This includes two remarkable species of gastric-brooding frog. To reproduce, gastric-brooding frogs swallowed their fertilised eggs, and later regurgitated tiny baby frogs. Their reproduction was unique in the animal kingdom, and now they are gone.
Tragically, we have identified an additional three frog species that are very likely to be extinct. Another four species on our list are still surviving, but not likely to make it to 2040 without help.
#1 The northern gastric-brooding frog (Rheobatrachus vitellinus) is likely already extinct, primarily due to chytrid fungus disease. Hal Cogger
The 26 most imperilled frogs
The striking yellow-spotted tree frog (in southeast Australia), the northern tinker frog and the mountain mist frog (both in Far North Queensland) are not yet officially listed as extinct – but are very likely to be so. We estimated there is a greater than 90% chance they are already extinct.
The locations of the top 26 Australian frogs at risk of extinction. ** Species likely to be recently extinct. * Species more likely than not to become extinct by 2040 unless there is action. Jaana Dielenberg/Threatened Species Recovery Hub
The next four most imperilled species are hanging on in the wild by their little frog fingers: the southern corroboree frog and Baw Baw frog in the Australian Alps, and the Kroombit tinker frog and armoured mist frog in Queensland’s rainforests.
The southern corroboree frog, for example, was formerly found throughout Kosciuszko National Park in the Snowy Mountains. But today, there’s only one small wild population known to exist, due largely to an introduced disease.
Without action it is more likely than not (66% chance) the southern corroboree frog will become extinct by 2040.
#6 The southern corroboree frog (Pseudophryne corroboree) is close to extinction. David Hunter/DPIE NSW #3 The yellow-spotted tree frog (Litoria castanea) is likely extinct. It was once common throughout the New England Tableland and Southern Tablelands region in NSW, and the ACT. It is sensitive to chytrid fungus disease and also impacted by climate change, habitat loss and invasive fish. David Hunter/DPIE NSW
What are we up against?
Species are suffering from a range of threats. But for our most recent extinctions and those now at greatest risk, the biggest cause of declines is the amphibian chytrid fungus disease.
This introduced fungus is thought to have arrived in Australia in the 1970s and has taken a heavy toll on susceptible species ever since. Cool wet environments, such as rainforest-topped mountains in Queensland where frog diversity is particularly high, favour the pathogen.
The fungus feeds on the keratin in frogs’ skin — a major organ that plays a vital role in regulating moisture, exchanging respiratory gases, immunity, and producing sunscreen-like substances and chemicals to deter predators.
Chrytrid disease killed this green-eyed tree frog. Robert Puschendorf #8 Armoured mist frog (Litoria lorica) populations have been decimated by chytrid fungus disease. It has been lost throughout former mountainous rainforest habitats where the fungus thrives. Without effective action, it’s likely to be extinct within 20 years. Conrad Hoskin
Another major emerging threat is climate change, which heats and dries out moist habitats. It’s affecting 19 of the imperilled species we identified, such as the white-bellied frog in Western Australia, which develops tadpoles in little depressions in waterlogged soil.
Climate change is also increasing the frequency, extent and intensity of fires, which have impacted half (13) of the identified species in recent years. The Black Summer fires ravaged swathes of habitat where fires should rarely occur, such as mossy alpine wetlands inhabited by the northern corroboree frog.
Invasive species impact ten frog species. For the spotted tree frog in southern Australia, introduced fish such as brown and rainbow trout are the main problem, as they’re aggressive predators of tadpoles. In northern Australia, feral pigs often wreak havoc on delicate habitats.
#15 The Kuranda tree frog (Litoria myola) is found in a very small area near Cairns. Its primary threat is loss and degradation of habitat due to development. Conrad Hoskin #20 The white-bellied frog (Geocrinia alba) is the Western Australian frog at greatest risk of extinction. The tadpoles of this tiny terrestrial breeding frog rely on wet soil to develop. Reduced rainfall is contributing to declines. Emily Hoffmann
So what can we do about it?
We identified the key actions that can feasibly be implemented in time to save these species. This includes finding potential refuge sites from chytrid and from climate change, reducing bushfire risks and reducing impacts of introduced species.
But for many species, these actions alone aren’t enough. Given the perilous state of some species in the wild, captive conservation breeding programs are also needed. But they cannot be the end goal.
#11 A northern corroboree frog in the captive breeding program run by the ACT Government. Peter Taylor/Threatened Species Recovery Hub
Captive breeding programs can not only establish insurance populations, they can also help a species persist in the wild by supplying frogs to establish populations at new suitable sites.
Boosting numbers in existing wild populations with captive bred frogs improves their chance of survival. Not only are there more frogs, but also greater genetic diversity. This means the frogs have a better chance of adapting to new conditions, including climate change and emerging diseases.
Our knowledge of how to breed frogs in captivity has improved dramatically in recent decades, but we need to invest in doing this for more frog species.
Please save these frogs: The 26 Australian species at greatest risk of extinction.
Finding and creating wild refuges
Another vital way to help threatened frogs persist in the wild is by protecting, creating and expanding natural refuge areas. Refuges are places where major threats are eliminated or reduced enough to allow a population to survive long term.
For the spotted-tree frog, work is underway to prevent the destruction of frog breeding habitat by deer, and to prevent tadpoles being eaten by introduced predatory fish species. These actions will also help many other frog species as well.
The chytrid fungus can’t be controlled, but fortunately it does not thrive in all environments. For example, in the warmer parts of species’ range, pathogen virulence may be lower and frog resilience may be higher.
Chytrid fungus completely wiped out the armoured mist frog from its cool, wet heartland in the uplands of the Daintree Rainforest. But, a small population was found surviving at a warmer, more open site where the chytrid fungus is less virulent. Conservation for this species now focuses on these warmer sites.
This strategy is now being used to identify potential refuges from chytrid for other frog species, such as the northern corroboree frog.
Dr Graeme Gillespie during a survey for the spotted-tree frog. Michael Williams/Its A Wildlife Photography
No time to lose
We missed the window to save the gastric-brooding frogs, but we should heed their cautionary tale. We are on the cusp of losing many more unique species.
Decline can happen so rapidly that, for many species, there is no time to lose. Apart from the unknown ecological consequences of their extinctions, the intrinsic value of these frogs means their losses will diminish our natural legacy.
In raising awareness of these species we hope we will spark new action to save them. Unfortunately, despite persisting and evolving independently for millions of years, some species can now no longer survive without our help.
Jodi Rowley, Australian Museum and Karrie Rose, University of SydneyOver the past few weeks, we’ve received a flurry of emails from concerned people who’ve seen sick and dead frogs across eastern Victoria, New South Wales and Queensland.
One person wrote:
About a month ago, I noticed the Green Tree Frogs living around our home showing signs of lethargy & ill health. I was devastated to find about 7 of them dead.
Another wrote:
We previously had a very healthy population of green tree frogs and a couple of months ago I noticed a frog that had turned brown. I then noticed more of them and have found numerous dead frogs around our property.
And another said she’d seen so many dead frogs on her daily runs she had to “seriously wonder how many more are there”.
