The rise of ‘eco-anxiety’: climate change affects our mental health, too



People who have been affected by extreme weather events might experience mental health issues.
From shutterstock.com

Fiona Charlson, The University of Queensland

This story is part of Covering Climate Now, a global collaboration of more than 250 news outlets to strengthen coverage of the climate story.

The Australian Medical Association (AMA) recently declared climate change a health emergency, reflecting similar positions taken by a growing list of peak medical bodies around the world.

The AMA’s statement highlights the significant impacts climate change is having on physical health, including an increase in climate-related deaths. The World Health Organisation regards climate change as “the greatest threat to global health in the 21st Century”.

But the statement also draws the very important issue of mental health out of the shadows.




Read more:
Act now on climate change to protect Australians’ mental health


Climate change can affect people’s mental health in a number of ways, both directly and indirectly.

We know experiencing extreme weather events is a risk factor for mental illness. And many thousands of people around the world are displaced from their homes as a result of climate events, putting them at perhaps even higher risk of mental illness.

More generally, people feeling distressed about the state of the planet may find themselves in a spiral of what’s been termed “eco-anxiety”.

Extreme weather events and psychological distress

Unprecedented weather events across Australia are already demonstrating clear and devastating impacts on the mental health of Australians, particularly in rural areas which are being hit the hardest by unseasonal drought, fires and floods.

These extreme weather events have resulted in the loss of homes, land and livelihoods. Research has found these experiences are taking a significant psychological toll on Australian farmers, who feel their sense of place and identities are under threat. Meanwhile, we’ve seen increasing rates of suicide among rural communities.

Elsewhere in the world, research similarly shows being affected by extreme weather events is a major risk factor for mental illness. This was evident, for example, in the aftermath of Hurricane Katrina in the United States.




Read more:
How climate change affects the building blocks for health


Climate-related displacement

Long-term environmental changes, including once fertile land turning to desert, erosion of soil and coastlines, and sea level rise, are predicted to result in large-scale displacement, a major risk factor for mental illness.

Global statistics already estimate that in 2017 the majority of people forced from their homes around the world were displaced as a result of climate-related disasters.

Parents sometimes worry about how climate change will affect their children’s lives in the future.
From shutterstock.com

In Australia, low-lying islands such as those in the Torres Strait are at the forefront of this reality, with relocation plans already under consideration.

At the extremes, the reality of climate-induced social instability is already tangible across numerous countries, and the Asia-Pacific region is considered as high risk.

The existential dread of climate change

For many Australians, the existential dread of what the future holds in the face of unmitigated climate change is having documented impacts on their mental health. Australia’s youth have been exemplary at voicing their despair and “eco-anxiety” around the foreseeable deterioration of our planet.

For those too young to have a voice, parents are feeling anxiety and distress on their behalf. Mums and dads are under pressure to instil values such as caring for the environment, while worrying about the future of the planet they are leaving their children.




Read more:
Heatwaves linked to an increase in Australian suicide rates


And this emerging narrative of how climate change is impacting people’s mental health is not complete. The relationships between climate events and mental health are complex and not always apparent.

Extreme heat has been observed to be harmful to multiple aspects of mental health and well-being. Data from South Australia demonstrates hot days are associated with increased hospital admissions for mental and behavioural disorders.

Other research has found spikes in temperature were associated with increased suicide rates in Sydney, Melbourne, Brisbane and Hobart.

A less obvious impact arises from the strong connection between nutritional status and mental health. Climate-related impacts on agriculture lead to reduced availability of nutritious foods, and poor nutritional intake can affect mental health.




Read more:
Health Check: seven nutrients important for mental health – and where to find them


So, what can be done?

The AMA’s recent statement has echoed calls from other medical associations for leadership on a national strategy for health and climate change. But what is it we can be doing to protect people from climate change-related mental health challenges?

Doing everything we can to reduce the progression of climate change is one clear way to address this issue.

But with the knowledge the climate crisis is only escalating, some practical responses will focus on preparing the health system for climate change. This should include increasing awareness of the mental health effects of climate change across the community, private, and government sectors.

It will also be important to invest in areas where mental health services are under-resourced, which are often the rural areas where the mental health effects of climate change are likely be most severe.




Read more:
Climate change is the defining issue of our time – we’re giving it the attention it deserves


A small but significant consolation is the public awareness being generated through the tireless work of advocacy groups and purposeful media reporting of farmers’ personal stories of distress.

Climate change adaptation strategies are in their infancy, but already we’re seeing some programs aimed at strengthening communities, particularly rural communities most severely affected by drought.

