Expanding gas mining threatens our climate, water and health


Melissa Haswell, Queensland University of Technology and David Shearman, University of Adelaide

Australia, like its competitors Qatar, Canada and the United States, aspires to become the world’s largest exporter of gas, arguing this helps importing nations reduce their greenhouse emissions by replacing coal.

Yes, burning gas emits less carbon dioxide than burning coal. Yet the “fugitive emissions” – the methane that escapes, often unmeasured, during production, distribution and combustion of gas – is a much more potent short-term greenhouse gas than carbon dioxide.




Read more:
Who gets to decide whether we dig up coal and gas?


A special report issued by the World Health Organisation after the 2018 Katowice climate summit urged governments to take “specific commitments to reduce emissions of short-lived climate pollutants” such as methane, so as to boost the chances of staying with the Paris Agreement’s ambitious 1.5℃ global warming limit.

Current gas expansion plans in Western Australia, the Northern Territory and Queensland, where another 2,500 coal seam gas wells have been approved, reveal little impetus to deliver on this. Harvesting all of WA’s gas reserves would emit about 4.4 times more carbon dioxide equivalent than Australia’s total domestic energy-related emissions budget.

Gas as a cause of local ill-health

There are not only global, but also significant local and regional risks to health and well-being associated with unconventional gas mining. Our comprehensive review examines the current state of the evidence.

Since our previous reviews (see here, here and here), more than 1,400 further peer-reviewed articles have been published, helping to clarify how expanding unconventional gas production across Australia risks our health, well-being, climate, water and food security.




Read more:
Chief Scientist CSG report leaves health concerns unanswered


This research has been possible because, since 2010, 17.6 million US citizens’ homes have been within a mile (1.6km) of gas wells and fracking operations. Furthermore, some US research funding is independent of the gas industry, whereas much of Australia’s comparatively small budget for research in this area is channelled through an industry-funded CSIRO research hub.

Key medical findings

There is evidence that living close to unconventional gas mining activities is linked to a wide range of health conditions, including psychological and social problems.

The US literature now consistently reports higher frequencies of low birth weight, extreme premature births, higher-risk pregnancies and some birth defects, in pregnancies spent closer to unconventional gas mining activities, compared with pregnancies further away. No parallel studies have so far been published in Australia.

US studies have found increased indicators of cardiovascular disease, higher rates of sinus disorders, fatigue and migraines, and hospitalisations for asthma, heart, neurological, kidney and urinary tract conditions, and childhood blood cancer near shale gas operations.

Exploratory studies in Queensland found higher rates of hospitalisation for circulatory, immune system and respiratory disorders in children and adults in the Darling Downs region where coal seam gas mining is concentrated.

Water exposure

Chemicals found in gas mining wastewater include volatile organic compounds such as benzene, phenols and polyaromatic hydrocarbons, as well as heavy metals, radioactive materials, and endocrine-disrupting substances – compounds that can affect the body’s hormones.

This wastewater can find its way into aquifers and surface water through spillage, injection procedures, and leakage from wastewater ponds.

The environmental safety of treated wastewater and the vast quantities of crystalline salt produced is unclear, raising questions about cumulative long-term impacts on soil productivity and drinking water security.

Concern about the unconventional gas industry’s use of large quantities of water has increased since 2013. Particularly relevant to Australian agriculture and remote communities is research showing an unexpected but consistent increase in the “water footprint” of gas wells across all six major shale oil and gas mining regions of the US from 2011 to 2016. Maximum increases in water use per well (7.7-fold higher, Permian deposits, New Mexico and Texas) and wastewater production per well (14-fold, Eagle Ford deposits, Texas) occurred where water stress is very high. The drop in water efficiency was tied to a drop in gas prices.

Air exposure

Research on the potentially harmful substances emitted into the atmosphere during water removal, gas production and processing, wastewater handling and transport has expanded. These substances include fine particulate pollutants, ground-level ozone, volatile organic compounds, polycyclic aromatic hydrocarbons, hydrogen sulfide, formaldehyde, diesel exhaust and endocrine-disrupting chemicals.

