How we’re helping the western ground parrot survive climate change



A western ground parrot being released with a GPS tracker fitted.
Alan Danks

Shaun Molloy, Edith Cowan University and Robert Davis, Edith Cowan University

When a threatened species is found only in one small area, conservationists often move some individuals to another suitable habitat. This practice, called “translocation”, makes the whole species less vulnerable to threats.

In the past, this approach has worked really well for some species, but climate change is creating new problems. Will the climate change at that location in the future, and will it remain suitable for the species of interest? On the other hand, some regions might become appropriate for a threatened species.

This fundamental question is important in a rapidly changing climate, yet it has seldom featured when picking new areas for translocations.

Western ground parrots live and nest on the ground, making them very vulnerable to foxes and cats.
Alan Danks/DBCA

Saving the western ground parrot

Our recent research applied climate change modelling to translocation decisions for the critically endangered western ground parrot. This species is now restricted to a single population, with probably fewer than 150 birds, on the south coast of Western Australia.

It is enigmatic, in that it lives and nests entirely on the ground, unlike almost all other parrots except the closely related night parrot. And it is one of the many unique animals that make Australia so distinctive from all other parts of the world. But living on the ground has its drawbacks, as the parrot is very vulnerable to foxes and cats.

Its home near the south coast is particularly vulnerable to the effects of climate change. As southwestern Australia becomes warmer and drier, the risk of fire to the parrot increases.

Understanding potential climate change impacts is essential when selecting reintroduction sites. We developed high-precision species distribution models and used these to investigate the effect of climate change on current and historical distributions, and identify locations that will remain, or become, suitable habitat in the future.

Our findings predict that some of the western ground parrot’s former south coast range will become increasingly unsuitable in the future, so reintroductions there may not be a good idea. Four out of 13 potential release sites are likely to become inhospitable to these threatened birds.

On the other hand, many of the former or future sites are likely to become important refuge habitats as the climate continues to warm, and would make an excellent choice for any translocations or reintroductions.

We have given this information to an expert panel, who will use these predictions identify and prioritise areas for management and translocation.

Researchers have radio tracked a small number of birds to learn more about habitat use and movement patterns.
Allan Burbidge

The parrot in the coal mine

Fire is already a significant threat which, combined with predation by feral cats, may have led to the loss of this species from its former home at Fitzgerald River National Park. Many of these threats act together, so they must all be considered and managed alongside climate change.

What’s more, the western ground parrot may be an important indicator for the fate of many other species it currently (or formerly) shares its range with. These include the western whipbird, noisy scrub-bird, and a carnivorous marsupial, the dibbler.

These species are all likely to face the same threats and may be equally affected by the changing climate. Future studies will attempt to model these species and to assess whether all will benefit from similar management.

Many challenges remain for the western ground parrot, including the possible negative genetic impacts of the current small population size, and the increasing risk of damaging fires in a drying and warming climate.

But locating “future-proofed” sites is giving us some hope we can ensure the long term persistence of this enigmatic species, and the myriad other unusual species that occur in the biodiversity hotspot of southwestern Australia.


The authors would like to thank Allan Burbidge and Sarah Comer from the WA Department of Biodiversity Conservation and Attractions for their invaluable help and guidance in putting together this article.The Conversation

Shaun Molloy, Associate research scientist (Ecology), Edith Cowan University and Robert Davis, Senior Lecturer in Vertebrate Biology, Edith Cowan University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Helping farmers and reducing car crashes: the surprising benefits of predators



File 20180409 114112 1max665.jpg?ixlib=rb 1.1
Whoosa vicious helpful predator? You are! Yes you are!
Sean Riley/Flickr, CC BY-SA

Christopher O’Bryan, The University of Queensland; Eve McDonald-Madden, The University of Queensland; James Watson, The University of Queensland, and Neil Carter, Boise State University

Humans may be Earth’s apex predator, but the fleeting shadow of a vulture or the glimpse of a big cat can cause instinctive fear and disdain. But new evidence suggests that predators and scavengers are much more beneficial to humans than commonly believed, and that their loss may have greater consequences than we have imagined.

