Doctors and farmers turn up heat on Morrison ahead of Glasgow


Michelle Grattan, University of CanberraMultiple doctors’ organisations, led by the Australian Medical Association, and a major farm lobby have called on the federal government to boost Australia’s climate change ambition, as pressure mounts on Scott Morrison and Barnaby Joyce to finalise a deal ahead of the Glasgow conference.

In an open letter to the Prime Minister, the AMA, Doctors for the Environment Australia and many of the country’s medical colleges say: “Medical leaders across the country are calling on your government to urgently take much greater action to avert a further deterioration of the current climate crisis”.

Meanwhile, a report from economic consultants Ernst & Young commissioned by Farmers for Climate Action, which says it has more than 6000 farming supporters, lays out a pathway to zero emissions by 2040 without shrinking Australia’s agriculture, the cattle herd or the sheep flock.

The calls come as Morrison prepares to visit Washington next week for the meeting of the QUAD – leaders of the US, Japan, India and Australia – which will focus on security issues.

While there, Morrison will have a bilateral meeting with President Joe Biden at which climate change and the Glasgow conference would be expected to figure prominently.

Australia is under strong pressure from the US to embrace a net-zero by 2050 target, and to improve its short term ambition.

Morrison and Joyce are in negotiations about what Australia can put forward for Glasgow. But these are not expected to reach an outcome before Morrison leaves for Washington, according to sources.

The doctors’ letter says that with the conference weeks away, “Australia must significantly lift its commitment to the global effort to bring climate change under control in order to save lives and protect health”.

The letter is pointed in saying: “Australia must talk less about aspiration, and focus on firm and binding commitments that are aligned with the science”. The AMA and other medical groups are mapping a path towards emissions reductions in their sector.

“As doctors, we understand the imminent health threats posed by climate change and have seen them already emerge in Australia,” the letter says, referencing the 2019-20 bushfires, saying “that climate disaster” took more than 30 lives as a direct result of the fires.

The doctors’ organisations called on the government to:

  • commit to an ambitious national plan to protect health by cutting emissions this decade, including “significantly increasing Australia’s Nationally Determined Contribution to the Paris Agreement … in line with limiting global warming to 1.5 degrees Celsius.
  • develop a national climate change and health strategy to facilitate planning for future climate change health impacts
  • establish a national Sustainable Healthcare Unit to support environmentally sustainable practice in healthcare and reduce the sector’s own significant emissions.

Medical colleges signing the letter were: The Australian and New Zealand College of Anaesthetists, The Royal Australian College of General Practitioners, The Australian College of Rural and Remote Medicine, The College of Intensive Care Medicine of Australia and New Zealand, The Royal Australasian College of Medical Administrators, The Royal Australian and New Zealand College of Psychiatrists, The Royal Australasian College of Physicians, The Royal Australian and New Zealand College of Obstetricians and Gynaecologists, The Royal Australian and New Zealand College of Ophthalmologists, and the Australasian College for Emergency Medicine.

Signatories to the AMA letter.
AMA, Author provided

The Farmers for Climate Action group says in a statement that “farming families do not want to miss the opportunities good climate policy presents for them”.

The consultants’ report includes methods of reducing net emissions such as improved pasture management, selective breeding, feed supplements which reduce stock’s methane output, and “carbon and biodiversity” crops.

“Much of what needs to be happening – planting trees and ground cover on non-productive land and within productive systems, adopting best practice grazing management – is already underway. We just need to scale it up,” the group says.

A case study in the Queensland region of Maranoa (where deputy Nationals leader and agriculture minister David Littleproud has his seat) found an extra 14,000-17,000 jobs and $2 billion to $2.4 billion could be added to the local economy over the next decade while agriculture reduced its net emissions.

Farmers for Climate Action is urging:

  • expanding payments to farmers for biodiversity work into a nationwide program
  • funding research and development for methane emissions reduction technologies
  • strong emissions cuts across energy and transport this decade, to allow all the abatement pathways to achieve their full potential.

Australia has about 83.000 farm businesses.

The group notes research by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) showing climate change is already costing the average Australian farming family nearly $30,000 a year.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Australian farmers are adapting well to climate change, but there’s work ahead


PETER LORIMER/AAP

Neal Hughes, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)Australian farmers have proven their resilience, rebounding from drought and withstanding a global pandemic to produce record-breaking output in 2020-21.

But while the pain of drought is fading from view for some, the challenge of a changing climate continues to loom large.

Farmers have endured a poor run of conditions over the last 20 years, including a reduction in average rainfall (particularly in southern Australia during the winter cropping season) and general increases in temperature.

While these trends relate to climate change, uncertainty remains over how they will develop, particularly over how much rain or drought farmers will face.

Research published today by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) examines the effects of past and potential future changes in climate, and sets out how productivity gains to date have been helping farmers adapt to the drier and hotter conditions.

Conditions have been tough

The research examines the effect on farms of climate conditions over the past 20 years, compared to the preceding 50 years.

Holding other factors constant (including commodity prices and technology) ABARES estimates the post-2000 shift in conditions reduced farm profits by an average of 23%, or around A$29,000 per farm per year.




Read more:
Climate change since 2000 has cut farm profits 22%


As with past research, these effects have been strongest among cropping farmers in south-eastern and southern-western Australia, with impacts of over 50% observed in some of the most severely affected areas.