Measuring concentrations and human exposures to these pollutants is complicated, as they vary widely and unpredictably in both time and location. This makes it difficult to prove a definitive causal link to human health impacts, despite the mounting circumstantial evidence.




Read more:
Why Australians need a national environment protection agency to safeguard their health


Our review found substantially more evidence of what we suspected in 2013: that gas mining poses significant threats to the global climate, to food and water supplies, and to health and well-being.

On this basis, Doctors for the Environment Australia (DEA) has reinforced its position that no new gas developments should occur in Australia, and that governments should increase monitoring, regulation and management of existing wells and gas production and transport infrastructure.The Conversation

Melissa Haswell, Professor of Health, Safety and Environment, School of Public Health and Social Work, Queensland University of Technology, Queensland University of Technology and David Shearman, Emeritus Professor of Medicine, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Explainer: what is Murray Valley encephalitis virus?


Ana Ramírez, James Cook University; Andrew Francis van den Hurk, The University of Queensland; Cameron Webb, University of Sydney, and Scott Ritchie, James Cook University

Western Australian health authorities recently issued warnings about Murray Valley encephalitis, a serious disease that can spread by the bite of an infected mosquito and cause inflammation of the brain.

Thankfully, no human cases have been reported this wet season. The virus that causes the disease was detected in chickens in the Kimberley region. These “sentinel chickens” act as an early warning system for potential disease outbreaks.

What is Murray Valley encephalitis virus?

Murray Valley encephalitis virus is named after the Murray Valley in southeastern Australia. The virus was first isolated from patients who died from encephalitis during an outbreak there in 1951.

The virus is a member of the Flavivirus family and is closely related to Japanese encephalitis virus, a major cause of encephalitis in Asia.

Murray Valley encephalitis virus is found in northern Australia circulating between mosquitoes, especially Culex annulirostris, and water birds. Occasionally the virus spreads to southern regions, as mosquitoes come into contact with infected birds that have migrated from northern regions.




Read more:
After the floods come the mosquitoes – but the disease risk is more difficult to predict


How serious is the illness?

After being transmitted by an infected mosquito, the virus incubates for around two weeks.

Most people infected don’t develop symptoms. But, if you’re unlucky, you could develop symptoms ranging from fever and headache to paralysis, encephalitis and coma.

Around 40% of people who develop symptoms won’t fully recover and about 25% die. Generally, one or two human cases are reported in Australia per year.

Since the 1950s, there have been sporadic outbreaks of Murray Valley encephalitis, most notably in 1974 and 2011. The 1974 outbreak was Australia-wide, resulting in 58 cases and 12 deaths.

It’s likely the virus has been causing disease since at least the early 1900s when epidemics of encephalitis were attributed to a mysterious illness called Australian X disease.

Traditional monitoring of mosquito-borne diseases relies on the collection of mosquitoes using specially designed traps baited with carbon dioxide.
Cameron Webb

Early warning system

Given the severity of Murray Valley encephalitis, health authorities rely on early warning systems to guide their responses.

One of the most valuable surveillance tools to date have been chooks because the virus circulates between birds and mosquitoes. Flocks of chickens are placed in areas with past evidence of virus circulation and where mosquitoes are buzzing about.

Chickens are highly susceptible to infection so blood samples are routinely taken and analysed to determine evidence of virus infection. If a chicken tests positive, the virus has been active in an area.

The good news is that even if the chickens have been bitten, they don’t get sick.

Mosquitoes can also be collected in the field using a variety of traps. Captured mosquitoes are counted, grouped by species and tested to see if they’re carrying the virus.

This method is very sensitive: it can identify as little as one infected mosquito in a group of 1,000. But processing is labour-intensive.




Read more:
How Australian wildlife spread and suppress Ross River virus


How can technology help track the virus?

Novel approaches are allowing scientists to more effectively detect viruses in mosquito populations.

