Predicting disaster: better hurricane forecasts buy vital time for residents


Jeffrey David Kepert, Australian Bureau of Meteorology and Andrew Dowdy, Australian Bureau of Meteorology

Hurricane Irma (now downgraded to a tropical storm) caused widespread devastation as it passed along the northern edge of the Caribbean island chain and then moved northwards through Florida. The storm’s long near-coastal track exposed a large number of people to its force.

At its peak, Hurricane Irma was one of the most intense ever observed in the North Atlantic. It stayed close to that peak for an unusually long period, maintaining almost 300km per hour winds for 37 hours.

Both of these factors were predicted a few days in advance by the forecasters of the US National Hurricane Center. These forecasts relied heavily on modern technology – a combination of computer models with satellite, aircraft and radar data.


Read more: Irma and Harvey: very different storms, but both affected by climate change


Forecasting is getting better

Although Irma was a very large and intense storm, and many communities were exposed to its force, our capacity to manage and deal with these extreme weather events has saved many lives.

There are many reasons for this, including significant construction improvements. But another important factor is much more accurate forecasts, with a longer lead time. When Tropical Cyclone Tracy devastated Darwin in 1974, the Bureau of Meteorology could only provide 12-hour forecasts of the storm’s track, giving residents little time to prepare.

These days, weather services provide three to five days’ advance warning of landfall, greatly improving our ability to prepare. What’s more, today’s longer-range forecasts are more accurate than the short-range forecasts of a few decades ago.

We have also become better at communicating the threat and the necessary actions, ensuring that an appropriate response is made.

The improvement in forecasting tropical cyclones (known as hurricanes in the North Atlantic region, and typhoons in the northwest Pacific) hasn’t just happened by good fortune. It represents the outcome of sustained investment over many years by many nations in weather satellites, faster computers, and the science needed to get the best out of these tools.

Tropical cyclone movement and intensity is affected by the surrounding weather systems, as well as by the ocean surface temperature. For instance, when winds vary significantly with height (called wind shear), the top of the storm attempts to move in a different direction from the bottom, and the storm can begin to tilt. This tilt makes the storm less symmetrical and usually weakens it. Irma experienced such conditions as it moved northwards from Cuba and onto Florida. But earlier, as it passed through the Caribbean, a low-shear environment and warm sea surface contributed to the high, sustained intensity.

In Irma’s case, forecasters used satellite, radar and aircraft reconnaissance data to monitor its position, intensity and size. The future track and intensity forecast relies heavily on computer model predictions from weather services around the world. But the forecasters don’t just use this computer data blindly – it is checked against, and synthesised with, the other data sources.

In Australia, government and industry investment in supercomputing and research is enabling the development of new tropical cyclone forecast systems that are more accurate. They provide earlier warning of tropical cyclone track and intensity, and even advance warning of their formation.

Still hard to predict destruction

Better forecasting helps us prepare for the different hazards presented by tropical cyclones.

The deadliest aspects of tropical cyclones are storm surges (when the sea rises and flows inland under the force of the wind and waves) and flooding from extreme rainfall, both of which pose a risk of drowning. Worldwide, all of the deadliest tropical cyclones on record featured several metres’ depth of storm surge, widespread freshwater flooding, or both.

Wind can severely damage buildings, but experience shows that even if the roof is torn off, well-constructed buildings still provide enough shelter for their occupants to have an excellent chance of surviving without major injury.

By and large, it is the water that kills. A good rule of thumb is to shelter from the wind, but flee from the water.

https://embed.windy.com/embed2.html?lat=-28.845&lon=135.439&zoom=4&level=surface&overlay=wind&menu=&message=&marker=&forecast=12&calendar=now&location=coordinates&type=map&actualGrid=&metricWind=kt&metricTemp=%C2%B0C

Windy.com combines weather data from the Global Forecast System, North American Mesoscale and the European Centre for Medium-Range Weather Forecasts to create a live global weather map.

This means that predicting the damage and loss caused by a tropical cyclone is hard, because it depends on both the severity of the storm and the vulnerability of the area it hits.

Hurricane Katrina in 2005 provides a good illustration. Katrina was a Category 3 storm when it made landfall over New Orleans, about as intense at landfall as Australian tropical cyclones Vance, Larry and Yasi. Yet Katrina caused at least 1,200 deaths and more than $US100 billion in damage, making it the third deadliest and by far the most expensive storm in US history. One reason was Katrina’s relatively large area, which produced a very large storm surge. But the other factor was the extraordinary vulnerability of New Orleans, with much of the city below normal sea level and protected by levées that were buried or destroyed by the storm surge, leading to extensive deep flooding.