Effect of 2001 to 2020 climate conditions on average farm profit

Simulated broadacre farm profit with current (2015–16 to 2018–19) farms and commodity prices and recent (2000–01 to 2019–20) climate conditions. Interpolated farm-level percentage changes relative to 1949–50 to 1999–2000 climate.
ABARES farmpredict model (Hughes, Lu et al. 2021)

Farmers have been adapting

While these changes in conditions have been dramatic, farmers’ adaptation has been equally impressive.

After controlling for climate, farm productivity (the output from a given amount of land and other inputs) has climbed around 28% since 1989, with a much larger 68% gain in the cropping sector.

These gains have offset the adverse climate conditions and along with increases in commodity prices have allowed farmers to maintain and even increase average production and profit levels over the last decade.

While productivity growth in agriculture is nothing new, the recent gains have been especially focused on adapting to drier and hotter conditions.

Within the cropping sector, for example, a range of new technologies and practices have emerged to better utilise soil moisture to cope with lower rainfall.

As a result, Australian farmers have produced remarkable harvests making use of limited rain, particularly in Western Australia.

Adaptation has also involved movement of traditional Australian cropping zones, increasing cropping in higher rainfall coastal areas, and reducing cropping in marginal in-land areas.

Climate change could make conditions tougher

While climate models generally project a hotter and drier future, a wide range of outcomes are possible, particularly for rainfall.

Climate projections suggest that nationally farmers could experience reductions in average winter season rainfall of 3% to 30% by 2050 (compared to 1950-2000).

The study simulates the effect of future climate change scenarios with current farm technology and no further productivity gains.

As such, these scenarios are not a prediction, but an indication of which regions and sectors might be under the greatest pressure to adapt.

For example, under most scenarios cropping farmers in Western Australia will face more pressure than those in eastern Australia.

Livestock farms will also face more pressure under high emissions scenarios as they are especially impacted by higher temperatures.

Generally, inland low-rainfall farming areas are expected to face greater challenges than regions closer to the coast.


Simulated change in farm profits relative to historical (1950 to 2000) climate

Change in simulated average farm profit for broadacre farms, assuming current commodity prices (2015–16 to 2018–19), and current farm technology (no adaptation), relative to historical climate conditions (1949–50 to 1999–2000). Bars show minimum, maximum and average across the GCMs for each scenario.
Source: ABARES farmpredict model (Hughes, Lu et al. 2021)

There is more work ahead

Recent experience shows that productivity growth can help offset the impact of a changing climate.

However, there remains uncertainty over how far technology can push farm efficiency beyond current levels.

Further, even if technology can offset climate impacts, other exporting nations could still become more competitive relative to Australia, if they are less affected by climate change or can adapt faster.

Here, investment in research and development remains crucial, including efforts to improve the productivity and reduce the carbon footprint of existing crop and livestock systems, along with research into more transformational responses to help diversify farm incomes.

Farmland can be repurposed.
Mick Tsikas

This could include for example, carbon and biodiversity farming, plantation forestry and the use of land to produce renewable energy.

Carbon and biodiversity farming schemes are the subject of ongoing research and policy trials, and already we have seen farmers generate significant revenue from carbon farming.

Uncertainty over the future climate, especially rainfall, remains a key constraint on adaptation. Efforts to refine and better communicate climate information through initiatives such as Climate Services for Agriculture could help farmers and governments make more informed decisions.

While the future is still highly uncertain, the challenge of adapting to climate change is here and now.

Significant resources have been committed in this area, including the Australian government’s Future Drought Fund.

We need to make the most of these investments to prepare for whatever the future holds.The Conversation

Neal Hughes, Senior Economist, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Morrison government plan to scrap water buybacks will hurt taxpayers and the environment



Shutterstock

Quentin Grafton, Crawford School of Public Policy, Australian National University

The Morrison government today declared it will axe buybacks of water entitlements from irrigators, placating farmers who say the system has damaged their livelihood and communities.

Instead, Water Minister Keith Pitt says the government will scale up efforts to save water by upgrading infrastructure for farming irrigators in the Murray Darling Basin.

The move will anger environmentalists, who say water buybacks are vital to restoring flows to Australia’s most important river system. It also contradicts findings from the government’s own experts this week who said farm upgrades increase water prices more than buyback water recovery.

The government has chosen a route not backed by evidence, and which will deliver a bad deal to taxpayers and the environment.

A farmer stands in the dry river bed of the Darling River
The government will no longer buy water from farmers for the environment.
Dean Lewins/AAP

A brief history of water buybacks

Farmers along the Murray Darling are entitled to a certain amount of river water which they can use or sell. In 2008, the federal Labor government began buying some of these entitlements in an open-tender process known as “buybacks”. The purchased water was returned to the parched river system to boost the environment.

In 2012, the Murray Darling Basin Plan was struck. It stipulated that 2,750 billion litres of water would be bought back from irrigators and delivered to the environment every year. The buyback system was not universally supported – critics claim buybacks increase water prices, and hurt farmers by reducing the water available for irrigation.

The Coalition government came to office in 2013 and adopted a “strategic” approach to water buybacks. These purchases were made behind closed doors with chosen irrigators.




Read more:
Recovering water for the environment in the Murray-Darling: farm upgrades increase water prices more than buybacks


In a review of these buybacks released last month, the Australian National Audit Office found many of these taxpayer-funded deals were not good value for money.

The federal government ordered the review after controversy involving the 2017 purchase of water from two Queensland properties owned by Eastern Australia Agriculture.