Conflict between these species and people, coupled with dramatic habitat loss, is causing unprecedented predator and scavenger declines. Nearly three-fourths of all vulture species are on a downward spiral. African lions are projected to lose half of their range in the coming decades and leopards have lost upwards of 75% of their historic range. Many bat species are facing extinction.




Read more:
Extinction means more than a loss of species to Australia’s delicate ecosystems


In a recent paper in Nature Ecology & Evolution, we summarised recent studies across the globe looking at the services predators and scavengers can provide, from waste disposal to reducing car crashes.

The many roles our fanged friends play

Animals that eat meat play vital roles in our ecosystems. One of the most outstanding examples we found was that of agricultural services by flying predators, such as insectivorous birds and bats.

We found studies that showed bats saving US corn farmers over US$1 billion in pest control because they consume pest moths and beetles. Similarly, we found that without birds and bats in coffee plantations of Sulawesi, coffee profits are reduced by US$730 per hectare.




Read more:
Why do some graziers want to retain, not kill, dingoes?


It’s not just birds and bats that help farmers. In Australia, dingoes increase cattle productivity by reducing kangaroo populations that compete for rangeland grasses (even when accounting for dingoes eating cattle calves).

This challenges the notion that dingoes are solely vermin. Rather, they provide a mixture of both costs and benefits, and in some cases their benefits outweigh the costs. This is particularly important as dingoes have been a source of conflict for decades.




Read more:
Living blanket, water diviner, wild pet: a cultural history of the dingo


Predators and scavengers also significantly reduce waste in and around human habitation. This keeps down waste control costs and even reduces disease risk.

For example, golden jackals reduce nearly 4,000 tons of domestic animal waste per year in Serbia and over 13,000 tons across urban areas in Europe. Vultures can reduce over 20% of organic waste in areas of the Middle East. In India, vultures have been implicated in reducing rabies risk by reducing the carcasses that sustain the stray dog population.

One piece of research showed that if mountain lions were recolonised in the eastern United States, they would prey on enough deer to reduce deer-vehicle collisions by 22% a year. This would save 150 lives and more than US$2 billion in damages.

Weighing up the costs and benefits

Although these species provide clear benefits, there are well known costs associated with predators and scavengers as well. Many predators and scavengers are a source of conflict, whether it is perceived or real; particularly pertinent in Australia is the ongoing debate over the risk of shark attacks.




Read more:
FactFile: the facts on shark bites and shark numbers


These drastic costs of predators and scavengers are rare, yet they attract rapt media attention. Nevertheless, many predators and scavengers are rapidly declining due to their poor reputation, habitat loss and a changing climate.

It’s time for a change in the conservation conversation to move from simply discussing the societal costs of predators and scavengers to a serious discussion of the important services that these animals provide in areas we share. Even though we may rightly or wrongly fear these species, there’s no doubt that we need them.


The ConversationThe authors would like to acknowledge the contributions of Dr Hawthorne Beyer and Alexander Braczkowski.

Christopher O’Bryan, PhD Candidate, School of Earth and Environmental Sciences, The University of Queensland; Eve McDonald-Madden, Senior lecturer, The University of Queensland; James Watson, Professor, The University of Queensland, and Neil Carter, Assistant Professor, College of Innovation and Design, Boise State University

This article was originally published on The Conversation. Read the original article.

Scientists are accidentally helping poachers drive rare species to extinction



File 20170525 31761 tpg49j
The beautiful Chinese cave gecko, or Goniurosaurus luii, is highly prized by poachers.
Carola Jucknies

Benjamin Scheele, Australian National University and David Lindenmayer, Australian National University

If you open Google and start typing “Chinese cave gecko”, the text will auto-populate to “Chinese cave gecko for sale” – just US$150, with delivery. This extremely rare species is just one of an increasingly large number of animals being pushed to extinction in the wild by animal trafficking.

What’s shocking is that the illegal trade in Chinese cave geckoes began so soon after they were first scientifically described in the early 2000s.

It’s not an isolated case; poachers are trawling scientific papers for information on the location and habits of new, rare species.

As we argue in an essay published today in Science, scientists may have to rethink how much information we publicly publish. Ironically, the principles of open access and transparency have led to the creation of detailed online databases that pose a very real threat to endangered species.