There will be no single solution to address the mental health impacts of climate change; a broad perspective and a range of actions will be necessary. As the climate crisis continues to unravel in Australia and globally, this will require strong leadership and some innovative thinking.

If this article has raised issues for you, or if you’re concerned about someone you know, call Lifeline on 13 11 14.

Fiona Charlson, the author of this piece, is available for a Q+A on Wednesday the 18th of September from 2pm-3pm AEST to take questions on this topic. Please post your questions in the comments below.The Conversation

Fiona Charlson, Conjoint NHMRC Early Career Fellow, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How rising temperatures affect our health



The first half of 2019 is the equal hottest on record and summer is set to be a scorcher.
Chayathorn Lertpanyaroj/Shutterstock

Liz Hanna, Australian National University

This story is part of Covering Climate Now, a global collaboration of more than 250 news outlets to strengthen coverage of the climate story.

Global warming is accelerating, driven by the continuing rise in greenhouse gas emissions. Australia’s climate has warmed by just over 1°C since 1910, with global temperatures on course for a 3-5°C rise this century.

Australia is ahead of the global temperature curve. Our average daily temperature is 21.8°C – that’s 13.7°C warmer than the global average of 8.1°C.

Heat extremes (days above 35°C and nights above 20°C) are now more frequent in Australia, occurring around 12% of the time compared to around 2% of the time between 1951 and 1980.

So what do high temperatures do to our bodies? And how much extra heat can people and our way of living tolerate?

More scorchers ahead

Australia’s summer of 2018-19 was 2.14°C warmer than the 1961–90 average, breaking the previous record set in 2012–13 by a large margin. It included an unprecedented sequence of five consecutive days with nationally averaged maximum temperatures above 40°C.




Read more:
The reality of living with 50℃ temperatures in our major cities


The first half of 2019 ranks as the equal second hottest since records began for the world, and also Australia.

The Bureau of Meteorology (BOM) has warned this summer will be another scorcher. Hot dry northerly winds tracking across drought-affected New South Wales and Queensland have the capacity to deliver blistering heat and extreme fire risks to the southern states, and little relief is in sight for those in drought.

Some rural Australians have already been exposed to 50°C days, and the major southern metro cities are set to do the same within the next decade or so.

How our bodies regulate heat

Like most mammals and birds, humans are endotherms (warm-blooded), meaning our optimal internal operating temperature (approximately 36.8°C +/− 0.5) is minimally influenced by ambient temperatures.

Quietly sitting indoors with the air temperature about 22°C, we passively generate that additional 15°C to keep our core temperature at about 37°C.

Even when the air temperature is 37°C, our metabolism continues to generate additional heat. This excess internal heat is shed into the environment through the evaporation of sweat from our skin.

Our optimal internal body temperature is 36.8°C.
Slaohome/Shutterstock

Temperature and humidity gradients between the skin surface and boundary layer of air determine the rate of heat exchange.

When the surrounding air is hot and humid, heat loss is slow, we store heat, and our temperatures rises.

That’s why hot, dry air is better tolerated than tropical, humid heat: dry air readily absorbs sweat.

A breeze appears refreshing by dislodging the boundary layer of saturated air in contact with the skin and allowing in drier air – thus speeding up evaporation and heat shedding.

What happens when we overheat?

Heat exposure becomes potentially lethal when the human body cannot lose sufficient heat to maintain a safe core temperature.

When our core temperature reaches 38.5°C, most would feel fatigued. And the cascade of symptoms escalate as the core temperature continues to rise beyond the safe functioning range for our critical organs: the heart, brain and kidneys.

Much like an egg in a microwave, protein within our body changes when exposed to heat.




Read more:
How heat can make your body melt down from the inside out


While some heat-acclimatised elite athletes, such as Tour de France cyclists, may tolerate 40°C for limited periods, this temperature is potentially lethal for most people.

As a pump, the heart’s role is to maintain an effective blood pressure. It fills the hot and dilated blood vessels throughout the body to get blood to vital organs.

Exposure to extreme heat places significant additional workload on the heart. It must increase the force of each contraction and the rate of contractions per minute (your heart rate).

If muscles are also working, they also need an increased blood flow.

If all this occurs at a time when profuse sweating has led to dehydration, and therefore lower blood volume, the heart must massively increase its work.

Dry air readily absorbs sweat, whereas humid air doesn’t, making it less tolerable.
Cliplab/Shutterstock

The heart is also a muscle, so it too needs extra blood supply when working hard. But when pumping hard and fast and its own demand for blood flow is not matched by its supply, it can fail. Many heat deaths are recorded as heart attacks.