The government paid A$80 million for the entitlements – an amount critics said was well over market value. The deal was also contentious because government frontbencher Angus Taylor was, before the purchase, a non-financial director of the company. The company also had links to the Cayman Islands tax haven.

Keith Pitt speaks in Parliament as Prime Minister Scott Morrison watches on
Water Minister Keith Pitt, pictured during Question Time, is the minister responsible for the new approach.
Mick Tsikas/AAP

Infrastructure subsidies: a flawed approach

The Coalition government is taking a different approach to recover water for the environment: subsidising water infrastructure on farms and elsewhere. This infrastructure includes lining ponds and possibly levees to trap and store water.

The subsidies have cost many billions of dollars yet recover water at a very much higher cost than reverse tenders. This approach also reduces the water that returns to streams and groundwater.




Read more:
Australia, it’s time to talk about our water emergency


The justification for water infrastructure subsidies is that they are supposedly less damaging to irrigation communities. But the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) concluded in a report published this week that on-farm water infrastructure subsidies, while beneficial for their participants, “push water prices higher, placing pressure on the wider irrigation sector”. This is the very sector the subsidies purport to help.

So why would the government expand the use of water infrastructure when it costs more and isn’t good value for money? The answer may lie in this finding from the ABARES report:

Irrigators who hold large volumes of entitlement relative to their water use (and are frequently net sellers of water allocations) may benefit from higher water prices, as this increases the value of their entitlements.

Farmers with limited entitlement holdings however may be adversely affected, as higher water prices increase their costs and lowers their profitability.

In other words, the “big end of town” benefits – at taxpayers’ expense – while the small-scale irrigators lose out.

Missing water

Adding insult to injury, the Wentworth Group of Concerned Scientists released a detailed report this week showing the basin plan is failing to deliver the water expected, even after accounting for dry weather. Some two trillion litres of water is not in the rivers and streams of the basin and appears to have been consumed – a volume that could be more than four times the water in Sydney Harbour.

The Wentworth Group says stream flows may be less than expected because environmental water recovery has been undermined by “water-saving” infrastructure, which reduces the amount of water that would otherwise return to rivers and groundwater.

This infrastructure, on which taxpayers have spent over A$4 billion, has not had the desired effect. Research has found those who receive infrastructure subsidies increased water extractions by more than those who did not receive subsidies. That’s because farmers who were using water more efficiently often planted thirstier crops.

Dusk at Menindee Lakes in the Murray Darling Basin
The government took a strategic approach to water buybacks in the Murray Darling Basin.
Shutterstock

We deserve better

It’s clear taxpayer dollars are much better spent buying back water entitlements, through open tenders, rather than subsidising water infrastructure. We can, and must, do much better with water policy.

Today, the federal government has doubled down on wasteful spending at taxpayer expense – in a time of a COVID-induced recession.

So what is on offer from the Morrison government? Continuing to ignore its own experts’ advice and delivering yet more ineffective subsidies for water infrastructure. Our rivers, our communities, and all Australians deserve much better.




Read more:
While towns run dry, cotton extracts 5 Sydney Harbours’ worth of Murray Darling water a year. It’s time to reset the balance


The Conversation


Quentin Grafton, Director of the Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s farmers want more climate action – and they’re starting in their own (huge) backyards



Shutterstock

Richard Eckard, University of Melbourne

The National Farmer’s Federation says Australia needs a tougher policy on climate, today calling on the Morrison government to commit to an economy wide target of net-zero greenhouse gas emission by 2050.

It’s quite reasonable for the farming sector to call for stronger action on climate change. Agriculture is particularly vulnerable to a changing climate, and the sector is on its way to having the technologies to become “carbon neutral”, while maintaining profitability.

Agriculture is a big deal to Australia. Farms comprise 51% of land use in Australia and contributed 11% of all goods and services exports in 2018–19. However, the sector also contributed 14% of national greenhouse gas emissions.

A climate-ready and carbon neutral food production sector is vital to the future of Australia’s food security and economy.

A tractor plowing a field.
Agriculture comprises 51% of Australia’s land use.
Shutterstock

Paris Agreement is driving change

Under the 2015 Paris Agreement, 196 countries pledged to reduce their emissions, with the goal of net-zero emissions by 2050. Some 119 of these national commitments include cutting emissions from agriculture, and 61 specifically mentioned livestock emissions.

Emissions from agriculture largely comprise methane (from livestock production), nitrous oxide (from nitrogen in soils) and to a lesser extent, carbon dioxide (from machinery burning fossil fuel, and the use of lime and urea on soils).




Read more:
UN climate change report: land clearing and farming contribute a third of the world’s greenhouse gases


In Australia, emissions from the sector have fallen by 10.8% since 1990, partly as a result of drought and an increasingly variable climate affecting agricultural production (for example, wheat production).

But the National Farmers’ Federation wants the sector to grow to more than A$100 billion in farm gate output by 2030 – far higher than the current trajectory of $84 billion. This implies future growth in emissions if mitigation strategies are not deployed.

Farm machinery spreading fertiliser
Farm machinery spreading fertiliser, which is a major source of agriculture emissions.
Shutterstock

Runs on the board

Players in Australia’s agriculture sector are already showing how net-zero emissions can be achieved.

In 2017, the Australian red meat sector committed to becoming carbon neutral by 2030. A number of red-meat producers have claimed to have achieved net-zero emissions including Arcadian Organic & Natural’s Meat Company, Five Founders and Flinders + Co.