We have personally experienced this, in our research on the endangered pink-tailed worm-lizard, a startling creature that resembles a snake. Biologists working in New South Wales are required to provide location data on all species they discover during scientific surveys to an online wildlife atlas.

But after we published our data, the landowners with whom we worked began to find trespassers on their properties. The interlopers had scoured online wildlife atlases. As well as putting animals at risk, this undermines vital long-term relationships between researchers and landowners.

The endangered pink-tailed worm-lizard (Aprasia parapulchella).
Author provided

The illegal trade in wildlife has exploded online. Several recently described species have been devastated by poaching almost immediately after appearing in the scientific literature. Particularly at risk are animals with small geographic ranges and specialised habitats, which can be most easily pinpointed.

Poaching isn’t the only problem that is exacerbated by unrestricted access to information on rare and endangered species. Overzealous wildlife enthusiasts are increasingly scanning scientific papers, government and NGO reports, and wildlife atlases to track down unusual species to photograph or handle.

This can seriously disturb the animals, destroy specialised microhabitats, and spread disease. A striking example is the recent outbreak in Europe of a amphibian chytrid fungus, which essentially “eats” the skin of salamanders.

This pathogen was introduced from Asia through wildlife trade, and has already driven some fire salamander populations to extinction.

Fire salamanders have been devastated by diseases introduced through the wildlife trade.
Erwin Gruber

Rethinking unrestricted access

In an era when poachers can arm themselves with the latest scientific data, we must urgently rethink whether it is appropriate to put detailed location and habitat information into the public domain.

We argue that before publishing, scientists must ask themselves: will this information aid or harm conservation efforts? Is this species particularly vulnerable to disruption? Is it slow-growing and long-lived? Is it likely to be poached?

Fortunately, this calculus will only be relevant in a few cases. Researchers might feel an intellectual passion for the least lovable subjects, but when it comes to poaching, it is generally only charismatic and attractive animals that have broad commercial appeal.

But in high-risk cases, where economically valuable species lack adequate protection, scientists need to consider censoring themselves to avoid unintentionally contributing to species declines.

Restricting information on rare and endangered species has trade-offs, and might inhibit some conservation efforts. Yet, much useful information can still be openly published without including specific details that could help the nefarious (or misguided) to find a vulnerable species.

There are signs people are beginning to recognise this problem and adapt to it. For example, new species descriptions are now being published without location data or habitat descriptions.

Biologists can take a lesson from other fields such as palaeontology, where important fossil sites are often kept secret to avoid illegal collection. Similar practices are also common in archaeology.

Restricting the open publication of scientifically and socially important information brings its own challenges, and we don’t have all the answers. For example, the dilemma of organising secure databases to collate data on a global scale remains unresolved.

For the most part, the move towards making research freely available is positive; encouraging collaboration and driving new discoveries. But legal or academic requirements to publish location data may be dangerously out of step with real-life risks.

The ConversationBiologists have a centuries-old tradition of publishing information on rare and endangered species. For much of this history it was an innocuous practice, but as the world changes, scientists must rethink old norms.

Benjamin Scheele, Postdoctoral Research Fellow in Ecology, Australian National University and David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.

Here’s a good news conservation story: farmers are helping endangered ecosystems


David Lindenmayer, Australian National University; Chloe Sato, Australian National University; Dan Florance, Australian National University, and Emma Burns, Australian National University

There a many reasons to be unhappy about the state of the environment. But we’ve recently found some good news: a conservation program that works.

You probably haven’t heard of the Environmental Stewardship Program (ESP). It was a market-based agri-environment program that ran between 2007 and 2012, which funded farmers to conserve threatened ecosystems on their property. Land managers were given contracts for up to 15 years to deliver results.

Overall, 297 land managers will receive about A$152 million over roughly 18 years to implement their conservation management plans. The last of these contracts will end in 2027. No new funding rounds are expected.

There’s been a variety of market-based programs for conservation on farmland in Australia, but we don’t know what the total investment is to date. And we are not aware of scientific monitoring that demonstrates their impact.