High aerobic fitness levels offer some heat protection, yet athletes and fit young adults pushing themselves too hard also die in the heat.

Who is more at risk?

Older Australians are more vulnerable to heat stress. Age is commonly associated with poorer aerobic fitness and impaired ability to detect thirst and overheating.




Read more:
To keep heatwaves at bay, aged care residents deserve better quality homes


Obesity also increases this vulnerability. Fat acts as an insulating layer, as well as giving the heart a more extensive network of blood vessels to fill. The additional weight requires increased heat-generating muscular effort to move.

Certain medications can lower heat tolerance by interfering with our natural mechanisms necessary to cope with the heat. These include drugs that limit increases in heart rate, lower blood pressure by relaxing blood vessels, or interfere with sweating.

Core temperatures are increased by about half a degree during late stage pregnancy due to hormonal responses and increased metabolic rate. The growing foetus and placenta also demand additional blood flow. Exposure of the fetus to heat extremes can precipitate preterm birth and life-long health problems such as congential heart defects.

Won’t we just acclimatise?

Our bodies can acclimatise to hot temperatures, but this process has its limits. Some temperatures are simply too hot for the heart to cope with and for sweat rates to provide effective cooling, especially if we need to move or exercise.

We’re also limited by our kidneys’ capacity to conserve water and electrolytes, and the upper limit to the amount of water the human gut can absorb.

Profuse sweating leads to fluid and electrolyte deficits and the resulting electrolyte imbalance can interfere with the heart rhythm.

Mass death events are now occurring during heat waves in traditionally hot countries such as India and Pakistan. This is when heat extremes approaching 50°C exceed the human body’s capacity to maintain its safe core temperature range.




Read more:
Could we acclimatise to the hotter summers to come?


Heatwaves are hotter, more frequent and lasting longer. We can’t live life entirely indoors with air conditioning as we need to venture outdoors to commute, work, shop, and care for the vulnerable. People, animals and our social systems depend on this.

Besides, on a 50°C day, air conditioning units will struggle to remove 25°C from the ambient air.The Conversation

Liz Hanna, Honorary Senior Fellow, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New Zealand launches plan to revive the health of lakes and rivers



After years of delay, the New Zealand government is pushing ahead on a national plan to clean up the nation’s lakes, rivers and wetlands.
from http://www.shutterstock.com, CC BY-ND

Troy Baisden, University of Waikato

New Zealand’s government released a plan to reverse the decline of iconic lakes and rivers this week. It proposes higher standards for water quality, interim controls on land intensification and a higher bar on ecosystem health.

Freshwater quality was a significant election issue in 2017 and the proposal follows the recent release of Environment Aotearoa 2019, which links agriculture to freshwater degradation.

The agenda for change recognises that the perceived trade-off between agriculture and the environment makes little sense. If New Zealand trades internationally on a reputation for a healthy environment, continued degradation of water fouls the value of major exports. It also spoils the natural heritage that fuels the tourist economy and many New Zealanders consider a birthright.




Read more:
Six ways to improve water quality in New Zealand’s lakes and rivers


What’s changed?

The policy announcement reflects more than a decade of previous attempts, with the first draft notified in 2008, the first implementation in 2011, and major updates in 2014 and 2017. The new policy package addresses major deficiencies in the earlier versions, and has been fast-tracked to curtail freshwater pollution that has been allowed to get worse longer than it should.

The new regulations are designed to protect the health of entire ecosystems from excess nutrients. Some of the most compelling provisions draw clear lines where limits need to be set to prevent further slippage.

There’s a halt to significant expansions of dairy farming and irrigation, and limits on the use of nitrogen in some key catchments. Further improvements will better protect waterways and wetlands from grazing animals, and limits will be placed on recently criticised winter grazing.




Read more:
New Zealand’s urban freshwater is improving, but a major report reveals huge gaps in our knowledge


Two significant steps will reverse the main cause of delays in the past. The first is an implementation at national level. This should reduce reliance on a National Policy Statement (NPS) that requires regional councils to implement changes to local legislation.

This step will be reinforced by signalled changes to the national legislation, the Resource Management Act, which in turn will make regional council actions less cumbersome and underfunded. Secondly, where the new NPS requires region-by-region action, caps on increasing agricultural intensity will apply until regional plans have been amended to comply.

These steps increase the chance of preventing further degradation. Some benefits, such as a reduced risk of getting sick from swimming, should come through quickly. Others, such as reduced nutrient loads of nitrogen and phosphorous and a healthier ecology in lakes and rivers, could take years or decades.

