small area, which partly explains the Queensland cluster — many species in that state naturally have very small distributions.

Most of the top 20 occupy a total range of fewer than 20 square kilometres, so could be lost to a single catastrophic event, such as a large bushfire.

A map of Australia showing where the 20 snakes and lizards are located
The approximate locations of the 20 terrestrial snakes and lizards at greatest risk of extinction.
Author provided

So why are they dying out?

Reptile species are declining on a global scale, and this is likely exacerbated by climate change. In Australia, where more than 90% of our species occur nowhere else in the world, the most threatened reptiles are at risk for two main reasons: they have very small distributions, and ongoing, unmitigated threats.

The Cape Melville leaf-tailed gecko meets this brief perfectly. This large and spectacular species was only discovered in 2013, on a remote mountain range on Cape York. It’s threatened by virtue of its very small distribution and population size, and by climate change warming and drying its upland habitat.

Arnhem Land gorges skink
The Arnhem Land gorges skink is considered more likely than not to become extinct by 2040. Threats include changes to food resources and habitat quality, feral cats, and possibly poisoning by cane toads.
Chris Jolly

Habitat loss is also a major threat for the top 20 species. Australia’s most imperilled reptile, the Victoria grassland earless dragon, used to be relatively common in grasslands in and around Melbourne. But the grasslands this little dragon once called home have been extensively cleared for agriculture and urban development, and now cover less than 1% of their original extent.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


Little conservation attention

For most reptile species, there has been less conservation work to address the declines, partly because reptiles have historically received less scientific attention than birds or mammals.

We also still don’t fully understand just how many species there are in Australia. New reptile species are being scientifically described at an average rate of 15 per year (a higher rate than for other vertebrate groups) and many new reptiles are already vulnerable to extinction at the time of discovery.

The Mount Surprise slider, a light-brown snake
The Mount Surprise slider is threatened by invasive plant species and cattle compacting sandy soils.
Stephen Zozaya, Author provided

To make matters worse, few reptiles in Australia are well-monitored. Without adequate monitoring, we have a poor understanding of population trends and the impacts of threats. This means species could slip into extinction unnoticed.

Reptiles also lack the public and political profile that helps generate recovery support for other, (arguably) more charismatic Australian threatened animals — such as koalas and swift parrots — leading to little resourcing for conservation.

Lessons from the past

Only one Australian reptile, the Christmas Island forest skink, is officially listed as extinct, but we have most probably lost others before knowing they exist. Without increased resourcing and management intervention, many more Australian reptiles could follow the same trajectory.

The Roma earless dragon sitting up on hind legs.
Habitat loss and degradation due to agriculture is a major threat to the Roma earless dragon. It has not been listed under Australian legislation.
A. O’Grady Museums Victoria, Author provided

But it’s not all bad news. The pygmy bluetongue skink was once thought to be extinct until a chance discovery kick-started a long conservation and research program.

Animals are now being taken from the wild and relocated to new areas to establish more populations, signifying that positive outcomes are possible when informed by good science.

And the very restricted distributions of most of the species identified here should allow for targeted and effective recovery efforts.

By identifying the species at greatest risk, we hope to give governments, conservation groups and the community time to act to prevent further extinctions before it’s too late. Neglect should no longer be the default response for our fabulous reptile fauna.




Read more:
A hidden toll: Australia’s cats kill almost 650 million reptiles a year


The Conversation


Hayley Geyle, Research Assistant, Charles Darwin University and David Chapple, Associate Professor in Evolutionary and Conservation Ecology, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Tasmanian tiger was hunted to extinction as a ‘large predator’ – but it was only half as heavy as we thought



Smithsonian Institution/colourised by D.S. Rovinsky

Douglass Rovinsky, Monash University; Alistair Evans, Monash University, and Justin W. Adams, Monash University

Until it was hunted to extinction, the thylacine – also known as the Tasmanian tiger or Tasmanian wolf – was the world’s largest marsupial predator. However, our new research shows it was in fact only about half as large as previously thought. So perhaps it wasn’t such a big bad wolf after all.