A property conserving box gums as part of the program.
Author provided

Endangered ecosystems

The box gum grassy woodlands of eastern Australia are home to several hundred species of native birds, including the iconic superb and turquoise parrots, thousands of native plants (such as the chocolate lily that leaves a deliciously rich and sweet aroma in native pastures), and beautiful mammals like the squirrel glider.

Box gum grassy woodlands have been 95% to 99% cleared for wheat and sheep grazing and are listed as nationally critically endangered.

Box gum grassy woodland is found across eastern Australia.
Author provided.

Under the ESP, more than 150 farmers from southern New South Wales to southeast Queensland have been funded to conserve the box gum grassy woodland ecosystem. This is one of the largest projects of its type in the world.

Farmers undertake controlled grazing by livestock in woodland remnants, replant native woodland, avoid firewood harvesting, cease bushrock removal, and control weeds and feral animals.

But we can’t know if a conservation program is working unless we monitor it. Fortunately, soon after it started, the Australian National University was commissioned to design a monitoring program for the ESP. We have now been monitoring these efforts for six years – and the results are exciting.

Better for wildlife…

So far, the data show that the farmers are doing a good job and it is money very well spent.

To find out if the program is working, we have to compare managed (conserved) areas with “control patches” – patches where land owners haven’t done anything. This comparison shows that funded management patches have fewer environmental weeds, greater native plant species richness, more natural regeneration of native plants, smaller areas of erodible bare ground, and more species of woodland birds.

In the space of six years, the Australian government, in concert with Australian farmers (through modest investment), has generated significant, positive environmental changes on farms. In fact, the box gum project can set the bar for many other conservation programs.

…better for farmers

The positive impacts go beyond improvement of the environment, because there have been notable social benefits too.

A bearded dragon, one of the species found in grassy woodlands.
CM, Author provided

Farmers are now highly motivated to deliver better environmental outcomes on their farms and showcase the integration of the multiple objectives of agricultural production and conservation.

The income stream they received also helped some survive the almost unprecedented hardships associated with the Millennium Drought in the mid- to late 2000s.

More generally, regular feedback and discussions between ANU field ecologists and landholders over the past six years has provided anecdotal evidence that farmers engaged in successful environmental programs suffer fewer problems with mental illness. This landholder goodwill and change in attitude towards land management is something that will far outweigh the 15-year investment in the program.

A model for conservation

Despite its success, the program has not been without detractors who see the policy and monitoring as over-engineered or boutique. This is primarily because its design, implementation, and monitoring standards are politically and bureaucratically inconvenient. They are not well suited to a reactive, short-term focused society.

In the case of monitoring, some considered it wasteful to establish and monitor control sites (areas where there has been no management). Yet without the controls, we couldn’t tell this positive story.

This is an exciting example of successful private-public land conservation and how it can be integrated with agricultural production (the primary land use of much of Australia’s land surface).

The long-term funding model is a more sensible approach than one-off payments, and provides a realistic timeframe to achieve results.

The Australian government should be congratulated and encouraged to invest in more programs of this type. It has worked because it was designed specifically to link farmers, scientists and policy makers.

Billions of dollars are expended on the environment in Australia every year. Landscape recovery will span multiple governmental cycles and every dollar must be spent wisely. Programs like ESP give some guidance on how large-scale environmental programs can be more successful.

For further information on conservation programs like the Environmental Stewardship Program, see our new e-book

The Conversation

David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University; Chloe Sato, Postdoctoral fellow in applied vegetation ecology, Australian National University; Dan Florance, Research officer, Fenner School of Environment & Society ANU College of Medicine, Australian National University, and Emma Burns, Executive Director, Long Term Ecological Research Network; Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.

Australia: Queensland – Hairy-Nosed Wombats


The link below is to an article reporting on how man-made burrows are helping Hairy-Nosed Wombats survive and breed.

For more visit:
http://www.australiangeographic.com.au/journal/designer-burrows-man-made-for-rare-wombat.htm

Australia: Queensland – Pollution a Major Threat to our Reefs


Progress has been made in helping to preserve Queensland’s reefs from pollution, but more still needs to be done. The Reef Protection Package Impact Statement 2012, shows that improvements have been achieved.

For more visit:
http://www.wwf.org.au/?3760/Pollution-still-threatens-700-reefs-despite-progress