Challenges ahead

To improve freshwater quality, we will need reliable monitoring and modelling tools to measure progress. These will need to be an integral part of the process, even though any decisions are ultimately determined by values. Working through this challenge highlights two large issues that remain unresolved in the plan.

The first is a lack of monitoring tools. The announcement didn’t take up recommendations in the Freshwater Leaders Group’s report that described present tools as unsuitable for providing enough confidence to move forward. The implications are that promised investment to develop the nutrient-monitoring Overseer tool will only eventually get us what we needed years ago.

Tools need to connect nutrient management with farm and catchment planning. They should focus more on future solutions rather than quantifying impacts of past land use that led to freshwater pollution.

The role for Māori

The issue of water allocation is even more important given the constitutional role Māori play in New Zealand’s freshwater governance, enshrined in the Treaty of Waitangi.

One of the most intriguing options left open to consultation is the extent to which Māori values will receive compulsory consideration, or alternately, be afforded consideration place-by-place by individual iwi (tribes) and hapū (sub-tribes). The advisory body representing Māori interests in the environment and in land-based industries raised concerns that these options are too weak.

These concerns are substantially amplified by the recent report by the Waitangi Tribunal, suggesting that the delays and dysfunction associated with freshwater policies have disproportionately undermined the ability of Māori to maintain holistic cultural connections to water, and obtain fair value from lands recently returned to them by the Crown.

These concerns and the need for better planning tools that resolve past degradation and enable future investment ultimately go hand-in-hand. Māori businesses, enabled by treaty settlements, are leading innovators and investors using social and environmental values to drive high-value exports.

The release now opens a period of consultation and national debate. This will pit the passionate voice of the farming community against voices representing our freshwater ecosystems. But this is the first time a proposed plan brings together all aspects of policy we need to keep aquatic life healthy.The Conversation

Troy Baisden, Professor and Chair in Lake and Freshwater Sciences, University of Waikato

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate Q&A: will we be less healthy because of climate change?



Climate change, together with other ecological pressures, may well undo the gains we have made in health.
from http://www.shutterstock.com, CC BY-ND

Alexandra Macmillan, University of Otago

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change. If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz

Do you expect an increase in health issues due to the effects of climate change? – a question from Christine in Wellington

Some of the negative health effects of climate change are already upon us, but it’s not all doom and gloom. There is a huge opportunity for better health through well designed action to reduce our emissions and by adapting to the changes we are facing.

You may already be experiencing one of the potential impacts of climate change on our mental health. In recent years, the New Zealand Psychological Society has reported seeing some cases of anxiety, helplessness and depression about climate change. This is most evident when individual concerns are expressed collectively in the form of protest such as the school strikes for climate. Thousands of young people around New Zealand – and reportedly more than a million globally – have been striking to express their fears about the future.




Read more:
Climate change: seeing the planet break down is depressing – here’s how to turn your pain into action


The grief and depression that can result from the destruction of places and landscapes people love led Australian environmental philosopher Glenn Albrecht to create a new word: “solastalgia”.

Global warnings

In New Zealand, the past half century has seen ongoing improvements in the health of the overall population, with an expectation that our children will have better health, life expectancy and quality of life than their parents.

But as a number of reports have found, including medical journal The Lancet’s Countdown 2018 report, climate change may well undo these health gains in tandem with other ecological pressures we have created. Global measures of health mask unequal gains between populations and groups between and within countries. Climate change will make these health inequalities worse.

The pathways between climate change and human health, from a global report on climate change and health.
2018 report of the Lancet Countdown on health and climate change, CC BY-NC-ND

The Lancet’s report warns that “the nature and scale of the response to climate change will be the determining factor in shaping the health of nations for centuries to come”.

Climate change and health in New Zealand

In New Zealand, warmer winters may reduce the number of people who die (currently about 1600 each year), mostly from heart and lung disease. But unfortunately, the overall impact will be negative on a wide range of other causes of illness and mortality. It is likely that climate change will bring diseases unfamiliar in New Zealand (especially infectious diseases, such as dengue fever), but more importantly, climate change amplifies chronic and infectious diseases we already suffer from, such as the impacts of heat on heart disease, and changing rainfall patterns on waterborne illnesses.

One major direct impact on health was made evident by the huge outbreak of campylobacter, a bacterial infection that causes gastroenteritis, in Havelock North during the winter of 2016. Some 5,500 people in a town of 14,000 residents became unwell, with 45 people hospitalised. A government inquiry attributed the outbreak to a combination of extreme rainfall that washed sheep faeces into a pond near a water bore and poor drinking water management. The outbreak may even have contributed to three people’s deaths.

