North Atlantic Right Whales


Advertisements

Undocumented plant extinctions are a big problem in Australia – here’s why they go unnoticed



Matchstick banksia (Banksia cuneate). There are only about 500 of these plants left in the wild at 11 different sites, with much of its habitat having been historically cleared for agriculture.
Andrew Crawford/Threatened Species Hub

David Coates, University of Western Australia

A recent survey on the world’s plants found a shocking number have gone extinct – 571 since 1750. And this is likely to be a stark underestimate. Not all plants have been discovered, so it’s likely other plants have gone extinct before researchers know they’re at risk, or even know they exist.

In Australia, the situation is just as dire. The Threatened Species Recovery Hub recently conducted two evaluations that aren’t yet published of extinct plants in Australia. They found 38 have been lost over the last 170 years, such as the Daintree River banana (Musa fitzalanii) and the fringed spider-orchid (Caladenia thysanochila).




Read more:
‘Plant blindness’ is obscuring the extinction crisis for non-animal species


But uncertainty about the number of plant extinctions, in addition to the 38 confirmed, is an ongoing concern.

Both studies pointed out the actual number of extinctions is likely to be far more than those recognised in formal lists produced by the Commonwealth and state and territory agencies.

For example, there is still a high rate of discovery of new plant species in Australia. More than 1,600 plants were discovered between 2009 and 2015, and an estimated 10% are still yet to be discovered.

The extinction of Australian plants is considered most likely to have occurred in areas where there has been major loss and degradation of native bushland. This includes significant areas in southern Australia that have been cleared for agriculture and intensive urbanisation around major cities.

Many of these extinct plants would have had very restricted geographic ranges. And botanical collections were limited across many parts of Australia before broad scale land clearing and habitat change.

Why extinction goes undocumented

There is already one well recognised Australian plant extinction, a shrub in Phillip Island (Streblorrhiza speciosa), which was never formally recognised on any Australian threatened species list.

Black magic grevillea (Grevilla calliantha) is known from only six populations within a range of 8 square kilometres. In the wild the species is threatened by frequent fire, habitat loss, invasive weeds, herbicide overspray, grazing animals and phytophthora dieback.
Dave Coates

Researchers also note there are Australian plants that are not listed as extinct, but have not been collected for 50 years or more.

While undocumented extinction is an increasing concern, the recent re-assessment of current lists of extinct plants has provided a more positive outcome.

The re-assessment found a number of plants previously considered to be extinct are not actually extinct. This includes plants that have been re-discovered since 1980, and where there has been confusion over plant names. Diel’s wattle (Acacia prismifolia), for instance, was recently rediscovered in Western Australia.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


A significant challenge for accurately assessing plant extinction relates to the difficulties in surveying and detecting them in the Australian landscapes.

Many have histories associated with fire or some other disturbance. For example, a number of plants spend a significant part of their time as long-lived seeds – sometimes for decades – in the soil with nothing visible above ground, and with plants only appearing for a few years after a fire.

But by far, the greatest reason for the lack of information is the shortage of field surveys of the rare plants, and the availability of botanists and qualified biologists to survey suitable habitat and accurately identify the plants.

Purple-wood wattle (Acacia carneorum) is slow growing and rarely produces viable seed. Threats are not well understood but grazing by livestock and rabbits is likely to impact on the species.
Andrew Denham

What we’ve learnt

The continuing decline of Australia’s threatened plants suggests more extinctions are likely. But there have been important achievements and lessons learnt in dealing with the main causes of loss of native vegetation.

Our understanding of plant extinction processes – such as habitat loss, habitat degradation, invasive weeds, urbanisation, disease and climate change – is improving. But there is still a significant way to go.




Read more:
How I discovered the Dalveen Blue Box, a rare eucalypt species with a sweet, fruity smell


One challenge in dealing with the causes of Australian plant extinction is how to manage introduced diseases.

Two plant diseases in particular are of major concern: Phytophthora dieback, a soil-borne water mould pathogen, and Myrtle rust, which is spread naturally by wind and water.

Both diseases are increasingly recognised as threats, not only because of the impact they are already having on diverse native plant communities and many rare species, but also because of the difficulties in effective control.

Two Australian rainforest tree species Rhodomyrtus psidioides and Rhodamnia rubescens were recently listed as threatened under the NSW legislation because of myrtle rust.