Our research has shown two livestock properties in Australia – Talaheni and Jigsaw farms – have also achieved carbon neutral production. In both cases, this was mainly achieved through regeneration of soil and tree carbon on their properties, which effectively draws down an equivalent amount of carbon dioxide from the atmosphere to balance with their farm emissions.




Read more:
Intensive farming is eating up the Australian continent – but there’s another way


Other agricultural sectors including dairy, wool and cropping are actively considering their own emission reduction targets.

Carbon neutral wine is being produced, such as by Ross Hill, and Tulloch and Tahbilk.

Most of these examples are based on offsetting farm emissions – through buying carbon credits or regenerating soil and tree carbon – rather than direct reductions in emissions such as methane and nitrous oxide.

But significant options are available, or emerging, to reduce emissions of “enteric” methane – the result of fermentation in the foregut of ruminants such as cattle, sheep and goats.

Wine grapes growing on a vine
Some Australian wineries have gone carbon neutral.
Shutterstock

For example, livestock can be fed dietary supplements high in oils and tannins that restrict the microbes that generate methane in the animal’s stomach. Oil and tannins are also a byproduct of agricultural waste products such as grape marc (the solid waste left after grapes are pressed) and have been found to reduce methane emissions by around 20%.

Other promising technologies are about to enter the market. These include 3-NOP and Asparagopsis, which actively inhibit key enzymes in methane generation. Both technologies may reduce methane by up to 80%.

There are also active research programs exploring ways to breed animals that produce less methane, and raise animals that produce negligible methane later in life.

On farms, nitrous oxide is mainly lost through a process called “denitrification”. This is where bacteria convert soil nitrates into nitrogen gases, which then escape from the soil into the atmosphere. Options to significantly reduce these losses are emerging, including efficient nitrogen fertilisers, and balancing the diets of animals.

There is also significant interest in off-grid renewable energy in the agricultural sector. This is due to the falling price of renewable technology, increased retail prices for electricity and the rising cost to farms of getting connected to the grid.

What’s more, the first hydrogen-powered tractors are now available – meaning the days of diesel and petrol consumption on farms could end.

Wind turbine on a farm
Renewable energy on farms can be cheaper and easier than grid connection.
Yegor Aleyev/TASS/Sipa

More work is needed

In this race towards addressing climate change, we must ensure the integrity of carbon neutral claims. This is where standards or protocols are required.

Australian researchers have recently developed a standard for the red meat sector’s carbon neutral target, captured in simple calculators aligned with the Australian national greenhouse gas inventory. This allow farmers to audit their progress towards carbon neutral production.

Technology has moved a long way from the days when changing the diet of livestock was the only option to reduce farm emissions. However significant research is still required to achieve a 100% carbon neutral agriculture sector – and this requires the Australian government to co-invest with agriculture industries.

And in the long term, we must ensure measures to reduce emissions from farming also meet targets for productivity, biodiversity and climate resilience.




Read more:
IPCC’s land report shows the problem with farming based around oil, not soil


The Conversation


Richard Eckard, Professor & Director, Primary Industries Climate Challenges Centre, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Farmers’ climate denial begins to wane as reality bites


Sarah Ann Wheeler, University of Adelaide and Céline Nauges, Inra

Australia has been described as the “front line of the battle for climate change adaptation”, and our farmers are the ones who have to lead the charge. Farmers will have to cope, among other pressures, with longer droughts, more erratic rainfall, higher temperatures, and changes to the timing of seasons.

Yet, puzzlingly enough to many commentators, climate denial has been widespread among farmers and in the ranks of the National Party, which purports to represent their interests.




Read more:
The Nationals have changed their leader but kept the same climate story


Back in 2008, only one-third of farmers accepted the science of climate change. Our 2010-11 survey of 946 irrigators in the southern Murray-Darling Basin (published in 2013) found similar results: 32% accepted that climate change posed a risk to their region; half disagreed; and 18% did not know.

These numbers have consistently trailed behind the wider public, a clear majority of whom have consistently accepted the science. More Australians in 2018 accepted the reality of climate change than at almost any time, with 76% accepting climate change is occurring, 11% not believing in it and 13% being unsure.

Yet there are signs we may be on the brink of a wholesale shift in farmers’ attitudes towards climate change. For example, we have seen the creation of Young Carbon Farmers, Farmers for Climate Action, the first ever rally on climate change by farmers in Canberra, and national adverts by farmers on the need for climate action. Since 2016 the National Farmers Federation has strengthened its calls for action to reduce greenhouse emissions.

Our latest preliminary research results have also revealed evidence of this change. We surveyed 1,000 irrigators in 2015-16 in the southern Murray-Darling Basin, and found attitudes have shifted significantly since the 2010 survey.

Now, 43% of farmers accept climate change poses a risk to their region, compared with just 32% five years earlier. Those not accepting correspondingly fell to 36%, while the percentage who did not know slightly increased to 21%.

Why would farmers deny the science?

There are many factors that influence a person’s denial of climate change, with gender, race, education and age all playing a part. While this partly explains the attitudes that persist among farmers (who tend to be predominantly male, older, Caucasian, and have less formal education), it is not the full story.

The very fact that farmers are on the front line of climate change also drives their climate change denial. For a farmer, accepting the science means facing up to the prospect of a harsher, more uncertain future.

Yet as these changes move from future prospect to current reality, they can also have a galvanising effect. Our survey results suggest farmers who have seen their farm’s productivity decrease over time are more likely to accept the science of climate change.