So what’s going on? The short answer is: we don’t really know. How many frogs have died and why is a mystery, and we’re relying on people across Australia to help us solve it.
Why are frogs important?
Frogs are an integral part of healthy Australian ecosystems. While they are usually small and unseen, they’re an important thread in the food web, and a kind of environmental glue that keeps ecosystems functioning. Healthy frog populations are usually a good indication of a healthy environment.
The stony creek frog is one of the species hit by this mysterious outbreak. Jodi Rowley, Author provided
They eat vast amounts of invertebrates, including pest species, and they’re a fundamental food source for a wide variety of other wildlife, including birds, mammals and reptiles. Tadpoles fill our creeks and dams, helping keep algae and mosquito larvae under control while they too become food for fish and other wildlife.
But many of Australia’s frog populations are imperilled from multiple, compounding threats, such as habitat loss and modification, climate change, invasive plants, animals and diseases.
Although we’re fortunate to have at least 242 native frog species in Australia, 35 are considered threatened with extinction. At least four are considered extinct: the southern and northern gastric-brooding frogs (Rheobatrachus silus and Rheobatrachus vitellinus), the sharp-snouted day frog (Taudactylus acutirostris) and the southern day frog (Taudactylus diurnus).
A truly unusual outbreak
In most circumstances, it’s rare to see a dead frog. Most frogs are secretive in nature and, when they die, they decompose rapidly. So the growing reports of dead and dying frogs from across eastern Australia over the last few months are surprising, to say the least.
While the first cold snap of each year can be accompanied by a few localised frog deaths, this outbreak has affected more animals over a greater range than previously encountered.
This is truly an unusual amphibian mass mortality event.
In this outbreak, frogs appear to be either darker or lighter than normal, slow, out in the daytime (they’re usually nocturnal), and are thin. Some frogs have red bellies, red feet, and excessive sloughed skin.
A browned, shrivelled green tree frog (Litoria caerulea) Suzanne Mcgovern, Author provided
The iconic green tree frog (Litoria caeulea) seems hardest hit in this event, with the often apple-green and plump frogs turning brown and shrivelled.
This frog is widespread and generally rather common. In fact, it’s the ninth most commonly recorded frog in the national citizen science project, FrogID. But it has disappeared from parts of its former range.
Other species reported as being among the sick and dying include Peron’s tree frog (Litoria peronii), the Stony Creek frog (Litoria lesueuri), and green stream frog (Litoria phyllochroa). These are all relatively common and widespread species, which is likely why they have been found in and around our gardens.
We simply don’t know the true impacts of this event on Australia’s frog species, particularly those that are rare, cryptic or living in remote places. Well over 100 species of frog live within the geographic range of this outbreak. Dozens of these are considered threatened, including the booroolong Frog (Litoria booroolongensis) and the giant barred frog (Mixophyes iteratus).
The giant barred frog is a threatened species that lives in the geographic range of this outbreak. Jodi Rowley, Author provided
So what might be going on?
Amphibians are susceptible to environmental toxins and a wide range of parasitic, bacterial, viral and fungal pathogens. Frogs globally have been battling it out with a pandemic of their own for decades — a potentially deadly fungus often called amphibian chytrid fungus.
This fungus attacks the skin, which frogs use to breathe, drink, and control electrolytes important for the heart to function. It’s also responsible for causing population declines in more than 500 amphibian species around the world, and 50 extinctions.
For example, in Australia the bright yellow and black southern corroboree frog (Pseudophryne corroboree) is just hanging on in the wild, thanks only to intensive management and captive breeding.
The teeny tiny southern corroborree frogs have been hit hard by the chytrid fungus. Jodi Rowley, Author provided
Curiously, some other frog species appear more tolerant to the amphibian chytrid fungus than others. Many now common frogs seem able to live with the fungus, such as the near-ubiquitous Australian common eastern froglet (Crinia signifera).
But if frogs have had this fungus affecting them for decades, why are we seeing so many dead frogs now?
Well, disease is the outcome of a battle between a pathogen (in this case a fungus), a host (in this case the frog) and the environment. The fungus doesn’t do well in warm, dry conditions. So during summer, frogs are more likely to have the upper hand.
In winter, the tables turn. As the frog’s immune system slows, the fungus may be able to take hold.
Of course, the amphibian chytrid fungus is just one possible culprit. Other less well-known diseases affect frogs.
The near-ubiquitous Austrlaian common eastern froglet is one species that seems able to live with the devastating chytrid fungus. Jodi Rowley, Author provided
To date, the Australian Registry of Wildlife Health has confirmed the presence of the amphibian chytrid fungus in a very small number of sick frogs they’ve examined from the recent outbreak. However, other diseases — such as ranavirus, myxosporean parasites and trypanosome parasites — have also been responsible for native frog mass mortality events in Australia.
It’s also possible a novel or exotic pathogen could be behind this. So the Australian Registry of Wildlife Health is working with the Australian Museum, government biosecurity and environment agencies as part of the investigation.
Here’s how you can help
While we suspect a combination of the amphibian chytrid fungus and the chilly temperatures, we simply don’t know what factors may be contributing to the outbreak.
Why green tree frogs are dying en masse is still a mystery. Sophie Hendry, Author provided
We also aren’t sure how widespread it is, what impact it will have on our frog populations, or how long it will last.
While the temperatures stay low, we suspect our frogs will continue to succumb. If we don’t investigate quickly, we will lose the opportunity to achieve a diagnosis and understand what has transpired.
We need your help to solve this mystery.
Please send any reports of sick or dead frogs (and if possible, photos) to us, via the national citizen science project FrogID, or email calls@frogid.net.au.
Environmental scientists see flora, fauna and phenomena the rest of us rarely do. In this series, we’ve invited them to share their unique photos from the field.
Frog calls are iconic sounds of summer in Australia. There are more than 240 species native to Australia, almost all of which are found nowhere else on Earth.
While some of Australia’s frog species prefer the cooler months, spring and summer are the best times to see and hear the majority of them. This is particularly true in tropical Australia, where most frog species only emerge from their hiding places in the wet season, filling summer nights with their choruses.
Most of us will hear frogs before we see them. In all Australian frog species, male frogs call to attract female frogs to mate with. Each species has a unique advertisement call, so you don’t need to see a frog to identify it.
Males typically call from near water bodies, where they hope to breed, and call mostly at night, preferring to shelter in the heat of the day. As a result, the best place to encounter frogs is near a water body such as a pond, creek or wetland, and the best time is after dark.
This article contains recordings of six unique frog calls. Depending where you live, you might just hear one on a quiet, summer night. But first, let’s explore why frogs are so important to our ecosystems.
Frogs are exquisitely adapted to almost all kinds of habitats in Australia, from rainforests to deserts. In some of the wettest forests, some frogs such as the northern ornate nursery frog (Cophixalus ornatus) have done away with the need for tadpoles, developing into tiny frogs in the egg.