We have already seen with Hurricane Irma that higher sea levels have exacerbated the sea surge. Whatever happens in the remainder of Irma’s path, it will already be remembered as a spectacularly intense storm, and for its very significant impacts in the Caribbean and Florida. One can only imagine how much worse those impacts would have been had the populations not been forewarned.

The ConversationBut increased population and infrastructure in coastal areas and the effects of climate change means we in the weather forecast business must continue to improve. Forewarned is forearmed.

Jeffrey David Kepert, Head of High Impact Weather Research, Australian Bureau of Meteorology and Andrew Dowdy, Senior Research Scientist, Australian Bureau of Meteorology

This article was originally published on The Conversation. Read the original article.

Advertisement

Explainer: how does the sea ‘disappear’ when a hurricane passes by?


Darrell Strauss, Griffith University

You may have seen the media images of bays and coastlines along Hurricane Irma’s track, in which the ocean has eerily “disappeared”, leaving locals amazed and wildlife stranded. What exactly was happening?

//platform.twitter.com/widgets.js

These coastlines were experiencing a “negative storm surge” – one in which the storm pushes water away from the land, rather than towards it.


Read more: Irma and Harvey: very different storms, but both affected by climate change


Most people are familiar with the idea that the sea is not at the same level everywhere at the same time. It is an uneven surface, pulled around by gravity, such as the tidal effects of the Moon and Sun. This is why we see tides rise and fall at any given location.

At the same time, Earth’s atmosphere has regions where the air pressure is higher or lower than average, in ever-shifting patterns as weather systems move around. Areas of high atmospheric pressure actually push down on the ocean surface, lowering sea level, while low pressure allows the sea to rise slightly.

This is known as the “inverse barometer effect”. Roughly speaking, a 1 hectopascal change in atmospheric pressure (the global average pressure is 1,010hPa) causes the sea level to move by 1cm.

When a low-pressure system forms over warm tropical oceans under the right conditions, it can intensify to become a tropical depression, then a tropical storm, and ultimately a tropical cyclone – known as a hurricane in the North Atlantic or a typhoon in the northwest Pacific.

As this process unfolds, the atmospheric pressure drops ever lower and wind strength increases, because the pressure difference with surrounding areas causes more air to flow towards the storm.

In the northern hemisphere tropical cyclones rotate anticlockwise and officially become hurricanes once they reach a maximum sustained wind speed of around 120km per hour. If sustained wind speeds reach 178km per hour the storm is classed as a major hurricane.

Surging waters

A “normal” storm surge happens when a tropical cyclone reaches shallow coastal waters. In places where the wind is blowing onshore, water is pushed up against the land. At the same time the cyclone’s incredibly low air pressure allows the water to rise higher than normal. On top of all this, the high waves whipped up by the wind mean that even more water inundates the coast.

The anticlockwise rotation of Atlantic hurricanes means that the storm’s northern side produces winds blowing from the east, and its southern side brings westerly winds. In the case of Hurricane Irma, which tracked almost directly up the Florida panhandle, this meant that as it approached, the east coast of the Florida peninsula experienced easterly onshore winds and suffered a storm surge that caused severe inundation and flooding in areas such as Miami.

The negative surge

In contrast, these same easterly winds had the opposite effect on Florida’s west coast (the Gulf Coast), where water was pushed offshore, leading to a negative storm surge. This was most pronounced in areas such as Fort Myers and Tampa Bay, which normally has a relatively low tide range of less than 1m.

//platform.twitter.com/widgets.js

The negative surge developed over a period of about 12 hours and resulted in a water level up to 1.5m below the predicted low tide level. Combined with the fact that the sea is shallow in these areas anyway, it looked as if the sea had simply disappeared.


Read more: Predicting disaster: better hurricane forecasts buy vital time for residents.


As tropical cyclones rapidly lose energy when moving over land, the unusually low water level was expected to rapidly rise, which prompted authorities to issue a flash flood warning to alert onlookers to the potential danger. The negative surge was replaced by a storm surge of a similar magnitude within about 6 hours at Fort Myers and 12 hours later at Tampa Bay.

The ConversationRising waters are the deadliest aspect of hurricanes – even more than the ferocious winds. So while it may be tempting to explore the uncovered seabed, it’s certainly not wise to be there when the sea comes rushing back.