Many farmers who have turned to regenerative, organic or biodynamic agriculture talk about the change of mindset they went through as they realised they could no longer manage a drying landscape without major changes to their farming practices.




Read more:
Farmers experiencing drought-related stress need targeted support


In addition, we have found another characteristic that is associated with climate change denial is whether farmers have identified a successor for their farm. Many farmers desire to turn their farm over to the next generation, hopefully in a better state than how they received the farm. This is where the psychological aspect of increased future uncertainty plays an important role – farmers don’t want to believe their children will face a worse future on the farm.

We all want our children to have better lives than our own, and for farmers in particular, accepting climate change makes that very challenging. But it can also prompt stronger advocacy for doing something about it before it’s too late.

What can we do?

Whether farmers do or do not accept climate change, they all have to deal with the uncertainty of weather – and indeed they have been doing so for a very long time. The question is, can we help them to do it better? Given the term “climate change” can be polarising, explicit climate information campaigns will not necessarily deliver the desired results.




Read more:
To help drought-affected farmers, we need to support them in good times as well as bad


What farmers need are policies to help them manage risk and improve their decision-making. This can be done by focusing on how adaptation to weather variability can increase profitability and strengthen the farm’s long-term viability.

Farming policy should be more strategic and forward-thinking; subsidies should be removed for unsustainable practices; and farmers should be rewarded for good land management – both before and during droughts. The quest remains to minimise the pain suffered by all in times of drought.The Conversation

Sarah Ann Wheeler, Professor in Water Economics, University of Adelaide and Céline Nauges, Research Director, Inra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We need more carbon in our soil to help Australian farmers through the drought


File 20181011 72127 z4wp9y.jpg?ixlib=rb 1.1
Healthy soils can hold water even during droughts.
Evie Shaffer/Unsplash

Nanthi Bolan, University of Newcastle

Australia has never been a stranger to droughts, but climate change is now super-charging them.

Besides taking a toll on human health, droughts also bake the earth. This means the ground holds less water, creating a vicious cycle of dryness.

Our research has investigated ways to improve the health and structure of soil so it can hold more water, even during droughts. It’s vital to help farmers safeguard their soil as we adapt to an increasingly drought-prone climate.




Read more:
Australia moves to El Niño alert and the drought is likely to continue


Soil moisture is key

The immediate effect of drought is complete loss of soil water. Low moisture reduces soil health and productivity, and increases the loss of fertile top soil through wind and water erosion.

To describe how we can improve soil health, we first need to explain some technical aspects of soil moisture.

Soil with good structure tends to hold moisture, protecting soil health and agricultural productivity.
Author provided

Soil moisture is dictated by three factors: the ability of the soil to absorb water; its capacity to store that water; and the speed at which the water is lost through evaporation and runoff, or used by growing plants.

These three factors are primarily determined by the proportions of sand, silt and clay; together these create the “soil structure”. The right mixture means there are plenty of “pores” – small open spaces in the soil.




Read more:
How to fight desertification and drought at home and away


Soils dominated by very small “micropores” (30-75 micrometres), such as clay soil, tend to store more water than those dominated by macropores (more than 75 micrometers), such as sandy soil.

If the balance is skewed, soil can actually repel water, increasing runoff. This is a major concern in Australia, especially in some areas of Western Australia and South Australia.

Improving soil structure

Good soil structure essentially means it can hold more water for longer (other factors include compaction and surface crust).

Farmers can improve soil structure by using minimum tillage, crop rotation and return of crop residues after harvest.

Another important part of the puzzle is the amount of organic matter in the soil –it breaks down into carbon and nutrients, which is essential for absorbing and storing water.

There are three basic ways to increase the amount of organic matter a given area:

  • grow more plants in that spot, and leave the crop and root residue after harvest

  • slow down decomposition by tilling less and generally not disturbing the soil more than absolutely necessary

  • apply external organic matter through compost, mulch, biochar and biosolids (treated sewage sludge).

Typically, biosolids are used to give nutrients to the soil, but we researched its impact on carbon storage as well. When we visited a young farmer in Orange, NSW, he showed us two sites: one with biosolids, and one without. The site with biosolids grew a bumper crop of maize the farmer could use as fodder for his cattle; the field without it was stunted.

The farmer told us the extra carbon had captured more moisture, which meant strong seedling growth and a useful crop.




Read more:
On dangerous ground: land degradation is turning soils into deserts


This illustrates the value of biowastes including compost, manure, crop residues and biosolids in capturing and retaining moisture for crop growth, reducing the impact of drought on soil health and productivity.

Improving soil health cannot happen overnight, and it’s difficult to achieve while in midst of a drought. But how farmers manage their soil in the good times can help prepare them for managing the impacts of the next drought when it invariably comes.


The author would like to thank Dr Michael Crawford, CEO of Soil CRC, for his substantial contribution to this article.The Conversation

Nanthi Bolan, Professor of Enviornmental Science, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Giving environmental water to drought-stricken farmers sounds straightforward, but it’s a bad idea


Erin O’Donnell, University of Melbourne and Avril Horne, University of Melbourne

Deputy Prime Minister Michael McCormack last week suggested the government would look at changing the law to allow water to be taken from the environment and given to farmers struggling with the drought.

This is a bad idea for several reasons. First, the environment needs water in dry years as well as wet ones. Second, unilaterally intervening in the way water is distributed between users undermines the water market, which is now worth billions of dollars. And, third, in dry years the environment gets a smaller allocation too, so there simply isn’t enough water to make this worthwhile.