Mosquitoes feed on more than just blood. They also need a sugar fix from time to time, usually plant nectar. When they feed on sugary substances, they eject small amounts of virus in their saliva.

This led researchers to develop traps that contain special cards coated in honey. When the mosquitoes feed on the cards, they spit out virus, which specific tests can then detect.

We are also investigating whether mosquito poo could be used to enhance the sugar-based surveillance system. Mosquitoes spit only tiny amounts of virus, whereas they poo a lot (300 times more than they spit).

This mosquito poo can contain a treasure trove of genetic material, including viruses. But we’re still working out the best way to collect the poo.

Mosquito poo, shown here after mosquitoes have fed on coloured honey, can be used to detect viruses like Murray Valley encephalitis.
Dagmar Meyer

Staying safe from Murray Valley encephalitis

There is no vaccine or specific treatment for the virus. Avoiding mosquito bites is the only way to protect yourself from the virus. You can do this by:

  • wearing protective clothing when outdoors

  • avoiding being outdoors when the mosquitoes that transmit the virus are most active (dawn and dusk)

  • using repellents, mosquito coils, insect screens and mosquito nets

  • following public health advisories for your area.

The virus is very rare and your chances of contracting the disease are extremely low, but not being bitten is the best defence.The Conversation

Ana Ramírez, PhD candidate, James Cook University; Andrew Francis van den Hurk, Medical Entomologist, The University of Queensland; Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney, and Scott Ritchie, Professorial Research Fellow, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How Australian wildlife spread and suppress Ross River virus



File 20181230 47292 1isykoi.jpg?ixlib=rb 1.1
Mozzies feed on many native species, including the Nankeen Night Heron.
Janis Otto/flikr

Eloise Stephenson, Griffith University; Cameron Webb, University of Sydney, and Emily Johnston Flies, University of Tasmania

Ross River virus is Australia’s most common mosquito-borne disease. It infects around 4,000 people a year and, despite being named after a river in North Queensland, is found in all states and territories, including Tasmania.

While the disease isn’t fatal, it can cause debilitating joint pain, swelling and fatigue lasting weeks or even months. It can leave sufferers unable to work or look after children, and is estimated to cost the economy A$2.7 to A$5.6 million each year.

There is no treatment or vaccine for Ross River virus; the only way to prevent is to avoid mosquito bites.




Read more:
Explainer: what is Ross River virus?


Mosquitoes pick up the disease-causing pathogen by feeding on an infected animal. The typical transmission cycle involves mosquitoes moving the virus between native animals but occasionally, an infected mosquito will bite a person. If this occurs, the mosquito can spread Ross River virus to the person.

Animal hosts

Ross River virus has been found in a range of animals, including rats, dogs, horses, possums, flying foxes, bats and birds. But marsupials – kangaroos and wallabies in particular – are generally better than other animals at amplifying the virus under experimental infection and are therefore thought to be “reservoir hosts”.

The virus circulates in the blood of kangaroos and wallabies for longer than other animals, and at higher concentrations. It’s then much more likely to be picked up by a blood-feeding mosquito.

Kangaroos are a common sight around Australia’s coastal wetlands.
Dr Cameron Webb (NSW Health Pathology), Author provided

Dead-end hosts

When we think of animals and disease we often try to identify which species are good at transmitting the virus to mosquitoes (the reservoir hosts). But more recently, researchers have started to focus on species that get bitten by mosquitoes but don’t transmit the virus.

These species, known as dead-end hosts, may be important for reducing transmission of the virus.

With Ross River virus, research suggests birds that get Ross River virus from a mosquito cannot transmit the virus to another mosquito. If this is true, having an abundance of birds in and around our urban environments may reduce the transmission of Ross River virus to animals, mosquitoes and humans in cities.

Other reservoir hosts?

Even in areas with a high rates of Ross River virus in humans, we don’t always find an abundance of kangaroos and wallabies. So there must be other factors – or animals yet to be identified as reservoirs or dead-end hosts – playing an important role in transmission.

