It’s fish on ice, as frozen zoos make a last-ditch attempt to prevent extinction


Nicola Marie Rivers, Monash University

Twenty-six of the forty-six fish species known to live in the Murray-Darling basin are listed as rare or threatened. Recent fish kills in the iconic river system are a grim reminder of how quickly things can take a turn for the worst.

A sudden drop in population size can push a species towards extinction, but there may be hope for resurrection. Frozen zoos store genetic material from endangered species and are preparing to make new individuals if an extinction occurs.




Read more:
Cryopreservation: the field of possibilities


Unfortunately, poor response to freezing has hindered the introduction of fish into frozen zoos in the past. Now new techniques may provide them safe passage.

Ice ice baby

A frozen zoo, also known as a biobank or cryobank, stores cryopreserved or “frozen” cells from endangered species. The primary purpose of a frozen zoo is to provide a backup of endangered life on Earth allowing us to restore extinct species.

Reproductive cells, such as sperm, oocytes (eggs) and embryos, are cooled to -196ºC, at which point all cellular function is paused. When a sample is needed, the cells are warmed and used in breeding programs to produce new individuals, or to study their DNA to determine genetic relationships with other species.

There are several cryobanking facilities in Australia, including the Australian Frozen Zoo (where I work), the CryoDiversity Bank and the Ian Potter Australian Wildlife Biobank, as well as private collections. These cryobanks safeguard some of Australia’s most unique wildlife including the greater bilby, the golden bandicoot, and the yellow-footed rock wallaby as well as other exotic species such as the black rhino and orangutans.

Internationally, frozen zoos are working together to build a “Noah’s Ark” of frozen tissue. The Frozen Ark project, established in 2004 at the University of Nottingham, now consists of over 5,000 species housed in 22 facilities across the globe.

The Manchurian trout, or lenok, is the only fish successfully reproduced through cryopreservation and surrogacy.
National Institute of Ecology via Wikimedia, CC BY

Less love for fish

As more and more species move into frozen zoos, fish are at risk of being left out. Despite years of research, no long-term survival has been reported in fish eggs or embryos after cryopreservation. However, precursors of sperm and eggs known as gonial cells found in the developing embryo or the ovary or testis of adult fish have been preserved successfully in several species including brown trout, rainbow trout, tench and goby.

By freezing these precursory cells, we now have a viable method of storing fish genetics but, unlike eggs and sperm, the cells are not mature and cannot be used to produce offspring in this form.

To transform the cells into sperm and eggs, they are transplanted into a surrogate fish. Donor cells are injected into the surrogate where they follow instructions from surrounding cells which tell them where to go and when and how to make sperm or eggs.

Once the surrogate is sexually mature they can mate and produce offspring that are direct decedents of the endangered species the donor cells were originally collected from. In a way, we are hijacking the reproductive biology of the surrogate species. By selecting surrogates that are prolific breeders we can essentially “mass produce” sperm and eggs from an endangered species, potentially producing more offspring than it would have been able to within its own lifetime.

Cell surrogacy has been successful in sturgeon, rainbow trout and zebrafish.

The combination of cryopreservation and surrogacy in conservation is promising but has only successfully been used in one endangered species so far, the Manchurian trout.

Not a get-out-of-conservation card

The “store now, save later” strategy of frozen zoos sounds simple but alas it is not. The methods needed to reproduce many species from frozen tissue are still being developed and may take years to perfect. The cost of maintaining frozen collections and developing methods of resurrection could divert funding from preventative conservation efforts.

Even if de-extinction is possible, there could be problems. The Australian landscape is evolving – temperatures fluctuate, habitats change, new predators and diseases are being introduced. Extinction is a consequence of failing to adapt to these changes. Reintroducing a species into the same hostile environment that lead to its demise may be a fool’s errand. How can we ensure reintroduced animals will thrive in an environment they may no longer be suited for?

Reducing human impact on the natural environment and actively protecting threatened species will be far easier than trying to resurrect them once they are gone. In the case of the Murray Darling Basin, reversing the damage done and developing policies that ensure its long-term protection will take time that endangered species may not have.




Read more:
I’ve always wondered: does anyone my age have any chance of living for centuries?


Frozen zoos are an insurance policy, and we don’t want to have to use them. But if we fail in our fight against extinction, we will be glad we made the investment in frozen zoos when we had the chance.The Conversation

Nicola Marie Rivers, PhD Candidate, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Melting Himalayan glaciers: a big drop in a bucket that’s already full


Anthony Dosseto, University of Wollongong

A new report has warned that even if global warming is held at 1.5℃, we will still lose a third of the glaciers in the Hindu Kush-Himalaya (HKH) region. What does that mean for rivers that flow down these mountains, and the people who depend on them?