Warming of freshwater and more extreme rainfall events are both part of climate change, increasing the likelihood of outbreaks like the one in Havelock North.

Indirect effects on health will be as important, but they are more difficult to measure and predict. Climate change undermines many of the building blocks of good health: clean air, plentiful safe drinking water, affordable healthy food, affordable dry houses, and economic stability and peace. The threat to food security and therefore nutrition is just one worrying example.




Read more:
How climate change affects the building blocks for health


Changing seasonal temperatures and weather extremes are already reducing harvests of important staples like wheat, while warming oceans are reducing our ability to harvest fish and shellfish. Both are staples in New Zealand’s diet. We already have a problem with many families not being able to afford to always put a meal on the table, let alone a healthy one. When this worsens, the result is, perversely, an increase in obesity and diabetes, accompanied by nutrient deficiencies, as families rely on cheap, highly processed foods to get by.

Overall, many New Zealanders are experiencing better health than in the past, but we have persistent health inequalities as a result of multiple structural injustices, including poverty. People on low incomes, Māori and Pasifika, the elderly and children will be worst affected by climate change, but wealth and white privilege do not confer immunity.

The overwhelmingly negative effects of climate change on health are a strong argument for urgent action to reduce our climate pollution.

But well designed action also offers opportunities to address New Zealand’s biggest causes of death and disease: cancer, heart disease, diabetes and obesity. For example, if we reduce our transport emissions by improving access to safe walking and cycling routes and electric public transport, air quality will improve and we build physical exercise back into our daily lives. Shifting our farming sector from a heavy focus on producing milk powder towards plant-based food production would not only change our national diets for the better, but also ensure we are resilient to global food price shocks and improve our fresh and drinking water.

Our health system will need significant strengthening if we are to be in a good position to weather the coming climate disruptions. This is particularly so in public health, which sets up systems for dealing with outbreaks and emergencies. We also know from our experiences of past major calamities such as earthquakes, that the resilience that comes from strong communities is a huge advantage. Taking co-ordinated action together can be crucial for health during upheaval.The Conversation

Alexandra Macmillan, Senior Lecturer in environmental sustainability and public health and co-convenor of OraTaiao: NZ Climate & Health Council, University of Otago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Increasing tree cover may be like a ‘superfood’ for community mental health



Imagine Hyde Park in Sydney without its tree cover … the impact on this space and the many people who spend time in it would be profound.
EA Given/Shutterstock

Thomas Astell-Burt, University of Wollongong and Xiaoqi Feng, University of Wollongong

Increasing tree canopy and green cover across Greater Sydney and increasing the proportion of homes in urban areas within 10 minutes’ walk of quality green, open and public space are among the New South Wales premier’s new priorities. Cities around Australia have similar goals. In our latest study, we asked if more of any green space will do? Or does the type of green space matter for our mental health?

Our results suggest the type of green space does matter. Adults with 30% or more of their neighbourhood covered in some form of tree canopy had 31% lower odds of developing psychological distress. The same amount of tree cover was linked to 33% lower odds of developing fair to poor general health.

We also found poorer mental and general health among adults in areas with higher percentages of bare grass nearby, but there’s likely more to that than meets the eye.




Read more:
Green for wellbeing – science tells us how to design urban spaces that heal us


Treed neighbourhoods have a natural appeal to people.
Tim Gouw/Unsplash

How did we do the research?

Our research involved tracking changes in health over an average of about six years, for around 46,000 adults aged 45 years or older, living in Sydney, Newcastle or Wollongong. We examined health in relation to different types of green space available within a 1.6 kilometre (1 mile) walk from home.

Our method helped to guard against competing explanations for our results, such as differences in income, education, relationship status, sex, and age. We also restricted the sample to adults who did not move home, because it is plausible that people who are already healthier (for instance because they are more physically active) move into areas with more green space.

So is the answer simply more trees and less grass? Not exactly. Let’s get into the weeds.




Read more:
Green space – how much is enough, and what’s the best way to deliver it?


Trees make it cool to walk

Imagine you’re walking down a typical street on a summer’s day in the middle of an Australian city. It’s full of right angles, grey or dark hard surfaces, glass structures, and innumerable advertisements competing for your attention. Then you turn a corner and your gaze is drawn upwards to a majestic tree canopy exploding with a vivid array of greens for as far as you can see.