Ross River virus is prevalent in the Pacific Islands, for instance, where there aren’t any kangaroos and wallabies. One study of blood donors in French Polynesia found that 42.4% of people tested had previously been exposed to the virus. The rates are even higher in American Samoa, where 63% of people had been exposed.




Read more:
The worst year for mosquitoes ever? Here’s how we find out


It’s unclear if the virus has recently started circulating in these islands, or if it’s been circulating there longer, and what animals have been acting as hosts.

What about people?

Mosquitoes can transmit some viruses, such as dengue and Zika between people quite easily.

But the chances of a mosquito picking up Ross River virus when biting an infected human is low, though not impossible. The virus circulates in our blood at lower concentrations and for shorter periods of time compared with marsupials.

Stop mozzies biting with insect repellents.
Elizaveta Galitckaia/Shutterstock

If humans are infected with Ross River virus, around 30% will develop symptoms of joint pain and fatigue (and sometimes a rash) three to 11 days after exposure, while some may not experience any symptoms until three weeks after exposure.

To reduce your risk of contracting Ross River virus, take care to cover up when you’re outdoors at sunset and wear repellent when you’re in outdoor environments where mosquitoes and wildlife may be frequently mixing.




Read more:
Mozzie repellent clothing might stop some bites but you’ll still need a cream or spray


The Conversation


Eloise Stephenson, PhD Candidate, Griffith University; Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney, and Emily Johnston Flies, Postdoctoral Research Fellow (U.Tasmania), University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Heatwaves threaten Australians’ health, and our politicians aren’t doing enough about it


Paul Beggs, Macquarie University; Helen Louise Berry, University of Sydney; Martina Linnenluecke, Macquarie University, and Ying Zhang, University of Sydney

Extreme heat affects the mental health of Australians to the same degree as unemployment, yet Australia’s policy action on climate change lags behind other high-income countries such as Germany and the United Kingdom.

As Australia approaches another summer, we face the inevitability of deadly heatwaves. Our report published today in the Medical Journal of Australia concludes that policy inaction, particularly at the federal level, is putting Australian lives at risk.

The report, The MJA–Lancet Countdown on health and climate change: Australian policy inaction threatens lives, builds on an earlier publication in The Lancet medical journal, which concluded climate change is the biggest global health threat of the 21st century.




Read more:
Climate mitigation – the greatest public health opportunity of our time


Australia is the first to prepare its own country-level report. Developed in partnership with the Lancet Countdown – which tracks the global connections between health and climate change – it adopts the structure and methods of the global assessment but with an Australian focus.

How Australians’ health suffers

Australians are already facing climate change-related exposures that come from increasing annual average temperatures, heatwaves and weather-related disasters. Australian deaths during the 2014 Adelaide heatwave and Melbourne’s 2016 thunderstorm asthma event are examples of the risk climate poses to our health.




Read more:
Keeping one step ahead of pollen triggers for thunderstorm asthma


Our report was produced by a team of 19 experts from 13 universities and research institutes. We aimed to answer what we know about climate change and human health in Australia and how we are responding to this threat, if at all.

To do this, our team examined more than 40 indicators that enable us to track progress on the broad and complex climate change and human health issue. Health impact indicators included the health effects of temperature change and heatwaves, change in labour capacity, trends in climate-sensitive diseases, lethality of weather-related disasters and food insecurity and malnutrition.

We also developed an indicator for the impacts of climate change on mental health. This involved examining the association between mean annual maximum temperatures and suicide rates for all states and territories over the last ten years.

We found that, in most jurisdictions, the suicide rate increased with increasing maximum temperature. In Australia’s changing climate, we urgently need to seek ways to break the link between extreme temperature and suicide.

Across other indicators, we found workers’ compensation claims in Adelaide increased by 6.2% during heatwaves, mainly among outdoor male workers and tradespeople over 55 years.