Darrell Strauss, Senior Research Fellow, Griffith University

This article was originally published on The Conversation. Read the original article.

Irma and Harvey: very different storms, but both affected by climate change


Andrew King, University of Melbourne

There has been no let up since Hurricane Harvey dumped record-breaking rains on the Houston area of Texas. Hurricane Irma lashed parts of the Caribbean and Cuba and is now heading onto the US mainland, having devastated the Florida Keys and the state’s west coast.

//platform.twitter.com/widgets.js

We also have Hurricane Jose following Irma through the Caribbean, and Hurricane Katia, now downgraded after tracking through parts of eastern Mexico.


Read more: Are catastrophic disasters striking more often?


This very active season comes after a “hurricane drought” with very few major storms making landfall on the US coast over the previous decade.

So why are we seeing so many hurricanes now? Is climate change to blame?

How to make a hurricane

There are several vital ingredients needed for hurricanes to form. These include an initial disturbance in the atmosphere for the storm to form around, very warm sea surface temperatures to sustain the storm, and a lack of vertical wind shear so the storm is not torn apart during its formation.

In the Atlantic Ocean, hurricanes often form near Cape Verde off the coast of West Africa. They then track westward towards the Caribbean and the US.

Lots of factors can affect how strong these storms ultimately become, including how much time they spend gathering strength over the ocean, and the background weather patterns through which they travel.

Sea surface temperatures are well above normal over the tropical Atlantic. The effects of Hurricane Harvey mixing up cooler waters off the Texan coast can be seen.
NOAA Office of Satellite and Product Operations

This storm season we have seen sea temperatures persistently 1-2℃ above normal over the tropical Atlantic Ocean, which has allowed stronger storms to form and develop.

Atlantic sea temperatures have warmed over the past century, thus enhancing one of the key ingredients for hurricane formation. The climate change influence is clear for the sea temperatures, but not so much for the other ingredients required in forming hurricanes.

Harvey and Irma

While we have low confidence in the effect of human-caused climate change on hurricane formation, it is clear that climate change is enhancing some of the impacts of these storms.

Hurricane Harvey hit southern Texas hard by stalling over the Houston area and dumping huge amounts of rain. Climate change might have contributed to the stalling effect, but what’s clearer is that climate change is making intense extreme rainfall events like we saw over Houston more likely. By warming the atmosphere we’re also increasing its capacity to carry moisture.

When we have the trigger for heavy rainfall, climate change makes it rain harder.

Hurricane Irma is a very different beast to Harvey. It devastated several Caribbean islands including Anguilla and the Virgin Islands when it was a Category 5 system. It then struck Cuba before re-intensifying and moving north across the Florida Keys and onto the US mainland.

Irma’s main impacts have been through the storm surge, the strong winds and the heavy rains.

Climate change has likely worsened the effects of Irma. As described above, we know that climate change is intensifying extreme rain events. We also know that climate change is worsening storm surges by raising the background sea level on which these events occur.

//platform.twitter.com/widgets.js

Sea levels are projected to rise further over the coming century, by 50-100cm under a high greenhouse gas emissions scenario, and 20-50cm if we greatly reduce our emissions.

So while it’s likely that climate change is contributing to more extreme hurricanes, we have even more confidence that climate change is worsening the impacts of these storms, and will continue to do so over the coming decades.

Paving over the Gulf Coast

Besides the climate change influence, the widespread urban development on the US Gulf Coast is exacerbating the impacts of hurricanes.

Much like the Houston area, Florida also has a growing population. This means that not only are there more people in harm’s way when a major hurricane strikes, but there is also more concrete and other impervious surfaces that allow the water to pool in low-lying areas.

Is there any good news?

While climate change and development in hurricane-prone areas are worsening the impacts of these hurricanes, there are some glimmers of good news.

Scientists’ ability to track and forecast these major systems has improved greatly. Better forecasting of hurricanes allows for earlier planning for their impacts and should improve evacuation processes.

In theory, with the right plans in place, better hurricane forecasting should reduce death tolls from events like Irma. But it doesn’t necessarily reduce the economic costs of these storms, and for both Harvey and Irma the clean-up and recovery bills will be more than A$100 billion each.

The ConversationIt’s clear that climate has worsened the impacts of Atlantic hurricanes and will continue to do so. Improved forecasting provides a glimmer of hope that the death tolls from future events can be reduced, even as the economic impacts increase.

Andrew King, Climate Extremes Research Fellow, University of Melbourne

This article was originally published on The Conversation. Read the original article.