Read more:
To help drought-affected farmers, we need to support them in good times as well as bad


In fact, the growing political pressure being put on environmental water holders to sell their water to farmers is exactly the kind of interference that bodies such as the Commonwealth Environmental Water Holder were established to avoid.

The environment always needs water

The ongoing sustainable use of rivers is based on key ecosystem functions being maintained, and this means that environmental water is needed in both wet and dry years. The objectives of environmental watering change from providing larger wetland inundation events in wet years, to maintaining critical refuges and basic ecosystem functions in dry years.

Prolonged dry periods cause severe stress to ecosystems, such as during the Millennium Drought when many Murray River red gums were sickened by salinity and lack of water. Environmental water is essential for ecosystem survival during these periods.

Under existing rules, environmental water holders can sell and buy water so as to deliver maximum benefits at the places and times it is most needed.

But during dry years the environmental water holders receive the same water allocations as other users. So it’s very unlikely there will be any “spare” water during drought. During a dry period, the environment is in urgent need of water to protect endangered species and maintain basic ecosystem functions.

We should be cautious when environmental water is sold during drought, as this compromises the ability of environmental water holders to meet their objectives of safeguarding river health. When the funds from the sale are not used to mitigate the loss of the available water to the environment, this is even more risky.

Secure water rights support all water users

In response to McCormack’s suggestion, the National Irrigators’ Council argued that compulsorily acquiring water from the environment can actually hurt farmers who depend on the water market as a source of income or water during drought.

Water markets are underpinned by clear legal rights to water. In other words, the entitlements the environment holds are the same as those held by irrigators. If the government starts treating environmental water rights as barely worth the paper they’re printed on, farmers would have every reason to fear that their own water rights might similarly be stripped away in the future.

Maintaining the integrity of the water market is important for all participants who have chosen to sell water, based on reasonable expectations of how prices will hold up.

Can taking environmental water actually help farmers?

As federal Water Resources Minister David Littleproud noted this week, environmental water is only about 8% of total water allocations in storage throughout the Murray Darling Basin. In the southern basin, it is still only about 14%. This means that between 86% and 92% of water currently sitting in storage is already allocated to human use, including farming.

There are calls for the Commonwealth government to treat the drought as an emergency and to take (or “borrow”) water from environmental water holders. But the Murray-Darling Basin Plan already has specific arrangements in place for emergencies in which critical human water needs are threatened.

The current situation in New South Wales is not an emergency under the plan. Water resources across the northern Murray-Darling Basin are indeed low, but storages in the southern basin are still 50-75% full. Although many licence holders in NSW received zero water in July’s round of allocations, high-security water licences are at 95-100%. In northern Victoria, most high-reliability water shares on the Murray are at 71% allocation.

The situation can therefore be managed using existing tools, such as providing direct financial support to farming communities and buying water on the water market.

Environmental water is an investment, not a luxury

As Australia’s First Nations have known for millennia, a healthy environment is not an optional extra. It underpins the sustainability and security of the water we depend on. When river flows decline, the water becomes too toxic to use.




Read more:
Spring is coming, and there’s little drought relief in sight


Water has been allocated to the environment throughout the Murray-Darling Basin to prevent the catastrophic blue-green algal blooms and salinity problems we have experienced in the past. If we want safe, secure water supplies for people, livestock and crops, we need to keep these key river ecosystems alive and well during the drought.

In the past decade alone, Australia has spent A$13 billion of taxpayers’ money to bring water use in the Murray-Darling Basin back to sustainable levels. If we let our governments treat the environment like a “water bank” to spend when times get tough, this huge investment will have been wasted.The Conversation

Erin O’Donnell, Senior Fellow, Centre for Resources, Energy and Environment Law, University of Melbourne and Avril Horne, Research fellow, Department of Infrastructure Engineering, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Helping farmers and reducing car crashes: the surprising benefits of predators



File 20180409 114112 1max665.jpg?ixlib=rb 1.1
Whoosa vicious helpful predator? You are! Yes you are!
Sean Riley/Flickr, CC BY-SA

Christopher O’Bryan, The University of Queensland; Eve McDonald-Madden, The University of Queensland; James Watson, The University of Queensland, and Neil Carter, Boise State University

Humans may be Earth’s apex predator, but the fleeting shadow of a vulture or the glimpse of a big cat can cause instinctive fear and disdain. But new evidence suggests that predators and scavengers are much more beneficial to humans than commonly believed, and that their loss may have greater consequences than we have imagined.

Conflict between these species and people, coupled with dramatic habitat loss, is causing unprecedented predator and scavenger declines. Nearly three-fourths of all vulture species are on a downward spiral. African lions are projected to lose half of their range in the coming decades and leopards have lost upwards of 75% of their historic range. Many bat species are facing extinction.




Read more:
Extinction means more than a loss of species to Australia’s delicate ecosystems


In a recent paper in Nature Ecology & Evolution, we summarised recent studies across the globe looking at the services predators and scavengers can provide, from waste disposal to reducing car crashes.

The many roles our fanged friends play

Animals that eat meat play vital roles in our ecosystems. One of the most outstanding examples we found was that of agricultural services by flying predators, such as insectivorous birds and bats.

We found studies that showed bats saving US corn farmers over US$1 billion in pest control because they consume pest moths and beetles. Similarly, we found that without birds and bats in coffee plantations of Sulawesi, coffee profits are reduced by US$730 per hectare.




Read more:
Why do some graziers want to retain, not kill, dingoes?