And we found the length of heatwaves increased in 2016 and 2017 in Australia’s three largest cities – Sydney, Melbourne and Brisbane. Heatwave length varied from year to year, but between 2000 and 2017, the mean number of heatwave days increased by more than two days across the country.

Policy action we need

Australia’s slow transition to renewables and low-carbon electricity generation is problematic, and not only from a climate change perspective. Our report shows that pollutants from fossil fuel combustion cause thousands of premature deaths nationwide every year. We argue even one premature death is one too many when there is so much that we can do to address this.

Australia is one of the world’s wealthiest countries with the resources and technical expertise to act on climate change and health. Yet Australia’s carbon intensity is the highest among the countries we included in our comparison – Germany, United States, China, India and Brazil.

A carbon-intensive energy system is one of the main drivers behind climate change. Australia was once a leader in the uptake of renewables but other nations have since streaked ahead and are reaping the benefits for their economies, energy security and health.

Despite some progress increasing renewable generation, it’s time we truly pull our weight in the global effort to prevent acceleration towards dangerous climate change.

Policy leaders must take steps to protect human health and lives. These include strong political and financial commitments to accelerate transition to renewables and low-carbon electricity generation. The government lacks detailed planning for a clean future with a secure energy supply.




Read more:
What would a fair energy transition look like?


Our MJA-Lancet Countdown report will be updated annually. Now that Australia has begun systematically tracking the effects of climate change on health – and given its poor performance compared with comparable economies globally – further inaction would be reckless.The Conversation

Paul Beggs, Associate Professor and Environmental Health Scientist, Macquarie University; Helen Louise Berry, Professor of Climate Change and Mental Health, University of Sydney; Martina Linnenluecke, Professor of Environmental Finance; Director of the Centre for Corporate Sustainability and Environmental Finance, Macquarie University, and Ying Zhang, Associate Director, Teaching and Learning, Sydney School of Public Health, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why daily doses of nature in the city matter for people and the planet



File 20181120 161612 jduiq9.jpg?ixlib=rb 1.1
Brisbane’s South Bank parkland isn’t exactly getting out in the wild, but experiences of urban nature are important for building people’s connection to all living things.
Anne Cleary, Author provided

Anne Cleary, Griffith University

The environmental movement is shifting away from focusing solely on raising awareness about environmental issues. Many environmental agencies and organisations now also aim to connect people with nature, and our new research suggests daily doses of urban nature may be the key to this for the majority who live in cities.

Every year in the United Kingdom the Wildlife Trusts run the 30 Days Wild campaign. This encourages people to carry out a daily “random act of wildness” for the month of June. The International Union for Conservation of Nature recently launched its #NatureForAll program, which aims to inspire a love of nature.

This shift in focus is starting to appear in environmental policy. For example, the UK’s recent 25-year environment plan identifies connecting people with the environment as one of its six key areas. Similarly, in Australia, the state of Victoria’s Biodiversity 2037 plan aims to connect all Victorians to nature as one of two overarching objectives.

The thinking behind such efforts is simple: connecting people to nature will motivate them to act in ways that protect and care for nature. Evidence does suggest that people who have a high nature connection are likely to display pro-environmental attitudes and behaviours.

Looking beyond the park

What is less clear is how to enhance an individual’s nature connection – that is feeling that they are a part of nature. Over half of all people globally, and nine out of ten people in Australia, live in urban environments. This reduces their opportunities to experience and connect with nature.

Our new study may offer some answers. A survey of Brisbane residents showed that people who experienced nature during childhood or had regular contact with nature in their home and suburb were more likely to report feeling connected with nature.

The study used a broad definition of urban nature to include all the plants and animals that live in a city. When looking to connect urban residents with local nature we need to take a broad view and look “beyond the park”. All aspects of nature in the city offer a potential opportunity for people to experience nature and develop their sense of connection to it.

Raffles Place, Singapore – all urban nature should be seen as an opportunity for nature connection.
Anne Cleary, Author provided

The study also looked at the relationship between childhood and adult nature experiences. Results suggest that people who lack childhood experience of nature can still come to have a high sense of nature connection by experiencing nature as an adult.