Although the thylacine is widely known as an example of human-caused extinction, there is a lot we still don’t know about this fascinating animal. This even includes one of the most basic details: how much did the thylacine weigh?

An animal’s body mass is one of the most fundamental aspects of its biology. It affects nearly every facet of its biology, from biochemical and metabolic processes, reproduction, growth, and development, through to where the animal can live and how it moves.

For meat-eating predators, body mass also determines what the animal eats – or more specifically, how much it has to eat at each meal.

Catching and eating other animals is hard work, so a predator has to weigh the costs carefully against the benefits. Small predators have low hunting costs – moving around, hunting, and killing small prey doesn’t cost much energy, so they can afford to nibble on small animals here and there. But for bigger predators, the stakes are higher.

Almost all large predators – those weighing at least 21  kilograms – focus their efforts on prey at least half their own body size, getting more bang for the buck. In contrast, small predators below 14.5 kg almost always catch prey much smaller than half their own size. Those in between typically take prey less than half their size, but sometimes switch to a larger meal if some easy prey is there for the taking – or if the predator is getting desperate.

The mismeasure of the thylacine

Scan of article from Launceston Examiner
The March 14, 1868 edition of the Launceston Examiner featured tales of a ‘hyena’ that managed to kill 25 sheep.
trove.nla.gov.au

Few accurately recorded weights exist for thylacines – only four, in fact. This lack of information has made estimating their average size difficult. The most commonly used average body mass is 29.5kg, based on 19th-century newspaper accounts.

This suggests the thylacine would probably have taken relatively large prey such as wallabies, kangaroos and perhaps sheep. However, studies of thylacine skulls suggest they didn’t have strong enough skulls to capture and kill large prey, and that they would have hunted smaller animals instead.

This presented a problem: if the thylacine was as big as we thought, it shouldn’t be able to live solely on small prey. But what if we’ve had the weight wrong the whole time?




Read more:
Why did the Tasmanian tiger go extinct?


Weighing an extinct animal

Man taking a scan of a stuffed thylacine
Ben Myers of Thinglab scans a Museums Victoria thylacine.
CREDIT, Author provided

Our new research, published today in Proceedings of the Royal Society B, addresses this weighty issue. Our team travelled throughout the world to museums in Australia, the United States, the United Kingdom and Europe, and 3D-scanned 93 thylacines, including whole mounted skeletons, taxidermy mounts, and the only whole-body ethanol-preserved thylacine in the world, in Sweden.

Based on these scans, we created new equations to estimate a thylacine’s mass, based on how thick their limbs were – because their legs would have had to support their entire weight.

We also compared the results of these equations with a new method of digitally weighing 3D specimens. Based on a 3D scan of a mounted skeleton, we digitally “filled in the spaces” to estimate how much soft tissue would have been present, and then used our new formula to calculate how much this would weigh. Taxidermy mounts were easier as there was no need to infer the amount of soft tissue. The most artistic member of our team digitally sculpted lifelike thylacines around the scanned skeletons, and we weighed them, too.

Building and weighing a thylacine. Scanned skeletons (lop left) were surrounded by digital ‘convex hulls’ (top right), which then had their volume and mass calculated. The skeletons were then used in digitally sculpting lifelife models (bottom left), each with their own unique stripes (bottom right).
Rovinsky et al.

Our calculations unanimously told a very different story from the 19th-century periodicals, and from the commonly used estimate. The average thylacine weighed only about 16.7 kg – not 29.5 kg.




Read more:
Friday essay: on the trail of the London thylacines


Tall tales on the tiger trail

This means the previous estimate, based on taking 19th-century periodicals at face value, was nearly 80% too large. Looking back at those old newspaper reports, many of them in retrospect have the hallmarks of “tall tales”, told to make a captured thylacine seem bigger, more impressive and more dangerous.

It was based on this suspected danger that the thylacine was hunted and trapped to extinction, with private bounties already placed on them by 1840, and government-sponsored extermination by the 1880s.