A tree-lined street like Swanston Street in Melbourne is a more walkable street.
kittis/Shutterstock

Let’s get the obvious out of the way. Walking down this green street, you may instantly feel some relief from the summer heat.

Studies are linking high temperatures with heat exhaustion and mental health impacts. Research has suggested trees, rather than other forms of green space, may be best at reducing temperatures in cities. It may also simply be more comfortable to walk outside in cooler temperatures – not to mention going for a run or bike ride, both of which are good for mental health.




Read more:
Our cities need more trees, but some commonly planted ones won’t survive climate change


Feeling restored and alert

But as the minutes of walking beneath this natural umbrella of lush foliage accumulate, other things are happening too. The vibrant colours, natural shapes and textures, fresh aromas, and rustling of leaves in the breeze all provide you with effortless distraction and relief from whatever it was you might have been thinking about, or even stressing over.

Trees can provide a soothing sensory distraction from our troubles.
Jake Ingle/Unsplash

Studies back this up. Walks through green space have been shown to reduce blood pressure, improve mental acuity, boost memory recall, and reduce feelings of anxiety. The Japanese have a name for this type of experience: shinrin-yoku.

Friends, old and new

You walk past groups of people on the footpath taking time to catch up over coffee in the shade. Some research has found that tree cover, rather than green space more generally, is a predictor of social capital. Social capital, according to Robert Putnam, refers to the “social networks and the associated norms of reciprocity and trustworthiness” that may have important influences on our life chances and health.

Dogs and trees both contribute to building healthy social relations.
Liubov Ilchuk/Unsplash

You walk further and a chorus of birdsong soars through the neighbourhood noise. Trees provide shelter and food for a variety of animals. Research suggests tree canopy tends to be more biodiverse than low-lying vegetation.

Increased biodiversity may support better mental health by enhancing the restorative experience and also via the immunoregulatory benefits of microbial “Old Friends” – microorganisms that helped shape our immune systems but which have been largely eliminated from our urban environments.

Green spaces with tree canopy are settings where communities can come together to watch birds and other animals, which can also be catalysts for new conversations and developing feelings of community belonging in the neighbourhoods where we live … just ask dog owners.




Read more:
Reducing stress at work is a walk in the park


So, what about the grass?

Our research did not show a mental health benefit from more bare grassed areas. This does not mean grass is bad for mental health.

Previous research suggests adults are less likely to wander in green spaces that are relatively plain and lacking in a variety of features or amenities.
This may also be partly attributable to preferences for green spaces with more complex vegetation, such as parks that mix grass with tree canopy.

Parks with a variety of vegetation, including trees and grass, may be more attractive for a wider range of outdoor activities than those with few trees.
Author

Furthermore, large areas of bare grass in cities can make built environments more spread-out and less dense. Without tree canopy to shield from the midday sun, this may increase the likelihood of people using cars for short trips instead of walking through a park or along a footpath. The result is missed opportunities for physical activity, mental restoration, and impromptu chats with neighbours. Previous work in the United States suggests this might be why higher death rates were found in greener American cities.

Grassed areas can occupy a large amount of space for surprisingly little mental health benefit.
chuttersnap/Unsplash

Large open areas of grass can be awesome for physical activity and sport, but let’s make sure there is also plenty of tree canopy too, while also thinking about ways to get more people outdoors in green spaces. Here are some suggestions.

Making Australia greener and healthier

As the density of Australian cities continues to increase and more of us live in apartments and/or work in high-rise office blocks, it is great to see strategies to invest in tree cover and urban greening more generally across Australia. Cities with such plans include Sydney, Melbourne, Brisbane, Bendigo, Fremantle, and Wollongong.

You can get involved and have some fun at the same time too. Lots of evidence says gardening is really great for your mental health. So why not grab a mate and spend a couple of hours planting a tree on July 28 for National Tree Day!The Conversation

Both the act of planting a tree and its presence over the decades are good for us.
Amy Fry/flickr, CC BY-NC-SA

Thomas Astell-Burt, Professor of Population Health and Environmental Data Science, NHMRC Boosting Dementia Research Leadership Fellow, University of Wollongong and Xiaoqi Feng, Associate Professor of Epidemiology and NHMRC Career Development Fellow, University of Wollongong

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Expanding gas mining threatens our climate, water and health


Melissa Haswell, Queensland University of Technology and David Shearman, University of Adelaide

Australia, like its competitors Qatar, Canada and the United States, aspires to become the world’s largest exporter of gas, arguing this helps importing nations reduce their greenhouse emissions by replacing coal.