Native guava (Rhodomyrtus psidioides) A tree species around the margins of rainforest between the NSW and the QLD border. The species is has now been listed as Critically Endangered. Surveys of rainforest areas infected with Myrtle Rust found that 50 to 95% of native guava trees were killed by the disease within a few years.
Zaareo/Wikimedia

While extinction associated with disease is often rapid, some individual plants may survive for decades in highly degraded landscapes, such as long-lived woody shrubs and trees. These plants will ultimately go extinct, and this is often difficult to communicate to the public.

While individual species will continue to persist for many years in highly disturbed and fragmented landscapes, there is little or no reproduction. And with their populations restricted to extremely small patches of bush, they’re vulnerable to ongoing degradation.




Read more:
How many species on Earth? Why that’s a simple question but hard to answer


In many such cases there is an “extinction debt”, where it may take decades for extinction to occur, depending on the longevity of the plants involved.

But it’s not all doom and gloom. A recent study found of the 418 threatened Australian plants showing ongoing decline, 83% were assessed as having medium to high potential for bouncing back.

And with long-term investment and research there are good prospects of saving the majority of these plants.The Conversation

David Coates, Adjunct Professor and Research Associate, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We must rip up our environmental laws to address the extinction crisis



The Christmas Island pipistrelle (Pipistrellus murrayi) became extinct in 2009.
Lindy Lumsden

Don Driscoll, Deakin University; Desley Whisson, Deakin University; Euan Ritchie, Deakin University; Mike Weston, Deakin University; Raylene Cooke, Deakin University, and Tim Doherty, Deakin University

Humans are causing the Earth’s sixth mass extinction event, with an estimated one million species at risk of extinction.

Addressing this crisis requires transformative change, including more effective environmental law and implementation.

Improved legislation is one of five main levers for realising change identified in the recent United Nation’s global biodiversity report and the key lesson arising from the Senate’s interim report into Australia’s faunal extinction crisis.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


The Senate’s interim report, based on 420 submissions and five hearings, shows Australia is a world leader in causing species extinctions, in part because Australia’s systems for conserving our natural heritage are grossly inadequate.

To allow the continued erosion of this continent’s spectacular and remarkable array of globally unique plants and animals is a travesty of the highest order.

Inadequate protections

One of the problems is species may decline from common to extinct quite rapidly – faster than the time it takes species to be listed as threatened under the federal Environment Protection and Biodiversity Conservation (EPBC) Act.

The Christmas Island forest skink was formally listed as a threatened species only four months before the last individual died in captivity, but 15 years after the decline was first reported.

Extinction of the forest skink, Bramble Cay melomys and Christmas Island pipistrelle between 2009 and 2014 may have been averted if the risk was formally recognised in a more timely manner and effective conservation actions, such as captive breeding programs, were implemented.

Currently, if a species is not listed, it is not a “matter of national environmental significance” and federal agency staff generally have no legal basis for acting to protect it.

The Christmas Island forest skink (left), Bramble Cay melomys (centre) and Christmas Island pipistrelle (right) all became extinct in 2009-14.
Left: Hal Cogger; centre: Queensland Department of Environment and Heritage Protection; right: Lindy Lumsden.

The black-throated finch has been listed as threatened on the EPBC Act for 14 years and during this time 600,000 ha of potential finch habitat has been destroyed. Worse still, five large coal mines, including the Carmichael Coal Mine, have been given approval (pending environmental conditions being met in Queensland) to clear more than 29,000 ha of black-throated finch habitat in one of its final strongholds, the Galilee Basin.

Coal mining will drive these finches into the critically endangered threat category, pushing them perilously close to extinction, and all with federal government approval.




Read more:
Why Adani’s finch plan was rejected, and what comes next


The controversial Toondah Harbour development in Brisbane is another example of how ministerial discretion can allow disastrous environmental outcomes. The project plans to build 3,600 apartments on wetlands that provide habitat for migratory waterbirds, including the critically endangered eastern curlew.

Despite being described as “clearly unacceptable” by the federal environment department and knocking it back twice, the minister allowed a third submission to proceed for further assessment.

It was reported this decision was made in the context of legal threats and donations from the developer in question. If true, this context would make it very difficult to make impartial decisions that protect biodiversity, as environmental law intends.

Increasing ministerial discretion was a key result of 2007 amendments to the EPBC act, which meant recovery plans were no longer required for threatened species.

The amendment allowed the minister to develop “conservation advices” instead of recovery plans. This amendment downgraded protections for threatened species because a minister can legally make decisions that are inconsistent with conservation advice, but not a recovery plan.