Graphic showing the size of thylacines relative to a woman
Thylacines were much smaller in stature than humans or grey wolves.
Rovinsky et al., Author provided

The thylacine was much smaller than previously thought, and this aligns with the smaller prey size suggested by the earlier studies. Predators below 21 kg – in which we should now include the thylacine – all tend to hunt prey smaller than half their size. The “Tasmanian wolf” probably wasn’t such a danger to Tasmanian farmers’ sheep after all.

By rewriting this fundamental aspect of their biology, we are closer to understanding the role of the thylacine in the ecosystem – and to seeing exactly what was lost when we deliberately hunted it to extinction.The Conversation

Douglass Rovinsky, PhD Candidate, Monash University; Alistair Evans, Associate Professor, Monash University, and Justin W. Adams, Senior Lecturer, Department of Anatomy and Developmental Biology, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s smallest fish among 22 at risk of extinction within two decades



Red-finned blue-eye
Bush Heritage Australia / Adam Kerezsy

Mark Lintermans, University of Canberra; Hayley Geyle, Charles Darwin University; Jaana Dielenberg, The University of Queensland; John Woinarski, Charles Darwin University; Stephen Beatty, Murdoch University, and Stephen Garnett, Charles Darwin University

The tragic fish kills in the lower Darling River drew attention to the plight of Australia’s freshwater fish, but they’ve been in trouble for a long time.

Many species have declined sharply in recent decades, and as many as 90 of Australia’s 315 freshwater fish species may now meet international criteria as threatened.




Read more:
We wrote the report for the minister on fish deaths in the lower Darling – here’s why it could happen again


No Australian fish species is yet listed officially as extinct, but some have almost certainly been lost before scientists even knew they existed. With so many species at risk, understanding which are in greatest peril is a vital first step in preventing extinctions.

This is what our new research has done. We’ve identified 20 freshwater fish species with a 50% or greater probability of extinction within the next two decades, and a further two with a 40-50% chance – unless there’s new targeted conservation action.

The Australian freshwater fishes at greatest risk of extinction.

Slipping through the conservation cracks

Many small-bodied species, including Australia’s smallest fish the red-finned blue-eye, look likely to be lost within a single human generation. These fish have evolved over millions of years.

Twelve of the species identified have only been formally described in the past decade, and seven are still awaiting description.

This highlights the urgent need to act before species are listed under the national legislation that gives fishes their conservation status, and even before they’re formally described.

These processes can take many years, at which point it may be too late for some species.

More than half the species on our list are galaxiids – small, scaleless fish, that live in cooler, upland streams and lakes. Trout, an introduced, predatory species, also favour these habitats, and the trout have taken a heavy toll on galaxiids and many other small species in southern Australia.

Shaw galaxias, a long light-brown fish.
Victoria’s Shaw galaxias – one of 14 galaxias species identified at high risk of extinction.
Tarmo Raadik

For example, the Victorian Shaw galaxias has been eaten out of much of its former range. Now just 80 individuals survive, protected by a waterfall from the trout below. We estimate the Shaw galaxias has an 80% chance or more of extinction within the next 20 years.




Read more:
Double trouble: this plucky little fish survived Black Summer, but there’s worse to come


Many galaxiids do not thrive or readily breed in captivity, so suitable trout-free streams are essential for their survival.

Improving trout management requires an urgent, sustained conservation effort, including collaborations with recreational fishers, increased awareness and changing values among government and key sectors of society.

Without this, trout will almost certainly cause many native galaxiids to go extinct.

Two researchers face a waterfall surounded by bushland.
This waterfall in NSW is all that protects the last population of stocky galaxias from the predatory trout below.
Mark Lintermans

Native fish out of their natural place can also be a problem. For example, sooty and khaki grunters – native fishing species people in northern Australia have widely moved – threatening the ancient Bloomfield River cod.

One disaster can lead to extinction

All of the most imperilled species are now highly localised, which means they’re restricted to very small areas. Their distributions range from only four to 44 square kilometres.

A single catastrophic event could completely wipe out these species, such as a large bushfire that fills their streams with ash and robs them of oxygen.

The SW Victoria River blackfish persists as three very small, isolated populations. The main threat to this species is recreational angling.
Tarmo Raadik

For example, until 2019 the Yalmy galaxias had survived in the cool creeks of the Snowy River National Park. But after the devastating Black Summer fires, just two individuals survived, one male and one female, in separate areas.