There have been focused efforts on connecting children to nature, such as the Forest Schools and Nature Play programs. Equal effort should be given to promoting adult nature experiences and nature connection, particularly for people who lack such experiences.

The benefits of nature experience

We still have much to discover about how an individual’s nature connection is shaped. We need a better understanding of how people from diverse cultural and social contexts experience and connect to different types of nature. That said, we are starting to understand the important role that frequent local experiences of nature may play.

In addition to boosting people’s sense of nature connection, daily doses of urban nature deliver the benefits of improved physical, mental and social wellbeing. A growing evidence base is showing that exposure to nature, particularly in urban environments, can lead to healthier and happier city dwellers.

Robert Dunn and colleagues have already advocated for the importance of urban nature experiences as a way to bolster city residents’ support for conservation. They described the “pigeon paradox” whereby experiencing urban nature, which is often of low ecological value – such as interactions with non-native species – may have wider environmental benefits through people behaving in more environmentally conscious ways. They proposed that the future of conservation depended on city residents’ ability to experience urban nature.

As new evidence emerges we need to build on this thinking. It would seem that the future of our very connection to nature, our wellbeing and conservation depend on urban people’s ability to experience urban nature.The Conversation

The pigeon paradox: interactions with urban nature – here in London’s Hyde Park – may help make city dwellers more environmentally conscious.
Anne Cleary, Author provided

Anne Cleary, Research Fellow, School of Medicine, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Mozzie repellent clothing might stop some bites but you’ll still need a cream or spray



File 20181121 161638 1vc338a.jpg?ixlib=rb 1.1
Clothes can offer some protection.
John Jones/Flickr, CC BY

Cameron Webb, University of Sydney

A range of shirts, pants, socks and accessories sold in specialist camping and fishing retailers claim to protect against mosquito bites for various periods.

In regions experiencing a high risk of mosquito-borne disease, insecticide treated school uniforms have been used to help provide extra protection for students.

During the 2016 outbreak of Zika virus in South America, some countries issued insecticide-treated uniforms to athletes travelling to the Olympic Games.

Some academics have even suggested fashion designers be encouraged to design attractive and innovative “mosquito-proof” clothing.




Read more:
The best (and worst) ways to beat mosquito bites


But while the technology has promise, commercially available mosquito-repellent clothing isn’t the answer to all our mozzie problems.

Some items of clothing might offer some protection from mosquito bites, but it’s unclear if they offer enough protection to reduce the risk of disease. And you’ll still need to use repellent on those uncovered body parts.

First came mosquito-proof beds

Bed nets have been used to create a barrier between people and biting mosquitoes for centuries. This was long before we discovered mosquitoes transmitted pathogens that cause fatal and debilitating diseases such as malaria. Preventing nuisance-biting and buzzing was reason alone to sleep under netting.

Bed nets have turned out to be a valuable tool in reducing malaria in many parts of the world. And they offer better protection if you add insecticides.

The insecticide of choice is usually permethrin. This and other closely related synthetic pyrethroids are commonly used for pest control and have been assessed as safe for use by the United States Environmental Protection Authority, the Australian Pesticides and Veterinary Medicines Authority and other regulatory bodies.




Read more:
A vaccine that could block mosquitoes from transmitting malaria


New technologies have also allowed for the development of long-lasting insecticidal bed nets, offering extended protection against mosquito bites, perhaps up to three years, even with repeated washing.

Mosquito repellent clothing

Innovations in clothing that prevent insect bites have primarily come from the United States military. Mosquito-borne disease is a major concern for military around the globe. Much research funding has been invested in strategies to provide the best protection for personnel.

Traditional insect repellents, such as DEET or picaridin, are applied to the skin to prevent mosquitoes from landing and biting.

While permethrin will repel some mosquitoes, treated clothing most effectively works by killing the mosquitoes landing and trying to bite through the fabric.