It’s not just birds and bats that help farmers. In Australia, dingoes increase cattle productivity by reducing kangaroo populations that compete for rangeland grasses (even when accounting for dingoes eating cattle calves).

This challenges the notion that dingoes are solely vermin. Rather, they provide a mixture of both costs and benefits, and in some cases their benefits outweigh the costs. This is particularly important as dingoes have been a source of conflict for decades.




Read more:
Living blanket, water diviner, wild pet: a cultural history of the dingo


Predators and scavengers also significantly reduce waste in and around human habitation. This keeps down waste control costs and even reduces disease risk.

For example, golden jackals reduce nearly 4,000 tons of domestic animal waste per year in Serbia and over 13,000 tons across urban areas in Europe. Vultures can reduce over 20% of organic waste in areas of the Middle East. In India, vultures have been implicated in reducing rabies risk by reducing the carcasses that sustain the stray dog population.

One piece of research showed that if mountain lions were recolonised in the eastern United States, they would prey on enough deer to reduce deer-vehicle collisions by 22% a year. This would save 150 lives and more than US$2 billion in damages.

Weighing up the costs and benefits

Although these species provide clear benefits, there are well known costs associated with predators and scavengers as well. Many predators and scavengers are a source of conflict, whether it is perceived or real; particularly pertinent in Australia is the ongoing debate over the risk of shark attacks.




Read more:
FactFile: the facts on shark bites and shark numbers


These drastic costs of predators and scavengers are rare, yet they attract rapt media attention. Nevertheless, many predators and scavengers are rapidly declining due to their poor reputation, habitat loss and a changing climate.

It’s time for a change in the conservation conversation to move from simply discussing the societal costs of predators and scavengers to a serious discussion of the important services that these animals provide in areas we share. Even though we may rightly or wrongly fear these species, there’s no doubt that we need them.


The ConversationThe authors would like to acknowledge the contributions of Dr Hawthorne Beyer and Alexander Braczkowski.

Christopher O’Bryan, PhD Candidate, School of Earth and Environmental Sciences, The University of Queensland; Eve McDonald-Madden, Senior lecturer, The University of Queensland; James Watson, Professor, The University of Queensland, and Neil Carter, Assistant Professor, College of Innovation and Design, Boise State University

This article was originally published on The Conversation. Read the original article.

Australian farmers are adapting to climate change



File 20170516 11920 a9yps1

REUTERS/David Gray

Neal Hughes, Australian National University

2016-17 has been a great year for Australian farmers, with record production, exports and profits. These records have been driven largely by good weather, in particular a wet winter in 2016, which led to exceptional yields for major crops. The Conversation

Unfortunately, these good conditions go very much against the long-term trend. Recent CSIRO modelling suggests that changes in climate have reduced potential Australian wheat yields by around 27% since 1990.

While rising temperatures have caused global wheat yields to drop by around 5.5% between 1980 and 2008, the effects in Australia have been larger, as a result of major changes in rain patterns. Declines in winter rainfall in southern Australia have particularly hit major broadacre crops (like wheat, barley and canola) in the key southeastern and southwestern cropping zones. There is strong evidence that these changes are at least partly due to climate change.

Climate change is affecting farm productivity

A recent study by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) confirms that changes in climate have had a negative effect on the productivity of cropping farms, particularly in southwestern Australia and southeastern Australia.

In general, the drier inland parts of the cropping zone have been more heavily affected, partly because these areas are more sensitive to rainfall decline. Smaller effects have occurred in the wetter zones closer to the coast. Here less rain can have little effect on – and can even improve – crop productivity.

Key southwestern and southeastern agricultural zones have been especially impacted by climate change.
ABARES

Farmers are reacting

However, it’s not all bad news. The study finds that Australian farmers are making great strides in adapting to climate change.

Much has been written about the fact that farm productivity in Australia has essentially flatlined since the 1990s, after several decades of consistent growth. The ABARES research suggests that changes in climate go some way towards explaining this slowdown.

After controlling for climate, there has been relatively strong productivity growth on cropping farms over the past decade. However, while farms have been improving, these gains have been offset by deteriorating conditions. The net result has been stagnant productivity.


ABARES

Furthermore, there is evidence that this resurgence in productivity growth is a direct result of adaptation to the changing climate. Our study found that over the past decade cropping farms have improved productivity under dry conditions and minimised their exposure to climate variability.

This contrasts with the 1990s, when farms focused more on maximising performance in good conditions at the expense of increasing their exposure to drought.

Anecdotal evidence suggests that winter cropping farms have made a range of changes over the last decade, to better exploit soil moisture left from the summer period. The most obvious is the shift toward conservation tillage during the 2000s, where some or all of a previous crop’s residue (such as wheat stubble) is left in a field when planting the new crop.

It seems that farmers are adapting to new seasonal trends of rainfall, which for most cropping farms means less rain in winter and more in summer.

Is the Australian cropping belt moving south?

Previous research has suggested that the zone of Australia suitable for growing broadacre crops, known as the cropping belt, appears to be shifting south.

Our study found evidence to support this, with ABARES and ABS data showing increased cropping activity in the wetter southern fringe of the cropping belt in Western Australia and Victoria. At the same time, there have been declines in some more inland areas, which have been heavily affected by the climate downturn.

The cropping belt appears to be moving south. The blue represent increases in cropping farms in the 2000s relative to the 1990s, and red represents decreases.
ABARES, Author provided

These shifts may be partly due to other factors – such as commodity prices and technology – but it’s likely that climate is playing a role. Similar changes have already been observed in other agricultural sectors, including the shift of wine grapes into Tasmania in response to rising temperatures.