Millions of years of evolution could be lost if a planned reunion is too late.

One of the key steps to reduce this risk is moving fish to new safe locations so there are more populations. Researchers choose these new locations carefully to make sure they’re suitable for different species.

Climate change is another threat to all identified species, as it’s likely to reduce flows and water quality, or increase fires, storms and flooding. Many species have been forced to the edge of their range and a prolonged drought could dry their remaining habitat.

The short-tail galaxias existed in two small separated populations in creeks of the upper Tuross River Catchment, in the south coast of NSW. One stream dried in the recent drought, and the other was burnt in the subsequent fires.

Luckily the species is still hanging on in the burnt catchment, but only a single individual has been found in the drought-affected creek.

Rainbowfish swim among reeds
The main threat to the Daintree rainbowfish is loss of stream flow due to drought, climate change and water extraction.
Michael Hammer / Museum and Art Gallery of the Northern Territory, Author provided

Unlisted, unprotected

Our study is part of a larger project to identify plants and animals at high risk of extinction.

We found the extinction risks of the 22 freshwater fish species are much higher than those of the top 20 birds or mammals, yet receive far less conservation effort.

Only three of the highly imperilled fish species are currently listed as threatened under national environmental legislation: the red-finned blue-eye, Swan galaxias and little pygmy perch.

Listing species is vital to provide protection to survivors and can prompt recovery action. Given our research, 19 fish species should urgently be added to the national threatened species list, but conservation action should start now.

The little pygmy perch in the far south-west corner of WA is one of only three of the 22 imperilled species identified that’s formally protected under Australian laws.
Stephen Beatty/Harry Butler Institute, Murdoch University

Small native freshwater fishes are worth saving. They play a vital role in our aquatic ecosystems, such as predating on pest insect larvae, and are part of our natural heritage.

By identifying and drawing attention to their plight, we are aiming to change their fates. We cannot continue with business as usual if we want to prevent their extinctions.The Conversation

Mark Lintermans, Associate professor, University of Canberra; Hayley Geyle, Research Assistant, Charles Darwin University; Jaana Dielenberg, Science Communication Manager, The University of Queensland; John Woinarski, Professor (conservation biology), Charles Darwin University; Stephen Beatty, Research Leader (Catchments to Coast), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, and Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We know how to save NSW’s koalas from extinction – but the government must commit



Shutterstock

Dr Christine Hosking, The University of Queensland

On Tuesday, a year-long New South Wales parliamentary inquiry revealed the state’s koalas are on track for extinction in the wild by 2050, without urgent government intervention.

Habitat destruction and fragmentation for agriculture, urban development, mining and forestry has been the number one koala killer since European occupation of Australia. This is compounded by the unabated impacts of climate change, which leads to more extreme droughts, heatwaves and bushfires.




Read more:
Scientists find burnt, starving koalas weeks after the bushfires


Koala populations in NSW were already declining before the 2019-2020 bushfires. The report doesn’t mince words, saying “huge swathes of koala habitat burned and at least 5,000 koalas perished”.

The report, ambitiously, makes 42 recommendations, and all have merit. The fate of NSW koalas now relies on a huge commitment from the Berejiklian government to act on them. But past failures by a federal government inquiry into koalas suggest there’s little cause for optimism.

First, let’s look at the report’s key recommendations and how they might ensure the species’ survival in NSW.

Leadership needed at the local level

Real, on-ground koala conservation actions take place at the local level. “Local” is where councils give development approvals, sometimes to clear koala habitat. And it’s where communities and volunteers work on the front line to save and protect the species.

Recommendation 10 in the report addresses this, suggesting the NSW government provide additional funding and support to community groups so they can plant trees and regenerate bushland along koala and wildlife corridors.




Read more:
A report claims koalas are ‘functionally extinct’ – but what does that mean?


Another two recommendations build on this: encouraging increased funding from the NSW government to local councils to support local conservation initiatives, and suggesting increased resources to support councils to conduct mapping.

Mapping, such as where koalas have been recorded and their habitat, is a critical component for local councils to develop comprehensive koala management plans.