Clothing treated with permethrin has been shown to protect against mosquitoes and ticks, as well as other biting insects and mites. For these studies, clothing was generally soaked in solutions or sprayed with insecticides to ensure adequate protection.

Clothing made from insecticide impregnated fabrics may help reduce mosquito bites.
Cameron Webb (NSW Health Pathology)

Fabrics factory-treated with insecticides, as used by many military forces, are purported to provide more effective protection. But while some studies suggest clothing made from these fabrics provide protection even after multiple washes, others suggest the “factory-treated” fabrics don’t provide greater levels of protection than “do it yourself” versions.

Overall, the current evidence suggests insecticide-treated clothing may reduce the number of mosquito bites you get, but it doesn’t offer full protection.

More research is needed to determine if insecticide-treated clothing can prevent or reduce rates of mosquito-borne disease.

Better labelling and regulation

All products that claim to provide protection from insect bites must be registered with the Australian Pesticides and Veterinary Medicines Authority. This includes sprays, creams and roll-on formulations of repellents.

Anything labelled as “insect repelling”, including insecticide treated clothing, requires registration. Clothing marketed as simply “protective” (such as hats with netting) doesn’t. This approach reflects the requirements of the US EPA.




Read more:
Curious Kids: When we get bitten by a mosquito, why does it itch so much?


If you’re shopping for insect-repellent clothing, check the label to see if it states that it is registered by the APVMA. You should see a registration number and the insecticide used in the fabric clearly displayed on the clothing’s tag.

While some products will be registered, there are still some concerns about how the efficacy of mosquito bite protection is assessed.

There is likely to be growing demand for these types of products and experts are calling for internationally accepted guidelines to test these products. Similar guidelines exist for topical repellents.

Finally, keep in mind that while various forms of insecticide-treated clothing will help reduce the number of mosquito bites, they won’t provide a halo of bite-free protection around your whole body.

Remember to apply a topical insect repellent to exposed areas of skin, such as hands and face, to ensure you’re adequately protected from mosquito bites.The Conversation

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We have so many ways to pursue a healthy climate – it’s insane to wait any longer



File 20181025 71029 1a3yvnt.jpg?ixlib=rb 1.1
Opportunities to help drive the energy transition are everywhere – even in Western Australia’s remote salt pans.
Peter C. Doherty, Author provided

Peter C. Doherty, The Peter Doherty Institute for Infection and Immunity

As a broadly trained life scientist, my concern about climate change isn’t the health of the planet. The rocks will be just fine! What worries me is a whole spectrum of “wicked” challenges, from sustaining food production, to providing clean water, to maintaining wildlife diversity and the green environments that ensure the survival of complex life on Earth.

What’s more, as a disease and death researcher, I think of climate change as equivalent to lead poisoning: slow, cumulative, progressive and initially silent but, if not treated in time, causing irreversible, catastrophic damage.

The link between climate change and human health is obvious. The likely success of Dr Kerryn Phelps in the Wentworth byelection also suggests the informed public gets it. More broadly, Doctors for the Environment Australia has campaigned vigorously against Adani’s proposed Queensland coal mine, and has very strong student chapters. Young people are energised and, as they mature and take power, the political and legal situation regarding energy generation could change very quickly.




Read more:
Infographic: here’s exactly what Adani’s Carmichael mine means for Queensland


The world’s oldest medical journal, The Lancet, has a high-profile commission that will report every two years until 2030 on the broad-ranging issue of climate and human health. The journal has just published a letter from just about every leading Australian medical scientist working in a relevant area that protests the federal government’s contemptuous dismissal of the latest report from the Intergovernmental Panel on Climate Change.




Read more:
The UN’s 1.5°C special climate report at a glance


Astronauts have shown us how incredibly fragile the atmosphere looks from space. The idea that we should wait for things to get worse before taking action to protect it seems insane.