Yes, burning gas emits less carbon dioxide than burning coal. Yet the “fugitive emissions” – the methane that escapes, often unmeasured, during production, distribution and combustion of gas – is a much more potent short-term greenhouse gas than carbon dioxide.




Read more:
Who gets to decide whether we dig up coal and gas?


A special report issued by the World Health Organisation after the 2018 Katowice climate summit urged governments to take “specific commitments to reduce emissions of short-lived climate pollutants” such as methane, so as to boost the chances of staying with the Paris Agreement’s ambitious 1.5℃ global warming limit.

Current gas expansion plans in Western Australia, the Northern Territory and Queensland, where another 2,500 coal seam gas wells have been approved, reveal little impetus to deliver on this. Harvesting all of WA’s gas reserves would emit about 4.4 times more carbon dioxide equivalent than Australia’s total domestic energy-related emissions budget.

Gas as a cause of local ill-health

There are not only global, but also significant local and regional risks to health and well-being associated with unconventional gas mining. Our comprehensive review examines the current state of the evidence.

Since our previous reviews (see here, here and here), more than 1,400 further peer-reviewed articles have been published, helping to clarify how expanding unconventional gas production across Australia risks our health, well-being, climate, water and food security.




Read more:
Chief Scientist CSG report leaves health concerns unanswered


This research has been possible because, since 2010, 17.6 million US citizens’ homes have been within a mile (1.6km) of gas wells and fracking operations. Furthermore, some US research funding is independent of the gas industry, whereas much of Australia’s comparatively small budget for research in this area is channelled through an industry-funded CSIRO research hub.

Key medical findings

There is evidence that living close to unconventional gas mining activities is linked to a wide range of health conditions, including psychological and social problems.

The US literature now consistently reports higher frequencies of low birth weight, extreme premature births, higher-risk pregnancies and some birth defects, in pregnancies spent closer to unconventional gas mining activities, compared with pregnancies further away. No parallel studies have so far been published in Australia.

US studies have found increased indicators of cardiovascular disease, higher rates of sinus disorders, fatigue and migraines, and hospitalisations for asthma, heart, neurological, kidney and urinary tract conditions, and childhood blood cancer near shale gas operations.

Exploratory studies in Queensland found higher rates of hospitalisation for circulatory, immune system and respiratory disorders in children and adults in the Darling Downs region where coal seam gas mining is concentrated.

Water exposure

Chemicals found in gas mining wastewater include volatile organic compounds such as benzene, phenols and polyaromatic hydrocarbons, as well as heavy metals, radioactive materials, and endocrine-disrupting substances – compounds that can affect the body’s hormones.

This wastewater can find its way into aquifers and surface water through spillage, injection procedures, and leakage from wastewater ponds.

The environmental safety of treated wastewater and the vast quantities of crystalline salt produced is unclear, raising questions about cumulative long-term impacts on soil productivity and drinking water security.

Concern about the unconventional gas industry’s use of large quantities of water has increased since 2013. Particularly relevant to Australian agriculture and remote communities is research showing an unexpected but consistent increase in the “water footprint” of gas wells across all six major shale oil and gas mining regions of the US from 2011 to 2016. Maximum increases in water use per well (7.7-fold higher, Permian deposits, New Mexico and Texas) and wastewater production per well (14-fold, Eagle Ford deposits, Texas) occurred where water stress is very high. The drop in water efficiency was tied to a drop in gas prices.

Air exposure

Research on the potentially harmful substances emitted into the atmosphere during water removal, gas production and processing, wastewater handling and transport has expanded. These substances include fine particulate pollutants, ground-level ozone, volatile organic compounds, polycyclic aromatic hydrocarbons, hydrogen sulfide, formaldehyde, diesel exhaust and endocrine-disrupting chemicals.

Measuring concentrations and human exposures to these pollutants is complicated, as they vary widely and unpredictably in both time and location. This makes it difficult to prove a definitive causal link to human health impacts, despite the mounting circumstantial evidence.




Read more:
Why Australians need a national environment protection agency to safeguard their health


Our review found substantially more evidence of what we suspected in 2013: that gas mining poses significant threats to the global climate, to food and water supplies, and to health and well-being.

On this basis, Doctors for the Environment Australia (DEA) has reinforced its position that no new gas developments should occur in Australia, and that governments should increase monitoring, regulation and management of existing wells and gas production and transport infrastructure.The Conversation

Melissa Haswell, Professor of Health, Safety and Environment, School of Public Health and Social Work, Queensland University of Technology, Queensland University of Technology and David Shearman, Emeritus Professor of Medicine, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Explainer: what is Murray Valley encephalitis virus?