Stop offsetting koala habitat

One recommendation suggests a review of the “biodiversity offsets scheme”, where generally developers must compensate for habitat loss by improving or establishing it elsewhere. It is embedded in the NSW Biodiversity Conservation Act 2016, and other state and territory governments commonly use offsets in various conservation policies.




Read more:
The Blinky Bill effect: when gum trees are cut down, where do the koalas go?


But the report recommends prohibiting offsets for high quality koala habitat. Prohibiting offsets is important because when a vital part of koala habitat is cleared, it can no longer support the local koalas. Replacing this habitat somewhere else won’t save that particular population.

Build the Great Koala National Park

It’s of paramount importance to increase the connected, healthy koala habitat in NSW, particularly after the bushfires.

One tool to achieve this is laid out in recommendation 41: to investigate establishing the Great Koala National Park. Spearheaded by the National Parks Association of NSW, this national park would see 175,000 hectares of publicly owned state forests added to existing protected areas.

It total, it would form a 315,000 hectare reserve in the Coffs Harbour hinterland dedicated to protecting koalas – an Australian first.




Read more:
What does a koala’s nose know? A bit about food, and a lot about making friends


It would be a great day if such a park was established and replicated throughout the NSW and Queensland hinterlands. Research shows that in those regions, the future climate will remain suitable for koalas, and urbanisation, agriculture and mining are not currently present in these parks.

The Great Koala National Park.

But it’s worth noting Australia’s national parks are under increasing pressure from “adventure tourism”. Human recreation activities can fragment habitat and disturb wildlife, for example by constructing tracks and access roads through natural areas.

Humans must not be allowed to compromise dedicated koala conservation areas. Intrusive recreational activity is detrimental to the species, and can also reduce the chance quiet park visitors might spy a koala sitting high in a tree, sleepily munching on gum leaves.

This rule should apply both to existing national parks, and a new Great Koala National Park.

Failures of past inquiries

The tragic fate predicted for koalas in NSW depends on the state government’s willingness to act on the recommendations. Developing wordy, well-intentioned documents is simply not enough.

We need look no further than Australia’s key environmental legislation, the Environment Protection and Biodiversity Conservation (EPBC) Act, to realise this.

Habitat destruction is an existential threat to koalas.
Shutterstock

After a 2012 Senate inquiry into the health and status of koalas, the species was officially listed as “vulnerable” under the EPBC Act. But since then, tree clearing and declines in koala numbers have continued at a furious pace across Queensland and NSW.

One of the shortcomings of the federal listing for the koala is in its Referral Guidelines, which recommends “proponents consider these guidelines when proposing actions within the modelled distribution of the koala”. In other words, informing the government about clearing koala habitat is only voluntary. And that’s not good enough.




Read more:
Environment laws have failed to tackle the extinction emergency. Here’s the proof


The failure of the 2012 inquiry and the EPBC Act to protect koalas should serve as a wake-up call to the NSW government. It must start implementing the recommendations of the current inquiry without delay to ensure Australia’s internationally celebrated species doesn’t die out.

Koala conservation must take priority over land clearing, regardless of the demand for that land. That principle might seem simple, but so far it’s proved agonisingly difficult.The Conversation

Dr Christine Hosking, Conservation Planner/Researcher, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Back from extinction: a world first effort to return threatened pangolins to the wild



Alex Braczkowski, Author provided

Alexander Richard Braczkowski, Griffith University; Christopher O’Bryan, The University of Queensland; Duan Biggs, Griffith University, and Raymond Jansen, Tshwane University of Technology

Pangolins are one of the most illegally trafficked animals on the planet and are suspected to be linked to the current coronavirus pandemic.

Pangolins are also one of the world’s most threatened species but new efforts are underway to reintroduce pangolins to parts of Africa where the animal has been extinct for decades.




Read more:
What Australian birds can teach us about choosing a partner and making it last


The reintroduction of pangolins has not been easy. But it’s vital to prevent this shy, mysterious creature from being lost forever.

A cute but threatened species

Pangolins are the only mammals wholly-covered in scales, which they use to protect themselves from predators. They can also curl up into a tight ball.