The stonemason toadlet, Uperoleia lithomoda Jodi Rowley, Author provided
In the driest parts of Australia, where it doesn’t rain for months at a time, frog species such as the eastern water-holding frog (Cyclorana platycephala) spend most of their lives underground. These frogs are protected from dehydration by a “cocoon” of their own skin and skin secretions. They only pop above the surface when it’s wet enough for them to breed in the flood waters.
While many species are common, more than 30 are threatened with extinction. On top of that, we’ve already lost at least four species — part of out natural heritage, gone forever.
The major frog threats are disease (particularly chytridiomycosis, caused by the amphibian chytrid fungus), habitat loss and modification, introduced species and climate change.
We should care that our frogs are disappearing, as they are an important part of healthy ecosystems. Frogs are major consumers of invertebrates, and are also eaten by a wide array of predators including fish, birds and mammals. Tadpoles may also be the dominant grazers in aquatic systems, helping keep streams from clogging up with algae. When frogs disappear, other animals follow, and ecosystems are forever altered.
When meeting your local frogs, be careful not to disturb them or their habitat, and clean your shoes if going to more than one area of frog habitat so you don’t accidentally spread frog disease. One of the best ways to learn about your local frogs, and to help understand and conserve them, is by recording their calls using the free FrogID app.
Here are some of the frog species you are likely to hear, and maybe even see, this summer.
1. Peron’s tree frog
Peron’s tree frog (Litoria peronii) is a large frog species that can be found in southern Queensland, New South Wales, Victoria and southeastern South Australia.
With cream to dark grey skin flecked with tiny emerald spots, cross-shaped pupils, and a loud, laugh-like call, this frog species is very commonly encountered around our homes — often hiding in pot plants, watering cans or even our letterboxes.
2. Motorbike frog
While the haunting call of the moaning frog (Heleioporus eyrei) fills autumn and winter nights around Perth, the motorbike frog (Litoria moorei) makes up a large part of Perth’s summer soundtrack.
Common in backyards throughout the southwest of Western Australia, this species is named after its drawn-out call, resembling an old motorbike racing up the street, changing gears.
This large tree frog, variably marbled with green and gold, often basks in the sun on reeds during the day.
3. Striped marsh frog
The striped marsh frog (Limnodynastes peronii) is commonly heard but rarely seen throughout its range along eastern Australia from north Queensland to Tasmania, and into the eastern edge of South Australia.
Its call is familiar to many, resembling a tennis ball being hit, or a dripping tap. This species loves backyard ponds, and is found even in the most built-up areas of cities, creating foamy nests for their eggs after a successful night of calling.
Adults have smooth, striped brown skin, and long, spidery toes. Males can be distinguished by females as they have much more robust arms.
4. Banjo frog
Banjo frogs occur throughout much of Australia, with a familiar loud “bonk” call, somewhat resembling the pluck of a banjo string reverberating from dams, wetlands and slow-flowing sections of streams and rivers.
During dry times, banjo frogs bury themselves underground, emerging after, or sometimes just before, summer rains. They are large, rather solid, frogs with a round snout, and are often mistaken for cane toads.
There are four species of banjo frog. In the southeast, the eastern banjo frog (Limnodynastes dumerilii) is very common, particularly in farm dams. Meanwhile, the northern banjo frog (Limnodynastes terraereginae) lives in northern NSW and throughout much of Queensland.
The giant banjo frog (Limnodynastes interioris) can be found in inland NSW and Victoria, and the western banjo frog (Limnodynastes dorsalis) is found in southwestern Western Australia.
5. Stonemason toadlet
The stonemason toadlet (Uperoleia lithomoda) is a tiny brownish-grey burrowing frog found across the top of Australia: in north Queensland, the Northern Territory and Western Australia.
This species emerges from underground after heavy monsoonal rains, and males produces an extraordinarily loud call that sounds like a harsh “click”.
With bumpy skin, they resemble toads enough to be called “toadlets”, and are often mistaken for young cane toads (Rhinella marina).
6. Eastern dwarf tree frog
The eastern dwarf tree frog (Litoria fallax) is highly adaptable and usually found along the east coast, from north Queensland to the borders of NSW and Victoria.
Like the motorbike frog, the eastern dwarf tree frog is often seen during the day, basking in the sun, and will even call during the day on vegetation far from water.
Frogs are one of the most threatened groups of animals on Earth. At least four of Australia’s 240 known frog species are extinct and 36 are nationally threatened. After last summer’s bushfires, we needed rapid information to determine which frogs required our help.
This was a challenging task. The fire zone ranged from southern Queensland through New South Wales and Victoria, to Kangaroo Island off South Australia. The area was too large for scientists alone to survey, especially with COVID-19 travel restrictions.
But all was not lost. Thousands of everyday citizens across the fire zone, armed with their mobile phones, began monitoring their local frogs through an app called FrogID.
In research published today, we reveal how 45 frog species, some rare and threatened, were recorded calling after the fires. This has allowed us to collate a snapshot of where frog species are surviving – at least for now.
The FrogID app means anyone can help monitor frog numbers. Jodi Rowley
Scientists knew the damage to many plant and animal species was likely to be dramatic, particularly for species already in trouble. Many of Australia’s frog species are already vulnerable, due to pressures such as disease and habitat loss. There was a very real risk the fires had pushed many frog species closer to extinction. However, information on how frogs respond to fires has historically been limited.
FrogID is a free app downloaded to smart phones. Led by the Australian Museum, the project allows anyone to record a frog call and upload it. The FrogID team then identifies the species by its call, to create a national frog database.
Since the app launched in November 2017, more than 13,000 citizen scientists have recorded the calls of about 220,000 frogs across Australia. Before last summer’s fires, app users had submitted 2,655 recordings of 66 frog species in what would later become fire zones. This gave us a remarkable understanding of the frogs present before the fires.
In some places, the fires burnt so intensely it was hard to imagine any wildlife survived. Dean Lewins/AAP
Within four months of the fires, app users submitted 632 recordings. These confirmed the existence of 45 of the 66 frog species known to live in the fire zones. Hearteningly, all 33 summer-breeding frog species recorded before the fires were also detected afterwards. In other words, there were no obviously “missing” frog species.
The frog species recorded most frequently in burnt areas were common, broadly distributed species of low conservation concern. These include the common eastern froglet (Crinia signifera) and striped marsh frog (Limnodynastes peronii).
However, rare and threatened species were also recorded in fire-damaged areas. These included:
the vulnerable southern barred frog (Mixophyes balbus), which lives in patches of forest along the NSW east coast. The species was recorded ten times after the fires in northern NSW
the mountain frog (Philoria kundagungan), endangered in NSW and known only from the headwaters of streams in a few pockets of rainforest in far northern NSW and southern Queensland. It is rarely encountered but was recorded once after the fires
the endangered giant barred frog (Mixophyes iteratus), found in forest from southeast Queensland to central NSW. It was recorded twice after the fires.
There was no clear trend in the ecological group or lifestyle of species that were detected post-fire. Burrowing frogs, tree frogs and ground-dwelling frogs were all detected, as were stream, pond, and land-breeding species.
In many places, frogs survived the inferno against the odds. Jodi Rowley
A powerful tool
The FrogID records are good news. They show some species have survived in the short term, and male frogs are calling to attract female frogs to mate with.