The HKH region is home to the tallest mountains on Earth, and also to the source of rivers that sustain close to 2 billion people. These rivers supply agriculture with water and with sediments that fertilise soils in valleys and the floodplain.

Some of these rivers are hugely culturally significant. The Ganges (or Ganga), for instance, which flows for more than 2,525km from the western Himalayas into the Bay of Bengal, is personified in Hinduism as the goddess Gaṅgā.

The Ganga River at Rishikesh, as it exits the Himalayas.
Anthony Dosseto



Read more:
Warm ice in Mount Everest’s glaciers makes them more sensitive to climate change – new research


When it rains, it pours… literally

Before we get to the effect of melting glaciers on Himalayan rivers, we need to understand where they get their water.

For much of Himalayas, rain falls mostly during the monsoon active between June and September. The monsoon brings heavy rain and often causes devastating floods, such as in northern India in 2013, which forced the evacuation of more than 110,000 people.

2013 floods in Uttarakhand, India.

But the summer monsoon is not the only culprit for devastating floods. Landslides can dam the river, and when this dam bursts it can cause dramatic, unpredictable flooding. Some of those events have been linked to folk stories of floods in many cultures around the world. In the Himalayas, a study tracking the 1,000-year history of large floods showed that heavy rainfall and landslide-dam burst are the main causes.

When they melt, glaciers can also create natural dams, which can then burst and send floods down the valley. In this way, the newly forecast melting poses an acute threat.

The potential problem is worsened still further by the Intergovernmental Panel on Climate Change’s prediction that the frequency of extreme rainfall events will also increase.

Come hell or high water

What will happen to Himalayan rivers when the taps are turned to high in this way? To answer this, we need to look into the past.

For tens of thousands of years, rivers have polished rocks and laid down sediments in the lower valleys of the mountain range. These sediments and rocks tell us the story of how the river behaves when the tap opens or closes.

Rock surfaces tell us where the river was carving into its bed.
Anthony Dosseto

Some experts propose that intense rain tends to trigger landslides, choking the river with sediments which are then dumped in the valleys. Others suggest that the supply of sediments to the river generally doesn’t change much even in extreme rainfall events, and that the main effect of the extra flow is that the river erodes further into its bed.

The most recent work supports the latter theory. It found that 25,000-35,000 years ago, when the monsoon was much weaker than today, sediments were filling up Himalayan valleys. But more recently (3,000-6,000 years ago), rock surfaces were exposed during a period of strong monsoon, illustrating how the river carved into its bed in response to higher rainfall.

Sediments laid down in Himalayan valleys support agriculture, but also tell us the ancient story of rivers that carried them.
Anthony Dosseto

So what does the past tell us about the future of Himalayan rivers? More frequent extreme rainfall events mean more floods, of course. But a stronger monsoon also means rivers will cut deeper into their beds, instead of fertilising Himalayan valleys and the Indo-Gangetic plain with sediments.




Read more:
Devastating Himalayan floods are made worse by an international blame game


What about glaciers melting? For as long as there are glaciers, this will increase the amount of meltwater in the rivers each spring (until 2060, according the report, after which there won’t be any meltwater to talk about). So this too will contribute to rivers carving into their beds instead of distributing sediments. It will also increase the risk of flooding from outburst of glacial lake dams.

So what is at stake? The melting glaciers? No. Given thousands or millions of years, it seems likely that they will one day return. But on a more meaningful human timescale, what is really at stake is us – our own survival. Global warming is reducing our resources, and making life more perilous along the way. The rivers of the Himalayas are just one more example.The Conversation

Anthony Dosseto, Associate Professor, University of Wollongong

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ice melt in Greenland and Antarctica predicted to bring more frequent extreme weather



File 20190204 193206 1wihd6q.jpg?ixlib=rb 1.1
A new climate model combines data on ice loss from both polar regions for the first time.
Mark Brandon, CC BY-ND

Nick Golledge, Victoria University of Wellington

Last week, rivers froze over in Chicago when it got colder than at the North Pole. At the same time, temperatures hit 47℃ in Adelaide during the peak of a heatwave.

Such extreme and unpredictable weather is likely to get worse as ice sheets at both poles continue to melt.

Our research, published today, shows that the combined melting of the Greenland and Antarctic ice sheets is likely to affect the entire global climate system, triggering more variable weather and further melting. Our model predictions suggest that we will see more of the recent extreme weather, both hot and cold, with disruptive effects for agriculture, infrastructure, and human life itself.

We argue that global policy needs urgent review to prevent dangerous consequences.




Read more:
We finally have the rulebook for the Paris Agreement, but global climate action is still inadequate


Accelerated loss of ice

Even though the goal of the Paris Agreement is to keep warming below 2℃ (compared to pre-industrial levels), current government pledges commit us to surface warming of 3-4℃ by 2100. This would cause more melting in the polar regions.