They eat mainly ants, termites and larvae which they pick up with their sticky tongue. They can grow up to 1m in length from nose to tail and are sometimes referred to as scaly anteaters.

But all eight pangolin species are classified as “threatened” under International Union for Conservation of Nature criteria.

There is an unprecedented demand for their scales, primarily from countries in Asia and Africa where they are used in food, cultural remedies and medicine.

Between 2017 and 2019, seizures of pangolin scales tripled in volume. In 2019 alone, 97 tons of pangolin scales, equivalent to about 150,000 animals, were reportedly intercepted leaving Africa.

There is further evidence of the illegal trade in pangolin species openly on social media platforms such as Facebook.

The intense global trafficking of the species means the entire order (Pholidota) is threatened with extinction. For example, the Temminck’s pangolins (Smutsia temminckii) went extinct in South Africa’s KwaZulu Natal Province three decades ago.

Reintroduction of an extinct species

Each year in South Africa the African Pangolin Working Group (APWG) retrieves between 20 and 40 pangolins through intelligence operations with security forces.

These pangolins are often-traumatised and injured and are admitted to the Johannesburg Wildlife Veterinary Hospital for extensive medical treatment and rehabilitation before they can be considered for release.

In 2019, seven rescued Temminck’s pangolins were reintroduced into South Africa’s Phinda Private Game Reservein the KwaZulu Natal Province.

Nine months on, five have survived. This reintroduction is a world first for a region that last saw a viable population of this species in the 1980s.

During the release, every individual pangolin followed a strict regime. They needed to become familiar with their new surroundings and be able to forage efficiently.

Pangolins curl up into a tight ball of scales.
Alex Braczkowski

Previous releases, including early on in South Africa and in other countries such as the Philippines, the Democratic Republic of the Congo and Thailand had minimal post-release monitoring.

Pangolins released immediately following medical treatment had a low level of survival for various reasons, including inability to adapt to their release sites.

A ‘soft release’ in to the wild

The process on Phinda game reserve involved a more gentle ease into re-wilding a population in a region that had not seen pangolins for many decades.

The soft release had two phases:

  1. a pre-release observational period
  2. an intensive monitoring period post release employing GPS satellite as well as VHF tracking tags.
A satellite tag is fitted to each pangolin before release and transmits its location on an hourly basis.
Alex Braczkowski

The pre-release period lasted between two to three weeks and were characterised by daily walks (three to five hours) of individuals on the reserves. These walks were critical for acclimatising individuals to the local habitat, its sounds, smells and possible threats. It also helped them source suitable and sufficient ant and termite species for food.

Following that, the post release period of two to three months involved locating released pangolins daily at first, and then twice per week where they were weighed, a rapid health assessment was made and habitat features such as burrows and refuges monitored.

Phinda reserve manager Simon Naylor said:

A key component of the post release period was whether individuals gained or maintained their weight.

The way the animals move after release also reveals important clues to whether they will stay in an area; if they feed, roll in dung, enter burrows. Much of this behaviour indicates site fidelity and habitat acceptance.




Read more:
No, Aussie bats won’t give you COVID-19. We rely on them more than you think


Following nine months of monitoring and tracking, five of the seven survived in the region. One died of illness while the other was killed by a Nile crocodile.

Released pangolins are located at burrows like this one.
Alex Braczkowski

Why pangolin reintroduction is important

We know so little about this group of mammals that are vastly understudied and hold many secrets yet to be discovered by science but are on the verge of collapse.

The South African and Phinda story is one of hope for the Temminck’s pangolin where they once again roam the savanna hills and plains of Zululand.

The process of relocating these trade animals back into the wild has taken many turns, failures and tribulations but, the recipe of the “soft release” is working.The Conversation

Alexander Richard Braczkowski, Research Associate, Griffith University; Christopher O’Bryan, Postdoctoral Research Fellow, School of Earth and Environmental Sciences, The University of Queensland; Duan Biggs, Senior Research Fellow Social-Ecological Systems & Resilience, Griffith University, and Raymond Jansen, Professor: Zoology & Ecology, Tshwane University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.