But there is still much we don’t know about the fate of these frogs. For example, many frogs species in southeastern Australia don’t call in the cooler months, so we don’t yet have a clear picture of how these species have fared over winter.
The frogs’ longer-term prospects also remain uncertain. Fire damage varies dramatically from place to place, and the survival of a frog species in one burnt area does not guarantee its survival in another. We remain worried about species with small geographic ranges, especially rainforest species more sensitive to fire.
We urgently need more information on how last summer’s fires affected Australia’s frogs. This is particularly important given the more frequent and severe fires predicted under climate change, combined with all the other threats frogs face.
Traditional biodiversity surveys by professionals will be needed. This is especially true for frog species of high conservation concern at remote or inaccessible sites, for which the FrogID app has little or no data.
But continued data collection by citizen scientists, through projects such as FrogID, will remain powerful tools. They allow information to be gathered quickly and at scale. This raises the chances that species suffering most after a catastrophic event might get the help they need.
The Mossy Red-eyed Frog is among hundreds of species threatened with extinction at the hands of chytrid fungus. Jonathan Kolby/Honduras Amphibian Rescue and Conservation Center
It started off as an enigma. Biologists at field sites around the world reported that frogs had simply disappeared. Costa Rica, 1987: the golden toad, missing. Australia, 1979: the gastric brooding frog, gone. In Ecuador, Arthur’s stubfoot toad was last seen in 1988.
By 1990, cases of unexplained frog declines were piling up. These were not isolated incidents; it was a global pattern – one that we now know was due to chytridiomycosis, a fungal disease that was infecting and killing a huge range of frogs, toads and salamanders.
Our research, published today in Science, reveals the global number of amphibian species affected. At least 501 species have declined due to chytrid, and 90 of them are confirmed or believed extinct.
When biologists first began to investigate the mysterious species disappearances, they were at a loss to explain them. In many cases, species declined rapidly in seemingly pristine habitat.
Species declines typically have obvious causes, such as habitat loss or introduced species like rats. But this was different.
The first big breakthrough came in 1998, when a team of Australian and international scientists led by Lee Berger discovered amphibian chytrid fungus. Their research showed that this unusual fungal pathogen was the cause of frog declines in the rainforests of Australia and Central America.
However, there were still many unknowns. Where did this pathogen come from? How does it kill frogs? And why were so many different species affected?
After years of painstaking research, biologists have filled in many pieces of the puzzle. In 2009, researchers discovered how chytrid fungus kills frogs. In 2018, the Korean peninsula was pinpointed as the likely origin of the most deadly lineage of chytrid fungus, and human dispersal of amphibians suggested as a likely source of the global spread of the pathogen.
Yet as the mystery was slowly but surely unravelled, a key question remained: how many amphibian species have been affected by chytrid fungus?
Early estimates suggested that about 200 species were affected. Our new study reveals the total is unfortunately much larger: 501 species have declined, and 90 confirmed or suspected to have been killed off altogether.
The toll taken by chytrid fungus on amphibians around the world. Each bar represents one species; colours reveal the extent of population declines. Scheele et al. Science 2019
Devastating killer
These numbers put chytrid fungus in the worst league of invasive species worldwide, threatening similar numbers of species as rats and cats. The worst-hit areas have been in Australia and Central and South America, which have many different frog species, as well as ideal conditions for the growth of chytrid fungus.
Large species and those with small distributions and elevational ranges have been the mostly likely to experience severe declines or extinctions.
Together with 41 amphibian experts from around the world, we pieced together information on the timing of species declines using published records, survey data, and museum collections. We found that declines peaked globally in the 1980s, about 15 years before the disease was even discovered. This peak coincides with biologists’ anecdotal reports of unusual amphibian declines that occurred with increasing frequency in the late 1980s.
Encouragingly, some species have shown signs of natural recovery. Twelve per cent of the 501 species have begun to recover in some locations. But for the vast majority of species, population numbers are still far below what they once were.
Most of the afflicted species have not yet begun to bounce back, and many continue to decline. Rapid and substantial action from governments and conservation organisations is needed if we are to keep these species off the extinct list.
In Australia, chytrid fungus has caused the decline of 43 frog species. Of these, seven are now extinct and six are at high risk of extinction due to severe and ongoing declines. The conservation of these species is dependent on targeted management, such as the recovery program for the iconic corroboree frogs.
The southern corroboree frog: hopefully not a disappearing icon. Corey Doughty
Importantly, there are still some areas of the world that chytrid has not yet reached, such as New Guinea. Stopping chytrid fungus spreading to these areas will require a dramatic reduction in the global trade of amphibians, as well as increased biosecurity measures.
The unprecedented deadliness of a single disease affecting an entire class of animals highlights the need for governments and international organisations to take the threat of wildlife disease seriously. Losing more amazing species like the golden toad and gastric brooding frog is a tragedy that we can avoid.
Lee Berger is the 2018 recipient of the Frank Fenner Prize for Life Scientist of the Year, one of the Prime Minister’s Prizes for Science announced on October 17.
Lee’s research identified the cause of mysterious and devastating mass frog extinctions that spread across the world starting in the 1970s: it was a skin fungus.
With her colleague Lee Skerratt, here she describes the work that led to her prize, and what is still to be achieved for frog and wildlife conservation in Australia and across the world.
Combating fungi in frogs – why is this important?
Chytridiomycosis might be the worst disease in history. In a matter of decades, the illness cut a swathe through hundreds of species of frogs, causing mass extinctions as it spread out of Asia into Australia and the Americas.
Our research was the first to identify the cause – a novel chytrid fungus called Batrachochytrium dendrobatidis – but finding ways to combat the disease requires a lot more work.
Infected frogs are lethargic and experience excess skin shedding (this species is Mixophyes fasciolatus). Lee Berger, Author provided
Here in Australia, six species have already been driven extinct, and another seven are on the brink. Fortunately, in Australia we also have the unique expertise and perspective to prevent further losses if we devote adequate resources to the problem.
The keys to our research success have been a cross-disciplinary approach and a focus on delivering conservation outcomes.
Frog declines had been seen around the world from the late 1970s on, but it wasn’t until 1998 that we identified the chytrid fungus as the cause.
Parts of the fungus poke through an infected frog’s skin – as seen here under scanning electron microscope. Lee Berger, Author provided
Why had nobody else figured this out before?
Discovering the fungus on the skin of frogs was not rocket science, but rather applying the methods from one discipline to a problem in another. An outbreak investigation approach – using the tools of medicine for frog conservation – allowed us to diagnose the cause of the frog deaths.
The main reason this approach was tried in Australia was the broad knowledge and interest of the late Rick Speare, an extraordinarily eclectic scientist, medical doctor and vet. (Like the prize’s namesake Frank Fenner, he was comfortable using his medical expertise for the environment.)
Rick’s help was sought by Keith McDonald, a chief ranger of Queensland and a herpetologist. Keith was concerned about the health of North Queensland frogs after witnessing major declines in the south.