Read more:
It’s not worth wiping out a species for the Yeelirrie uranium mine


New environmental legislation

Based on these examples and many others that demonstrate the failings of current laws, the interim report concludes that we should rip up the EPBC act and develop stronger and more effective environmental legislation.

This includes establishing an independent Environmental Protection Agency to ensure enforcement of environmental laws, and, in a forward-looking addition by the Greens senators, an independent National Environmental Commission to monitor effectiveness of environmental legislation and propose improvements.

Australia needs a well-resourced, independent umpire for the environment, with powers to investigate environmental concerns and scrutinise government policy, akin to New Zealand’s Parliamentary Commissioner for the Environment. While Australia’s Threatened Species Commissioner is an excellent champion for the environment, this role provides no ability to question government actions regarding environmental protection and nature conservation.




Read more:
Australia’s species need an independent champion


Although replacing the EPBC act with new legislation may seem like a radical step to some (but not all), the interim Senate report, and the global UN report, have independently concluded major reform is essential. We are not in a moment of time when tweaking the current system will do the trick.

Changing Australia’s environmental legislation is a relatively minor update compared with the fundamental social and economic changes recommended by the UN report.

Such changes are already recommended by scientific societies like the Ecological Society of Australia, non-government organisations like Birdlife Australia and the Australian Conservation Foundation, and are demanded by a growing section of society. New, fit-for-purpose legislation must be enforceable, apolitical and responsive.




Read more:
Australia’s draft ‘Strategy for nature’ doesn’t cut it. Here are nine ways to fix it


Opinion polls show that the level of environmental concern is higher in Australia than in other countries , while 29% of ABC Vote Compass respondents ranked the environment as the most important issue, up from 9% in 2016.

This groundswell of environmental concern has spawned mass protest movements like Extinction Rebellion. Young Australians also have shown their concern. In March 2019, thousands of school students took part in 50 rallies across the country to protest against “the destruction of our future”.

Decisions about what and how much we buy, what we eat, how much we travel and by what means, and family size, all contribute to our environmental footprints, and are the fundamental instigators of the biodiversity crisis.

However, we must also look to our political leaders to support effective change. The simplest and most powerful action you can take to reverse the extinction crisis is to vote for a party with policies best aligned with credible scientific advice on how we can get out of this mess.The Conversation

Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Desley Whisson, Lecturer in Wildlife and Conservation Biology, School of Life and Environmental Sciences, Deakin University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Mike Weston, Associate Professor, Deakin University; Raylene Cooke, Associate Professor, Deakin University, and Tim Doherty, Alfred Deakin Post-doctoral Research Fellow, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Invasive species are Australia’s number-one extinction threat



Barking Owls are one of Australia’s 1,770 threatened or endangered species.
Navin/Flickr, CC BY-SA

Andy Sheppard, CSIRO and Linda Broadhurst, CSIRO

This week many people across the world stopped and stared as extreme headlines announced that one eighth of the world’s species – more than a million – are threatened with extinction.

According to the UN report from the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) which brought this situation to public attention, this startling number is a consequence of five direct causes: changes in land and sea use; direct exploitation of organisms; climate change; pollution; and invasion of alien species.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


It’s the last, invasive species, that threatens Australian animals and plants more than any other single factor.

Australia’s number one threat

Australia has an estimated 600,000 species of flora and fauna. Of these, about 100 are known to have gone extinct in the last 200 years. Currently, more than 1,770 are listed as threatened or endangered.

While the IPBES report ranks invasive alien species as the fifth most significant cause of global decline, in Australia it is a very different story.

Australia has the highest rate of vertebrate mammal extinction in the world, and invasive species are our number one threat.

Cats and foxes have driven 22 native mammals to extinction across central Australia and a new wave of decline – largely from cats – is taking place across northern Australia. Research has estimated 270 more threatened and endangered vertebrates are being affected by invasive species.

Introduced vertebrates have also driven several bird species on Norfolk Island extinct.

The effects of invasive species are getting worse

Although Australia’s stringent biosecurity measures have dramatically slowed the number of new invasive species arriving, those already here have continued to spread and their cumulative effect is growing.

Recent research highlights that 1,257 of Australia’s threatened and endangered species are directly affected by 207 invasive plants, 57 animals and three pathogens.

These affect our unique biodiversity, as well as the clean water and oxygen we breath – not to mention our cultural values.