What does this mean for the future?

At present there remains much uncertainty over future rainfall patterns. While climate models and recent experience suggest a clear direction of change, there is little agreement over the magnitude.

On the positive side, we know that farmers are successfully adapting to the changes in climate and have been for some time. However, so far at least, farmers have only been able to tread water: improving productivity just fast enough to offset the decline in climate. To remain competitive, we need to find ways to improve productivity faster, especially if current climate trends continue or worsen.


Neal Hughes is Director, Water and Climate, at the Australian Bureau of Agricultural and Resource Economics and Sciences, and a visiting fellow at the Australian National University’s Crawford School of Public Policy.

Neal Hughes, Visiting Fellow, Australian National University

This article was originally published on The Conversation. Read the original article.

Here’s a good news conservation story: farmers are helping endangered ecosystems


David Lindenmayer, Australian National University; Chloe Sato, Australian National University; Dan Florance, Australian National University, and Emma Burns, Australian National University

There a many reasons to be unhappy about the state of the environment. But we’ve recently found some good news: a conservation program that works.

You probably haven’t heard of the Environmental Stewardship Program (ESP). It was a market-based agri-environment program that ran between 2007 and 2012, which funded farmers to conserve threatened ecosystems on their property. Land managers were given contracts for up to 15 years to deliver results.

Overall, 297 land managers will receive about A$152 million over roughly 18 years to implement their conservation management plans. The last of these contracts will end in 2027. No new funding rounds are expected.

There’s been a variety of market-based programs for conservation on farmland in Australia, but we don’t know what the total investment is to date. And we are not aware of scientific monitoring that demonstrates their impact.

A property conserving box gums as part of the program.
Author provided

Endangered ecosystems

The box gum grassy woodlands of eastern Australia are home to several hundred species of native birds, including the iconic superb and turquoise parrots, thousands of native plants (such as the chocolate lily that leaves a deliciously rich and sweet aroma in native pastures), and beautiful mammals like the squirrel glider.

Box gum grassy woodlands have been 95% to 99% cleared for wheat and sheep grazing and are listed as nationally critically endangered.

Box gum grassy woodland is found across eastern Australia.
Author provided.

Under the ESP, more than 150 farmers from southern New South Wales to southeast Queensland have been funded to conserve the box gum grassy woodland ecosystem. This is one of the largest projects of its type in the world.

Farmers undertake controlled grazing by livestock in woodland remnants, replant native woodland, avoid firewood harvesting, cease bushrock removal, and control weeds and feral animals.

But we can’t know if a conservation program is working unless we monitor it. Fortunately, soon after it started, the Australian National University was commissioned to design a monitoring program for the ESP. We have now been monitoring these efforts for six years – and the results are exciting.

Better for wildlife…

So far, the data show that the farmers are doing a good job and it is money very well spent.

To find out if the program is working, we have to compare managed (conserved) areas with “control patches” – patches where land owners haven’t done anything. This comparison shows that funded management patches have fewer environmental weeds, greater native plant species richness, more natural regeneration of native plants, smaller areas of erodible bare ground, and more species of woodland birds.

In the space of six years, the Australian government, in concert with Australian farmers (through modest investment), has generated significant, positive environmental changes on farms. In fact, the box gum project can set the bar for many other conservation programs.

…better for farmers

The positive impacts go beyond improvement of the environment, because there have been notable social benefits too.

A bearded dragon, one of the species found in grassy woodlands.
CM, Author provided

Farmers are now highly motivated to deliver better environmental outcomes on their farms and showcase the integration of the multiple objectives of agricultural production and conservation.

The income stream they received also helped some survive the almost unprecedented hardships associated with the Millennium Drought in the mid- to late 2000s.

More generally, regular feedback and discussions between ANU field ecologists and landholders over the past six years has provided anecdotal evidence that farmers engaged in successful environmental programs suffer fewer problems with mental illness. This landholder goodwill and change in attitude towards land management is something that will far outweigh the 15-year investment in the program.

A model for conservation

Despite its success, the program has not been without detractors who see the policy and monitoring as over-engineered or boutique. This is primarily because its design, implementation, and monitoring standards are politically and bureaucratically inconvenient. They are not well suited to a reactive, short-term focused society.

In the case of monitoring, some considered it wasteful to establish and monitor control sites (areas where there has been no management). Yet without the controls, we couldn’t tell this positive story.

This is an exciting example of successful private-public land conservation and how it can be integrated with agricultural production (the primary land use of much of Australia’s land surface).

The long-term funding model is a more sensible approach than one-off payments, and provides a realistic timeframe to achieve results.

The Australian government should be congratulated and encouraged to invest in more programs of this type. It has worked because it was designed specifically to link farmers, scientists and policy makers.

Billions of dollars are expended on the environment in Australia every year. Landscape recovery will span multiple governmental cycles and every dollar must be spent wisely. Programs like ESP give some guidance on how large-scale environmental programs can be more successful.

For further information on conservation programs like the Environmental Stewardship Program, see our new e-book

The Conversation

David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University; Chloe Sato, Postdoctoral fellow in applied vegetation ecology, Australian National University; Dan Florance, Research officer, Fenner School of Environment & Society ANU College of Medicine, Australian National University, and Emma Burns, Executive Director, Long Term Ecological Research Network; Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.