After looking at the pattern of declines the pair thought they saw the trail of an unknown infectious, waterborne disease. They applied for funds to search for a disease.
Green-eyed treefrogs (Litoria serrata) in the Queensland rainforest have declined due to chytridiomycosis. Lee Skerratt, Author provided
The idea that an infectious disease might be responsible for frog declines met resistance because of the belief that a pathogen can never cause extinction, because hosts will evolve resistance. So while Rick and Keith did obtain funding to tackle this urgent global mystery, it was only enough to support a single PhD student.
That PhD student was me, Lee Berger. To cut a long story short, my work in pathology and disease transmission experiments in frogs led to our conclusion that a novel and unusual fungus in the frogs’ skin caused a fatal disease and the mass amphibian deaths seen in North Queensland. As this was the first fungus from the phylum Chytridiomycota found to cause disease in a vertebrate, I had to develop many new methods to be able to further study the disease.
Now we are focused on understanding immunity to improve survival rates of the most threatened species of frogs in the wild.
This work has only been possible due to the extraordinary dedication of our students and staff and the collaboration with specialist scientists such as herpetologists, molecular biologists, immunologists, physiologists and others who have lent their expertise.
Common mistfrogs (Litoria rheocola) in the Queensland rainforest have also declined due to chytridiomycosis. Lee Skerratt, Author provided
What does this mean for Australia’s wildlife?
Our research has clearly shown that introduced diseases can have catastrophic impacts for conservation, much like the arrival of feral predators. In fact, disease can cause extinction much more quickly than predators, within months rather than years. The catastrophe of invasive species is a cost of globalisation that will be ongoing unless we respond.
The responsibility for wildlife lies with environment departments, but because health expertise is in other institutes, wildlife health can fall between the cracks.
We argue that continued support for bodies such as Wildlife Health Australia (WHA) is important. We also need a centre of expertise for outbreak investigation and strategic research to develop new tools for wildlife health management.
Biodiversity will miss out unless we support research that promises no direct and fast commercial return but benefits our nation in the longer term. In particular, and most urgently, Australia must save its frogs before it is too late.
Whistling tree frogs, Litoria verreauxii, are one of the species monitored around Canberra for their response to climate change. Catching the eye/flickr, CC BY-NC
We’ve arranged to meet in a gravel car park at the foot of Mt Majura, a darkening wedge above us in the dusk. My daughter and I wait in the car. It’s winter. A woman passes along the nearby pavement, guiding her way by torchlight. Canberra’s streets are kept dim, I learned recently, for the sake of astronomers at nearby Mt Stromlo observatory. In the decade I’ve lived here, I’ve had an ambivalent relationship with Canberra, but the idea of a city that strikes bargains with stargazing scientists to restrict light pollution leaking skyward is endearing.
There are other endearing things. One of them is the amount of bushland interspersed throughout the urban landscape. You can be in the middle of suburbia one minute and bushwalking on nearby Black Mountain, Mt Majura or Mt Ainslie ten minutes later. This kind of mixed landscape is ideal for the citizen science project we’re about to launch into this evening, as soon as the co-ordinator of the ACT and Region Frogwatch Program, Anke Maria Hoefer, arrives for our first training session.
The eastern common froglet, Crinia signifera. eyeweed/Flickr, CC BY-NC-ND
The program runs a community-based annual Frog Census framed against a rapid global decline in frog numbers over the past four decades and the extinction of many frog species. The census began in 2002, and the resulting long-term dataset on the abundance and distribution of local frogs has enabled additional research activities including a climate change project. We’ll take part in the latter, which monitors behavioural shifts in frogs through recording their calls at particular sites each week from June until October.
We’re here for a few reasons. One is to get a lived sense of climate change in our immediate urban surroundings. Plus, I want to make a contribution, however small, to the huge dilemma of climate change and its impacts; give my 13-year-old daughter a taste of scientific fieldwork in case it appeals to her; get to know our local surroundings better; and, as a writer, to think about practices that don’t simply observe or contemplate place but also participate in constructive activities at those same locales.
Numerous commentators have observed that the vast and intangible scale of climate change may be an impediment to more people taking action over our warming atmosphere. We know through the science that climate is shaped by the working of the entire planetary system – the earth’s interactive ocean, atmosphere, land and ice systems all linked to human activity. Depending on where you live, (but not in the Pacific Islands, the deltas of Bangladesh, Arctic Canada, or drought-stricken rural Australia), its impacts can seem far-removed from our own lives and the places we know best and care most about. With care, often, comes action. What can seem an amorphous, far-fetched threat is brought closer to home through studies such as Frogwatch.
The project studies the impact of climate change on phenology, or seasonal behaviour. Most frogs only call during the mating season, which is triggered by temperature and rainfall. Different species mate at different times and volunteers record the onset of mating calls from winter breeders (whistling tree frog and common eastern froglet), early and mid-spring breeders (spotted grass frog, plains froglet, striped marsh frog and smooth toadlet), and late spring to summer breeders (eastern banjo frog and Peron’s tree frog).
An eastern banjo frog, Limnodynastes dumerili. David Cook/flickr, CC BY-NC
Frogs are known as an “indicator species” for water quality and local ecosystem health. With their permeable, membranous skin, through which respiratory gases and water can pass, and their shell-less eggs laid in water, they are sensitive to even low concentrations of pollutants in water and soils. In this study, frogs give a different kind of warning – as they begin calling earlier in the season, they reveal and give voice to the warming climate we now all inhabit.
The project is fortunate enough to be able to build upon weekly counts of calling frogs by ecologist Will Osborne during the 1980s and 1990s in the Canberra region. Effects of climate change can be incremental. They can also be non-linear, as scientist Pep Canadell explained to me in a recent interview. “Climate change expresses itself through extremes. It’s not a linear relationship of impacts,” he said.
This mixture of incremental change and unpredictable “expressions” can be difficult to record in the short term. With this in mind, the Frogwatch project builds on Osborne’s historical data along with the Frog Census data to chart changing trends. A preliminary comparison reveals that the breeding season of some local frog species might be commencing up to six weeks earlier than 40 years ago.
A sonic world
Headlights sweep into the car park and Anke Maria arrives with a visiting German student who is also researching frogs. Anke Maria is a whirlwind of talk and activity, honing in on my daughter as we zip our down jackets, pull on beanies and gloves, switch on torches and head up a gravel fire trail toward the first dam, known as FMC200. Only metres later we stop at the base of a narrow drainage gully. It’s been a dry winter, but with a patch of recent rainfall a miniature sump-like drainage area at the base of the gully is alive with frog calls.
“That’s Crinia signifera,” Anke Maria explains, making what seems a perfect imitation of its repetitive call. “How would you describe it?” she asks. My daughter turns to me. The call is repetitive, creaking. We struggle to think of descriptions. It’s like trying to put a flavour into words.
“Who do you think is calling? The male or female?” Anke Maria asks. My daughter pauses, pondering. “The female,” she hazards a guess. “Good try,” says Anke Maria, “but only the male frog calls. Except when the female makes a warning call.” She imitates this staccato warning sound. “And why do you think the males are calling?” Again my daughter pauses to consider.