When it comes to biodiversity, Australia is globally quite distinct. More than 70% of our species (69% of mammals, 46% of birds and 93% of reptiles) are found nowhere else on earth. A loss to Australia is therefore a loss to the world.

Some of these are ancient species like the Wollemi Pine, may have inhabited Australia for up to 200 million years, well before the dinosaurs.




Read more:
Wollemi pines are dinosaur trees


But invasive species are found in almost every part of Australia, from our rainforests, to our deserts, our farms, to our cities, our national parks and our rivers.

The cost to Australia

The cost of invasive species in Australia continue to grow with every new assessment.

The most recent estimates found the cost of controlling invasive species and economic losses to farmers in 2011-12 was A$13.6 billion. However this doesn’t include harm to biodiversity and the essential role native species play in our ecosystems, which – based on the conclusions of the IPBES report – is likely to cost at least as much, and probably far more.

Rabbits, goats and camels prevent native desert plant community regeneration; rabbits alone impacting over 100 threatened species. Rye grass on its own costs cereal farmers A$93M a year.

Aquaculture diseases have affected oysters and cost the prawn industry $43M.

From island to savannah

Globally, invasive species have a disproportionately higher effect on offshore islands – and in Australia we have more than 8,000 of these. One of the most notable cases is the case of the yellow crazy ants, which killed 15,000,000 red land crabs on Christmas Island.




Read more:
A tiny wasp could save Christmas Island’s spectacular red crabs from crazy ants


Nor are our deserts immune. Most native vertebrate extinctions caused by cats have occurred in our dry inland deserts and savannas, while exotic buffel and gamba grass are creating permanent transformation through changing fire regimes.

Australia’s forests, particularly rainforests, are also under siege on a number of fronts. The battle continues to contain Miconia weed in Australia – the same weed responsible for taking over 70% of Tahiti’s native forests. Chytrid fungus, thought to be present in Australia since 1970, has caused the extinction of at least four frog species and dramatic decline of at least ten others in our sensitive rainforest ecosystems.

Myrtle rust is pushing already threatened native Australian Myrtaceae closer to extinction, notably Gossia gonoclada, and Rhodamnia angustifolia and changing species composition of rainforest understories, and Richmond birdwing butterfly numbers are under threat from an invasive flower known as the Dutchman’s pipe.

Australia’s rivers and lakes are also under increasing domination from invasive species. Some 90% of fish biomass in the Murray Darling Basin are European carp, and tilapia are invading many far north Queensland river systems pushing out native species .

Invasive alien species are not only a serious threat to biodiversity and the economy, but also to human health. The Aedes aegypti mosquito found in parts of Queensland is capable of spreading infectious disease such as dengue, zika, chikungunya and yellow fever.

And it’s not just Queensland that is under threat from diseases spread by invasive mosquitoes, with many researchers and authorities planning for when, not if, the disease carrying Aedes albopictus establishes itself in cooler and southern parts of Australia.




Read more:
Stowaway mozzies enter Australia from Asian holiday spots – and they’re resistant to insecticides


What solutions do we have?

Despite this grim inventory, it’s not all bad news. Australia actually has a long history of effectively managing invasive species.

Targeting viruses as options for controlling rabbits, carp and tilapia; we have successfully suppressed rabbit populations by 70% in this way for 50 years.

Weeds too are successful targets for weed biological control, with over a 65% success rate controlling more than 25 targets.

The IPBES report calls for “transformative action”. Here too Australia is at the forefront, looking into the potential of gene-technologies to suppress pet hates such as cane toads.




Read more:
We’ve cracked the cane toad genome, and that could help put the brakes on its invasion


Past and current invasive species programs have been supported by governments and industry. This has provided the type of investment we need for long-term solutions and effective policies.

Australia is better placed now, with effective biosecurity policies and strong biosecurity investment, than many countries. We will continue the battle against invasive species to stem biodiversity and ecosystem loss.The Conversation

Andy Sheppard, Research Director CSIRO Health & Biosecurity, CSIRO and Linda Broadhurst, Director, Centre for Australian National Biodiversity Research, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A report claims koalas are ‘functionally extinct’ – but what does that mean?



Koalas are facing serious threats in the wild.
Mathias Appel/Flickr

Christine Adams-Hosking, The University of Queensland

Today the Australian Koala Foundation announced they believe “there are no more than 80,000 koalas in Australia”, making the species “functionally extinct”.

While this number is dramatically lower than the most recent academic estimates, there’s no doubt koala numbers in many places are in steep decline.