Ana Ramírez, James Cook University; Andrew Francis van den Hurk, The University of Queensland; Cameron Webb, University of Sydney, and Scott Ritchie, James Cook University

Western Australian health authorities recently issued warnings about Murray Valley encephalitis, a serious disease that can spread by the bite of an infected mosquito and cause inflammation of the brain.

Thankfully, no human cases have been reported this wet season. The virus that causes the disease was detected in chickens in the Kimberley region. These “sentinel chickens” act as an early warning system for potential disease outbreaks.

What is Murray Valley encephalitis virus?

Murray Valley encephalitis virus is named after the Murray Valley in southeastern Australia. The virus was first isolated from patients who died from encephalitis during an outbreak there in 1951.

The virus is a member of the Flavivirus family and is closely related to Japanese encephalitis virus, a major cause of encephalitis in Asia.

Murray Valley encephalitis virus is found in northern Australia circulating between mosquitoes, especially Culex annulirostris, and water birds. Occasionally the virus spreads to southern regions, as mosquitoes come into contact with infected birds that have migrated from northern regions.




Read more:
After the floods come the mosquitoes – but the disease risk is more difficult to predict


How serious is the illness?

After being transmitted by an infected mosquito, the virus incubates for around two weeks.

Most people infected don’t develop symptoms. But, if you’re unlucky, you could develop symptoms ranging from fever and headache to paralysis, encephalitis and coma.

Around 40% of people who develop symptoms won’t fully recover and about 25% die. Generally, one or two human cases are reported in Australia per year.

Since the 1950s, there have been sporadic outbreaks of Murray Valley encephalitis, most notably in 1974 and 2011. The 1974 outbreak was Australia-wide, resulting in 58 cases and 12 deaths.

It’s likely the virus has been causing disease since at least the early 1900s when epidemics of encephalitis were attributed to a mysterious illness called Australian X disease.

Traditional monitoring of mosquito-borne diseases relies on the collection of mosquitoes using specially designed traps baited with carbon dioxide.
Cameron Webb

Early warning system

Given the severity of Murray Valley encephalitis, health authorities rely on early warning systems to guide their responses.

One of the most valuable surveillance tools to date have been chooks because the virus circulates between birds and mosquitoes. Flocks of chickens are placed in areas with past evidence of virus circulation and where mosquitoes are buzzing about.

Chickens are highly susceptible to infection so blood samples are routinely taken and analysed to determine evidence of virus infection. If a chicken tests positive, the virus has been active in an area.

The good news is that even if the chickens have been bitten, they don’t get sick.

Mosquitoes can also be collected in the field using a variety of traps. Captured mosquitoes are counted, grouped by species and tested to see if they’re carrying the virus.

This method is very sensitive: it can identify as little as one infected mosquito in a group of 1,000. But processing is labour-intensive.




Read more:
How Australian wildlife spread and suppress Ross River virus


How can technology help track the virus?

Novel approaches are allowing scientists to more effectively detect viruses in mosquito populations.

Mosquitoes feed on more than just blood. They also need a sugar fix from time to time, usually plant nectar. When they feed on sugary substances, they eject small amounts of virus in their saliva.

This led researchers to develop traps that contain special cards coated in honey. When the mosquitoes feed on the cards, they spit out virus, which specific tests can then detect.

We are also investigating whether mosquito poo could be used to enhance the sugar-based surveillance system. Mosquitoes spit only tiny amounts of virus, whereas they poo a lot (300 times more than they spit).

This mosquito poo can contain a treasure trove of genetic material, including viruses. But we’re still working out the best way to collect the poo.

Mosquito poo, shown here after mosquitoes have fed on coloured honey, can be used to detect viruses like Murray Valley encephalitis.
Dagmar Meyer

Staying safe from Murray Valley encephalitis

There is no vaccine or specific treatment for the virus. Avoiding mosquito bites is the only way to protect yourself from the virus. You can do this by:

  • wearing protective clothing when outdoors

  • avoiding being outdoors when the mosquitoes that transmit the virus are most active (dawn and dusk)

  • using repellents, mosquito coils, insect screens and mosquito nets

  • following public health advisories for your area.

The virus is very rare and your chances of contracting the disease are extremely low, but not being bitten is the best defence.The Conversation

Ana Ramírez, PhD candidate, James Cook University; Andrew Francis van den Hurk, Medical Entomologist, The University of Queensland; Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney, and Scott Ritchie, Professorial Research Fellow, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.