We continue walking up the gravel slope amid shadowy shapes of eucalypt trees, a tangle of gorse and acacia undergrowth, a row of looming metal electricity pylons strung along the lower contour lines of Mt Majura.
“They could be hungry or they found food,” my daughter replies.
“Good thinking, but they’re calling to attract a girlfriend. And do you know, scientists think that each frog species can only hear the calls of their own species. It’s like tuning into a radio station. There are many different stations, but we can only tune into one at a time. A female whistling tree frog can only hear a male whistling tree frog, a female corroboree frog can only hear a male corroboree frog.”
They recognise the frequency and intensity or pitch of the call, she explains, and also the pattern of the call or its pulse structure. “This helps the female find a mate from their own species and not get confused by other frogs.”
We ponder this sonic world where one species can be deaf to another, turn left down a narrow walking track, torchlight bobbing along with our footsteps, illuminating tussocks of grass, fallen branches, shrubs, stones, until we reach the dam. “This is for you,” Anke Maria passes a thermometer. “You do it,” she tells my daughter. First we record the ambient temperature then my daughter squats at the edge of the water, waving the thermometer gently through the shallows. We note the weather: light cloud cover, low breeze. We estimate the dam’s surface area and depth. Then our small group falls silent as Anke Maria switches on her phone audio-recorder.
The dam, FMC200 on Mt Majura. Saskia Beudel.
For three minutes we hold still and listen. There’s the low hum of the city below, an ambulance siren swells and recedes, distant traffic, the shuffle of our down jackets as we try not to move, someone sniffs in the chill winter air – and the frogs. You can hear them interspersed across space, some close, some farther away, among vegetation rather than water. Because of Anke Maria’s explanation, I understand now these are not call-and-response sounds. They are invitations, serenades, statements of presence, lures. Sometimes the calls come in a cluster, other times at staggered unpredictable intervals. There are at least two species here, I guess. In the distance, a mopoke calls.
When Anke Maria switches off her phone, we relax into movement again. As we walk towards FMC210, our second dam, she tells us we’ve just heard a whistling tree frog (Litoria verreauxii). “How would you describe his call?” Anke Maria asks.
My daughter decides on a stick dragged across a rough, hollow surface. Anke Maria makes the call. Her imitations are pitch perfect, an art form. She will be the one who checks the recordings that non-specialist volunteers send in weekly, uploaded to the Frogwatch website. We will make our guesses at species we’ve heard, but she will verify with her trained ear, a labour-intensive task.
In our information pack is a CD of local frog species. When we get home we lie on the carpet and listen, the house filled with frog noise.
A new frog
A week later, on our first trip into the dark alone, the evening is silvered and rigid with frost, as if everything is held together in some different, more metallic way. It’s three below zero and falling. Our breath steams, our boots crunch, the bush is still. I sense something in a dead tree ahead before I see it, a tawny frogmouth, grey, motionless, an outcropping like a broken limb. We pause several steps away and it regards us, head half swivelled, a little tuft of feathers at the base of its beak.
A tawny frogmouth. Saskia Beudel
The following week, on our descent from the dams, once again a frogmouth is in the same tree. A second bird perches a few metres away. They are bound together in some mute, still business. They survey us. We move on with subdued steps. Beyond the birds, the first row of suburban houses begins. We thread our way back to the car with a sense of secrecy and adventure, past back fences, patches of bright window, catching fugitive glimpses of other people’s lives through a half-open door, a crack in a curtain, the blue flicker of TV light.
At the dams we make our recordings. Air temperature, water temperature, ascending over the weeks. On the far side of Mt Majura lies the airport. Often early into a sound recording, a plane takes off, blotting out all other sound. Ecologist Will Osborne tells me he has observed that the aeroplane sound seems to overlap the call parameters (pitch and pulse structure) of the Common Eastern Froglet. Whenever a plane goes over, the froglet stops calling while other species continue – machine and creature competing on the airwaves.
When I upload the recordings, Anke Maria responds and confirms (or not) my guesses at species. You should soon hear Crinia parinsignifera she emails, so keep your ears peeled for a high pitch narky baby cry!
Her enthusiasm is infectious, her aural sketches vivid, memorable. When we hear the new frog, I know exactly what it is. Everyone on the team, each with sites to attend scattered across Canberra, has been waiting for this particular call.
It might show that an early spring breeder is shifting its season into winter. This minor-sounding alteration has a cascade of flow-on effects. Frogs stagger breeding seasons, giving each species its portion of acoustic space to call, breed, then when eggs hatch into tadpoles to feed (a mode of “time sharing” water and its resources). If seasons shift, merge and overlap, competition for resources intensifies, and survival can be jeopardised.
But this year it’s a cold, dry winter. This telling species, Crinia parinsignifera, is calling two weeks later than last year (when it called early). Meanwhile northern Australia is experiencing its warmest July on record. Non-linear. As the monitoring season progresses, dam levels drop. By the end of October, waters have fallen almost silent.
Measuring the drop in water levels. Saskia Beudel
Will Osborne sends an email around, explaining that cold nights and low water levels will make it hard to interpret this season’s counts. “Most species feel insecure about going out onto that exposed mud and trying to find a call site or searching for mates! It will be a big rush when the weather warms and we get good rains – the calling sequence could be condensed this year which will be interesting…”
Taking action
Many volunteers join Frogwatch because they want to participate in a hands-on, climate change-related study with real life applications. “They highly value the opportunity to be involved in climate change actions,” Anke Maria says. She captures one of the dilemmas of our times. Many people want to take action but are unsure how. As artist Natalie Jeremijenko observed): “What the climate crisis has revealed to us is a secondary, more insidious and more pervasive crisis, which is the crisis of agency, which is what to do.” Citizen science gives volunteers an opportunity to do something.
Filling out field data sheets. Saskia Beudel
Studies that chart the impacts of climate change here-and-now disrupt the assumption that effects will occur in a distant future or at some remote geographic location (melting ice caps, apocalyptic cities under 20 metres of water). Instead, they start to build a picture of measurable effects experienced at the current level of 1°C warming above pre-industrial levels – let alone at 2°C or above, which is what we’re committing to based on current emissions rates. In the Canberra region alone, studies are being conducted into impacts of global warming on urban lizard species (who reside next to the local DFO) and alpine pygmy possums.
At a broader scale, Pep Canadell has observed major ecological transformation in Australia that occurred with a 1.2°C increase during the last El Niño. He calls the El Niños a “window into the future because they bring all this heat and put the world where it may be in 30 or 20 years’ time.”
In the last big El Niño of 2015-16, this “future now” included the well-known bleaching of the coral reef, and fires in the moist peats of alpine Tasmania. There are no records for the past 8,000 years that there has ever been a fire in this part of the world. In addition to these well publicised events, around 700 km of mangroves lining the Gulf of Carpentaria died in a month; and the Murray Darling River had one of its worst algal blooms caused by an algae that belonged not in this region but to hotter places in Queensland.