It’s hard to say exactly how many koalas are still remaining in Queensland, New South Wales, Victoria, South Australia and the Australian Capital Territory, but they are highly vulnerable to threats including deforestation, disease and the effects of climate change.

Once a koala population falls below a critical point it can no longer produce the next generation, leading to extinction.




Read more:
Koalas sniff out juicy leaves and break down eucalypt toxins – it’s in their genome


What does ‘functionally extinct’ mean?

The term “functionally extinct” can describe a few perilous situations. In one case, it can refer to a species whose population has declined to the point where it can no longer play a significant role in their ecosystem. For example, it has been used to describe dingoes in places where they have become so reduced they have a negligible influence on the species they prey on.

Dingoes are top predators, and therefore can play a significant role in some ecosystems. Our innocuous, leaf-eating koala cannot be considered a top predator.

For millions of years koalas have been a key part of the health of our eucalyptus forests by eating upper leaves, and on the forest floor, their droppings contribute to important nutrient recycling. Their known fossil records date back approximately 30 million years so they may have once been a food source for megafauna carnivores.

Functionally extinct can also describe a population that is no longer viable. For example in Southport, Queensland, native oyster reef beds are functionally extinct because more than 99% of the habitat has been lost and there are no individuals left to reproduce.

Finally, functionally extinct can refer to a small population that, although still breeding, is suffering from inbreeding that can threaten its future viability. We know that at least some koala populations in urban areas are suffering in this way, and genetic studies on the Koala Coast, located 20kms south-east of Brisbane, show that the population is suffering from reduced genetic variation. In South East Queensland, koalas in some areas have experienced catastrophic declines




Read more:
Safe passage: we can help save koalas through urban design


We also know that koala populations in some inland regions of Queensland and New South Wales are affected by climate extremes such as severe droughts and heatwaves and have declined by as much as 80%.

Exhaustive multi-disciplinary koala research continues apace in an effort to find ways of protecting wild koala populations and ensuring that they remain viable now and into the future. Habitat loss, population dynamics, genetics, disease, diet and climate change are some key areas being studied.

How many koalas are there?

Koala researchers are often asked “how many koalas are in the wild?” It’s a hard question to answer. Koalas are not stationary, are patchily distributed throughout an extremely wide range encompassing urban and rural areas in four states and one territory, and are usually difficult to see.

To determine whether each population of koalas scattered across eastern Australia is functionally extinct would require a gargantuan effort.

Koalas are a key part of eucalyptus forests’ health.
Dave Hunt/Flickr, CC BY-NC-SA

In 2016, in an attempt to determine population trends for the koala within the four states, a panel of 15 koala experts used a structured, four-step question format to estimate bioregional population sizes of koalas, and changes in those sizes.

The estimated percentage of koala population loss in Queensland, New South Wales, Victoria and South Australia was 53%, 26%, 14% and 3%, respectively. The estimated total number of koalas for Australia was 329,000 (within a range of 144,000–605,000), with an estimated average decline of 24% over the past three generations and the next three generations.

Since May 2012, koalas have been listed as vulnerable in Queensland, New South Wales and the Australian Capital Territory because populations in these regions have declined significantly or are at risk of doing so.

In the southern states of Victoria and South Australia, koala populations vary widely from abundant to low or locally extinct. Although not currently listed as vulnerable, these koalas are also experiencing a range of serious threats, including low genetic diversity.

To date, the present “vulnerable” listing has not achieved any known positive results for koala populations in Queensland and New South Wales. In fact, recent research invariably shows the opposite.




Read more:
Koalas can learn to live the city life if we give them the trees and safe spaces they need


This is because the key threats to koalas remain, and are mostly increasing. The primary threat is habitat loss. Koala habitat (primarily eucalyptus woodlands and forests) continues to rapidly diminish, and unless it is protected, restored, and expanded, we will indeed see wild koala populations become “functionally extinct”. We know what comes after that.The Conversation

Christine Adams-Hosking, Honorary Research Fellow, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fixing Australia’s extinction crisis means thinking bigger than individual species



The endangered Cumberland Plain Woodland is an ecological community that have shrunk to 6% of their original area.
Pete the Poet/Flickr, CC BY-SA

Stuart Collard, University of Adelaide; Patrick O’Connor, and Thomas Prowse, University of Adelaide

The world’s largest assessment of biodiversity recently shared the alarming news that 1 million species are under threat of extinction.

Australia’s extinction record is poor compared to the rest of the world, and our investment into conservation doesn’t do enough to restrain the growing crisis.