Apollo 8 gave us a valuable perspective on our planet.
NASA

We need legislators who can think and act for the long term. This issue is simply too big for individuals or volunteer groups. Unless politicians are prepared to put a substantial price on greenhouse emissions, it’s difficult to see how a capitalist economic system can move us forward. Clean coal? The US 45Q tax reform, which offers credits for carbon capture and storage projects, suggests we would need a carbon price of at least US$50 a tonne to make this technology economically feasible.

Australia’s governments at every level could be acting now to promote the planting of vegetation, including less readily combustible tree species. We could be embracing, and funding, energy efficiency while constructing all new buildings – especially hospitals and large apartment complexes – in ways that protect their inhabitants. A realistic carbon tax could pay for some of that, while also stimulating jobs and growth and providing investment certainty.

Some moves are already being made in the right direction. The Gorgon gas project is planning to extend its strategy to inject carbon dioxide into the ground rather than releasing it to the atmosphere. CSIRO’s new hydrogen economy roadmap shows how (with the endorsement of Chief Scientist Alan Finkel) we can develop gas exports based on hydrogen rather than natural gas, to supply emerging markets in countries such as Japan.




Read more:
The science is clear: we have to start creating our low-carbon future today


A more familiar export product is wood. Planting and harvesting trees mimics nature’s mechanism for storing carbon. Perhaps it’s time for CSIRO and the universities to reinvest in developing wood technologies that displace concrete for at least some forms of construction. Modular wooden houses could also easily be moved away from low-lying areas hit by river flooding and sea level rise.

My wife Penny and I recently joined a small organised tour that took us more than 5,000km around Western Australia. That made us very aware of competing realities. On one hand, we have the human constructs of community, politics and economy. On the other is the reality of nature, imposed by the laws of physics and the fact that all life systems have evolved to live within defined environmental “envelopes”.

Apart from the glorious WA wildflowers and extensive wheat fields, the prominence of mining was very clear. Metals are essential for just about any renewable energy strategy, although the massive amounts of diesel burned in the extraction process are clearly an issue. Could that transition to carbon-neutral biodiesel?

WA also has extensive coastal salt pans: might they be used, perhaps with pumped seawater, to cultivate algae for biofuel production? And, in the face of a global obesity pandemic, the best thing we could do with sugar cane is to convert it to biofuels.

If ethanol is bad for internal combustion engines, perhaps we should revisit external combustion? In WA, we went to the HMAS Sydney memorial in Geraldton. Like all big ships of her time, the Sydney was powered by steam turbines. Turbine power generation could be part of a mix driving electric/wind ships of the future.

Our WA trip also made us very conscious of the complex ecosystems that, in the end analysis, sustain all life. Plants use chemical signals (plant pheromones) to “talk” among themselves, to other species, and to the insects they attract for
pollination. Some plants rely for reproduction on a single insect species. If the
insects die, they die. We’re currently in the sixth mass extinction – this one caused by humans. As temperatures ramp up, rainfall patterns change, and firestorms grow stronger and more frequent, the effects will be terminal for many species.




Read more:
Earth’s sixth mass extinction has begun, new study confirms


With much of our land unsuited to agriculture, Australia is the biggest solar
collector on Earth. Visiting WA also made us very aware of the enormous, untapped
wind potential on the west coast. Apart from battery storage, making hydrogen from seawater offers an obvious strategy for dealing with both the remoteness of generation sites and the variability of supply from renewables, while also returning oxygen to the atmosphere. We could be the clean energy giants!

None of this will happen without the help of major corporations that have the wealth and power to influence governments, along with the globalised structure that facilitates the development and implementation of solutions. What’s very encouraging is that many of the multinationals are now moving forward to develop strategies for supplying global energy needs while minimising greenhouse gas emissions. There’s no way they want to be the “tobacco villains” of the 21st century!


This is an adapted version of a speech given in Melbourne on October 24 at the international ghgt-14 meeting.The Conversation

Peter C. Doherty, Laureate Professor, The Peter Doherty Institute for Infection and Immunity

This article is republished from The Conversation under a Creative Commons license. Read the original article.