“These ecological signs are unprecedented, all in this little window of a warmer world that the El Niño brought for us,” said Canadell during our interview. He went on to list even more signs. “For some reason these things don’t go through the media enough because of … whatever,” he added.
The Frogwatch project enables volunteers to dwell in an everyday way with such dispersed ecological signals, which, connected together with other studies, provide a larger picture of both current and future impacts. Volunteers are privileged to make their small citizen science contribution to understanding and recording these signs better.
Unfortunately, just as I completed this article, the Frogwatch Program discovered that its funding from the ACT Government was not renewed in the 2018–19 budget. Without core funding, the organisation and its annual Frog Census will cease. The enthusiasm of volunteers will help to collect another season’s data for the climate change study but it too is under serious threat unless alternative funding can be sourced.
When our monitoring season finished last year, I asked my daughter whether she wanted to do it again. “Yes,” she replied without hesitation. “What did you like most about it?” I asked. “I don’t know,” she said, “it was just fun.” And so, as Canberra’s heavy frosts set in, we have begun again, treading up towards FMC200, waiting for frog calls to begin.
Saskia Beudel’s full interview with Pep Canadell will be published in December 2018 in the journal Weber.
My office is filled with colorful images of frogs, toads and salamanders from around the world, some of which I have collected over 40 years as an immunologist and microbiologist, studying amphibian immunity and diseases. These jewels of nature are mostly silent working members of many aquatic ecosystems.
The exception to the silence is when male frogs and toads call to entice females to mate. These noisy creatures are often wonderful little ventriloquists. They can be calling barely inches from your nose, and yet blend so completely into the environment that they are unseen. I have seen tropical frogs in Panama and native frogs of Tennessee perform this trick, seemingly mocking my attempts to capture them.
My current research is focused on interactions between amphibians and two novel chytrid pathogens that are linked to global amphibian declines. One, Batrachochytrium dendrobatidis ( abbreviated as Bd), has caused mass frog dieoffs around the world. Recently my lab group contributed to a study showing that some species of amphibians in Panama that had declined due to Bd infections are recovering. Although the pathogen has not changed, these species appear to have developed better skin defenses than members of the same species had when Bd first appeared.
This is very good news, but those who love amphibians need to remain vigilant and continue to monitor these recovering populations. A second reason for concern is the discovery of a closely related chytrid, Batrachochytrium salamandrivorans (Bsal), which seems to be more harmful to salamanders and newts.
Amphibian chytrid fungus has been detected in at least 52 countries and 516 species worldwide. USDA Forest Service
Global frog decline
More than a decade ago, an epidemic of a deadly disease called chytridiomycosis swept through amphibian populations in Panama. The infection was caused by a chytrid fungus, Batrachochytrium dendrobatidis. Scientists from a number of universities, working with the Smithsonian Tropical Research Institute in Panama, reported that chytridiomycosis was moving predictably from west to east from Costa Rica across Panama toward Colombia.
I was part of an international group of scientists, funded by the National Science Foundation, who were trying to understand the disease and whether amphibians had effective immune defenses against the fungus. Two members of my lab group traveled to Panama yearly from 2004 through 2008, and were able to look at skin secretions from multiple frog species before and after the epidemic of chytridiomycosis hit.
Many amphibians have granular glands in their skin that synthesize and sequester antimicrobial peptides (AMPs) and other defensive molecules. When the animal is alarmed or injured, the defensive molecules are released to cleanse and protect the skin.
Through mechanisms that remain a mystery, we observed that these skin defenses seemed to improve after the pathogen entered the amphibian communities. Still, many frog populations in this area suffered severe declines. A global assessment published in 2004 showed that 43 percent of amphibian species were declining and 32 percent of species were threatened.
In Panama, Smithsonian scientists operate the largest amphibian conservation facility of its kind in the world.
Signs of resistance
In 2012-2013, my colleagues ventured to some of the same sites in Panama at which amphibians had disappeared. To our great delight, some of the species were partially recovering, at least enough so that they could be found and sampled again.
We wanted to know whether this was happening because the pathogen had become less virulent, or for some other reason, including the possibility that the frogs were developing more effective responses. To find out, we analyzed multiple measures of Bd‘s virulence, including its ability to infect frogs that had never been exposed to it; its rate of growth in culture; whether it had undergone genetic changes that would show loss of some possible virulence characteristics; and its ability to inhibit frogs’ immune cells.
As our group recently reported, we found that the pathogen had not changed. However, we were able to show that for some species, frog skin secretions we collected from frogs in populations that had persisted were better able to inhibit the fungus in a culture system than those from frogs that had never been exposed to the fungus.
The prospect that some frog species in some places in Panama are recovering in spite of the continuing presence of this virulent pathogen is fantastic news, but it is too soon to celebrate. The recovery process is very slow, and scientists need to continue monitoring the frogs and learn more about their immune defenses. Protecting their habitat, which is threatened by deforestation and water pollution, will also be a key factor for the long-term survival of these unique amphibian species in Panama.
If Bsal fungus spreads to North America, it could wipe out species like this Northern Slimy Salamander (Plethodon glutinosus). Marshal Hedin, CC BY
Salamanders (and frogs) at risk
On a global scale, Bd is not the only threat. A second pathogenic chytrid fungus called Batrachochytrium salamandrivorans (abbreviated as Bsal) was recently identified in Europe, and has decimated some salamander populations in the Netherlands and Belgium. This sister species probably was accidentally imported into Europe from Asia, and seems to be a greater threat to salamanders than to frogs or toads.
Bsal has not yet been detected in North America. I am part of a new consortium of scientists that has formed a Bsal task force to study whether it could become invasive here, and which species might be most adversely affected.
In January 2016 the U.S. Fish and Wildlife Service listed 201 salamander species as potentially injurious to wildlife because of their their potential to introduce Bsal into the United States. This step made it illegal to import or ship any of these species between the continental United States, the District of Columbia, Hawaii, the Commonwealth of Puerto Rico or any possession of the United States.
The Bsal task force is currently developing a strategic plan that lists the most urgent research needs to prevent accidental introduction and monitor vulnerable populations. In October 2017 a group of scientists and conservation organizations urged the U.S. government to suspend all imports of frogs and salamanders to the United States.
In short, it is too early to relax. There also are many other potential stressors of amphibian populations including climate change, decreasing habitats and disease. Those of us who cherish amphibian diversity will continue to worry for some time to come.
At night, the mountain forests of New Guinea come alive with weird buzzing and beeping calls made by tiny frogs, some no bigger than your little fingernail.
These little amphibians – in the genus Choerophryne – would shrivel and dry up in mere minutes in the hot sun, so they are most common in the rainy, cooler mountains.
Yet many isolated peaks, especially along northern New Guinea, have their own local species of these frogs.
So how did localised and distinctive species of these tiny frogs come to be on these isolated peaks, separated from each other by hotter, drier and rather inhospitable lowlands?
Our new study of their DNA, published this week in the open access journal PeerJ, reveals how they achieved this feat. It reveals a dynamic past, and more worryingly it highlights the future vulnerability of tropical mountain forests and their rich biodiversity.