Currently, 511 animal species, 1,356 plant species and 82 distinct “ecological communities” – naturally occurring groups of native plants, animals and other organisms – are listed as nationally threatened in Australia. And these numbers are increasing.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


While much conservation effort focuses on protecting individual species, we are failing to protect and restore their habitats.

Our ongoing research into environmental investment programs shows that current levels of investment do not even come close to matching what’s actually needed to downgrade threatened ecosystems.

One of the programs we evaluated was the 20 Million Trees Program, a part of the Australian government’s National Landcare Program. For example, we analysed investment targeted at the critically endangered Peppermint Box Grassy Woodlands of South Australia.

Fewer than three square kilometres of woodland were planted. That’s less than 1% of what was needed to move the conservation status of these woodlands by one category, from critically endangered to endangered.

Many Australian species live in endangered woodlands.
Shutterstock

Restoring communities

Conservation efforts are often focused on species – easily understood parts of our complex and interrelated ecosystems.

In recent years, some effective measures have been put in place to conserve species that are teetering on the edge of extinction. We have, for instance, seen the appointment of a Threatened Species Commissioner and the release of a Threatened Species Strategy and Prospectus.

But we don’t often hear about the 82 threatened ecological communities in which many of these species live.

Temperate eucalypt woodlands once covered vast areas of southern Australia before being cleared to make way for agriculture. The Peppermint Box Grassy Woodlands of South Australia, for instance, have been reduced to 2% of their former glory through land clearing and other forms of degradation.

These woodlands provide critical habitat for many plant and animal species, among them declining woodland birds such as the Diamond Firetail and Jacky Winter.

The habitat of Diamond Firetails is under threat.
Andreas Ruhz/Shutterstock

Focusing on the conservation and restoration of our threatened communities (rather than individual species) would create a better understanding of how much effort and investment is required to curb the extinction crisis and improve the outcomes of biodiversity restoration.




Read more:
How many species on Earth? Why that’s a simple question but hard to answer


A problem of scale

Large-scale restoration investment programs are often touted in politics, particularly when these have a national focus. And many recent restoration programs, such as the Environment Restoration Fund, National Landcare Program, Green Army and 20 Million Trees, are important and worthwhile.

But in the majority of cases the effort is inadequate to achieve the stated conservation objectives.

Underlying threats to the environment often remain – such as vegetation clearing, genetic isolation and competition from introduced pests and weeds – and biodiversity continues to decline.




Read more:
Another Australian animal slips away to extinction


The 20 Million Trees program, for example, is the most recent national initiative aimed at restoring native vegetation systems, attracting A$70 million in investment between 2014 and 2020.

To place the scale of this investment into context, we analysed the impact of the 20 Million Trees program on the critically endangered Peppermint Box Grassy Woodlands of South Australia.

The restoration priority for this community should be to enhance the condition of existing remnant areas. But improving its conservation status would also require more effort to increase the area of land the woodland covers.

Even if the full six-year budget for 20 Million Trees (A$70 million) was used to replant only this type of woodland, it would still fall short of upgrading its conservation status to endangered. We estimate that moving the community up a category would require a minimum investment of A$150 million, excluding land value.

And Peppermint Box Grassy Woodland is just one of the threatened ecological communities listed for conservation. There are 81 others.




Read more:
An end to endings: how to stop more Australian species going extinct


Although any effort to improve the status of threatened ecosystems (and species) is important, this example shows how current levels of effort and investment are grossly inadequate to have any substantial impact on threatened communities and the species that live there.

Our estimates relate to how restoration activities affect land cover. But ensuring they are also of adequate quality would need more long-term investment.

Boosting investment

Investment in biodiversity conservation in Australia is falling while the extinction crisis is worsening.

Protecting and restoring ecological communities will preserve our unique native biodiversity and develop an environment that sustains food production and remains resilient to climate change. But failure to invest now will lead to extinctions and the collapse of ecosystems.

To make genuine inroads and have an enduring impact on Australian threatened species and ecosystems, restoration programs must be clear on the amount they expect to contribute to conservation and restoration objectives, along with co-benefits like carbon sequestration.

The programs must be at least an order of magnitude larger and be structured to produce measurable outcomes.The Conversation

Stuart Collard, Research Fellow, The Centre for Global Food and Resources, University of Adelaide; Patrick O’Connor, Associate Professor, and Thomas Prowse, Postdoctoral research fellow, School of Mathematical Sciences, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.