A hotspot of frog diversity
New Guinea has an astounding diversity of frogs: more than 450 known species and counting. This is nearly double the diversity in Australia, a landmass ten times larger.
Remarkably, a majority of these species are in a single species-rich, ecologically diverse group that have dispensed with the tadpole stage.
Instead they hatch out of their eggs as tiny little replicas of the adults. Because they do not depend on still pools of water to breed, they do really well in the incredibly wet, but steep mountains of New Guinea.
One of our group (Stephen Richards) has been collecting DNA from frogs across New Guinea for the past 20 years. This work is at times arduous and painful. Having a leech worm its way into the back of one’s eye, and then stay there for more than a week, is not pleasant.
But these trips are also extremely rewarding. So far we have described more than 70 new species, and discovered many more that await description.
They also provide opportunities to explore some of world’s most wild places. Perhaps the best example is the first scientific expedition to the remote Foja Mountains.
This isolated mountain range in northern New Guinea was previously almost unexplored, but revealed a treasure trove of diversity, including a “lost” bird of paradise, a completely new species of another bird, and a bizarre treefrog with an erectile nose.
We also found several species of Choerophryne frog. DNA from these allowed our team to test two potential ways that miniature frogs could have come to occupy distant mountain peaks that are separated by inhospitable lowlands.
Across the Fojas by frog
The first way involves mountain-top frogs evolving separately on each isolated peak, potentially from larger frogs capable of surviving in the hotter and drier, nearby lowlands.
If this were the case, the frog on any given mountaintop would be most genetically similar to frogs from adjoining lowlands.
The other way involves exploiting climate change. During past phases of global cooling (glacial periods), the colder, wetter, mountainous habitats of New Guinea expanded downhill, a process termed elevational depression.
If depression was extensive enough, the frogs on one mountain might have been able to travel across tracts of cool, wet lowlands to colonise other mountains.
Later, a warming climate would wipe out the lowland populations, leaving two isolated mountain populations, which might eventually become new species.
If this were the case, we would expect the frogs in different mountains to be genetically related, since they almost literally hopped from one peak to the other.
Our new study of the DNA of the little Choerophryne frogs indicates they used both routes to conquer the peaks of New Guinea.
In the remote Foja mountains, for example, there are three species of Choerophryne. One species has evolved in situ in northern New Guinea from nearby lowland frogs.
The other two are related to frogs from distant mountains of central New Guinea, and presumably moved across the intervening lowlands during cooler glacial periods.
The little frogs and the future
Why does it matter how the tiny frogs moved to their mountain habitats? Because it could be a warning to their future survival.
Tropical mountains have some of the most biodiverse assemblages of plants and animals in the world. Their ecosystems are also far more dynamic than is popularly recognised.
Just like glaciers, the movements of frogs (and other organisms) up and down mountains has tracked global temperatures. As we’ve shown, the global cooling in past glacial periods allowed the mountain-dwelling frogs to move down across the lowlands to find new mountain peaks.
But today, as global temperatures soar to levels not seen for millions of years, their habitable cool zones are heading in the other direction: shrinking uphill.
We have no idea how quickly these frogs will respond to these changes, but recent research elsewhere in New Guinea has found birds are already shifting upslope rapidly.
We don’t yet know what could happen to these cute little amphibians should temperatures continue to climb, and they in turn run out of mountainside to climb.
It’s more than ten years since the first expeditions to the Foja Mountains, and this study provides a great demonstration of the ongoing value of the scientific data collected on these trips.
We now have a snapshot of the distinctive frogs (and many other animals) that live at the tops of these remote mountains, and a window into their past.
This provides an incredibly important resource to help us understand the dynamic history of these mountain forests, and reminds us that despite their inaccessibility, they face an uncertain future.
Stephen John Richards, a research associate in systematics, biogeography and conservation of amphibians, at The South Australian Museum, was a co-author on this article.
In the late 1970s in southeast Queensland, a silent killer arrived on Australian shores. The victims were our unique frogs, with the first to fall being the remarkable gastric brooding frog, last seen in 1981.
This fungus is responsible for the presumed extinction of a further five Queensland frog species, and the decline and disappearances of many local populations across Australia’s entire east coast and tablelands, including species that were once widespread and common. Globally, hundreds of amphibian species have also suffered major declines or are now considered to be extinct as a result of this disease.
Scanning Electron Microscope image of infected frog skin with fungal tubes poking through skin surface. Photo Lee Berger
In a study published in Wildlife Research, we and our colleagues identify seven more Australian frogs that are at immediate risk of extinction at the hands of chytrid fungus, including the iconic Corroboree frogs (both southern and northern species), Baw Baw frog, spotted tree frog, Kroombit tinker frog, armoured mist frog and the Tasmanian tree frog. We predict that the next few years may provide the last chance to save these species.
While the six already extinct Queensland species all declined rapidly after the arrival of chytrid, declines in southern regions have been slower. Chytrid is yet to arrive in areas of Tasmania’s Wilderness World Heritage Area, although the consequences are likely to be just as severe.
Our work aimed to prioritise frog conservation efforts across Australia, identifying the species most at risk of chytrid, and therefore most in need of urgent action. Worryingly, we found that five of the seven high-risk species that we identified lack a sustained and adequately funded monitoring program to protect them.
In addition to the seven species at immediate risk of extinction, we identified a further 22 that are at moderate to low risk. We also assessed the adequacy of current conservation efforts for all of these species, and found that most recovery efforts rely on the goodwill of individuals and are poorly resourced.
A healthy Tasmanian tree frog. Author provided
It is possible to manage the threat posed by chytrid fungus, but rapid action is urgently needed. We have identified six critical management actions that are required to prevent further extinctions of Australian frogs and call for an independent management and research fund to address the imminent threat.
The seven species at high risk require proactive recovery programs. Critical management actions may include: broad-scale surveys; intensive monitoring; precise risk assessment; the development of husbandry techniques for the establishment of assurance colonies; re-introductions and or translocations; and new management strategies to maintain wild populations.
Australia initially led the world in efforts to identify and manage chytrid fungus, which was listed as a “key threatening process” by state and federal governments in 2002
In 2006, a plan was drawn up to combat the disease, delivering more research funding and resulting in greatly improved biosecurity measures and increased understanding of the fungus.
In 2012 the plan was reviewed, and a revised plan that incorporates recent research developments now awaits approval. But action is required to manage the impact of the fungus, and disappointingly there has been no funding allocated to implement the new plan.
Blink and you’ll miss them: the armoured mist frog (left) and waterfall frog. Robert Puschendorf, Author provided
The past decade has also seen major cuts in both state and federal government resources for wildlife conservation. State agencies have disbanded dedicated recovery teams and there has been a shift away from single species conservation measures in an effort to maximise limited funding. This is despite the obligations set out in legislation to conserve individual threatened species. These cuts have severely undermined frog conservation efforts.
On a positive note, management interventions have saved the critically endangered Southern Corroboree Frog from extinction for now, but it remains threatened by chytrid fungus and requires ongoing management and research. Without swift action, government support and the dedicated efforts of many individuals, this species would undoubtedly already be gone.
You must be logged in to post a comment.