Already, the loss of ice from ice sheets in Antarctica and Greenland, as well as mountain glaciers, is accelerating as a consequence of continued warming of the air and the ocean. With the predicted level of warming, a significant amount of meltwater from polar ice would enter the earth’s oceans.

The West Antarctic Ice Sheet is considered more vulnerable to melting, but East Antarctica , once thought to be inert, is now showing increasing signs of change.
Nick Golledge, CC BY-ND

We have used satellite measurements of recent changes in ice mass and have combined data from both polar regions for the first time. We found that, within a few decades, increased Antarctic melting would form a lens of freshwater on the ocean surface, allowing rising warmer water to spread out and potentially trigger further melting from below.

In the North Atlantic, the influx of meltwater would lead to a significant weakening of deep ocean circulation and affect coastal currents such as the Gulf Stream, which carries warm water from the tropics into the North Atlantic. This would lead to warmer air temperatures in Central America, Eastern Canada and the high Arctic, but colder conditions over northwestern Europe on the other side of the Atlantic.

Recent research suggests that tipping points in parts of the West Antarctic Ice Sheet may have already been passed. This is because most of the ice sheet that covers West Antarctica rests on bedrock far below sea level – in some areas up to 2 kilometres below.




Read more:
How Antarctic ice melt can be a tipping point for the whole planet’s climate


Bringing both poles into one model

It can be a challenge to simulate the whole climate system because computer models of climate are usually global, but models of ice sheets are typically restricted to just Antarctica or just Greenland. For this reason, the most recent Intergovernmental Panel of Climate Change (IPCC) assessment used climate models that excluded ice sheet interactions.

Global government policy has been guided by this assessment since 2013, but our new results show that the inclusion of ice sheet meltwater can significantly affect climate projections. This means we need to update the guidance we provide to policy makers. And because Greenland and Antarctica affect different aspects of the climate system, we need new modelling approaches that look at both ice sheets together.

When the edges of the West Antarctic Ice Sheet start to recede, they retreat into deeper and deeper water and the ice begins to float more easily.
Mark Brandon, CC BY-ND

Seas rise as ice melts on land

Apart from the impact of meltwater on ocean circulation, we have also calculated how ongoing melting of both polar ice caps will contribute to sea level. Melting ice sheets are already raising sea level, and the process has been accelerating in recent years.

Our research is in agreement with another study published today, in terms of the amount that Antarctica might contribute to sea level over the present century. This is good news for two reasons.

First, our predictions are lower than one US modelling group predicted in 2016. Instead of nearly a metre of sea level rise from Antarctica by 2100, we predict only 14-15cm.

Second, the agreement between the two studies and also with previous projections from the IPCC and other modelling groups suggests there is a growing consensus, which provides greater certainty for planners. But the regional pattern of sea level rise is uneven, and islands in the southwest Pacific will most likely experience nearly 1.5 times the amount of sea level rise that will affect New Zealand.

While some countries, including New Zealand, are making progress on developing laws and policies for a transition towards a low-carbon future, globally policy is lagging far behind the science.

The predictions we make in our studies underline the increasingly urgent need to reduce greenhouse gas emissions. It might be hard to see how our own individual actions can save polar ice caps from significant melting. But by making individual choices that are environmentally sustainable, we can persuade politicians and companies of the desire for urgent action to protect the world for future generations.The Conversation

Nick Golledge, Associate Professor of Glaciology, Victoria University of Wellington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Antarctica has lost 3 trillion tonnes of ice in 25 years. Time is running out for the frozen continent



File 20180613 110178 4dith6.jpg?ixlib=rb 1.1
As the world prevaricates over climate action, Antarctica’s future is shrouded in uncertainty.
Hamish Pritchard/British Antarctic Survey

Steve Rintoul, CSIRO and Steven Chown, Monash University

Antarctica lost 3 trillion tonnes of ice between 1992 and 2017, according to a new analysis of satellite observations. In vulnerable West Antarctica, the annual rate of ice loss has tripled during that period, reaching 159 billion tonnes a year. Overall, enough ice has been lost from Antarctica over the past quarter-century to raise global seas by 8 millimetres.

What will Antarctica look like in the year 2070, and how will changes in Antarctica impact the rest of the globe? The answer to these questions depends on choices we make in the next decade, as outlined in our accompanying paper, also published today in Nature.




Read more:
Ocean waves and lack of sea ice can trigger Antarctic ice shelves to disintegrate


Our research contrasts two potential narratives for Antarctica over the coming half-century – a story that will play out within the lifetimes of today’s children and young adults.

While the two scenarios are necessarily speculative, two things are certain. The first is that once significant changes occur in Antarctica, we are committed to centuries of further, irreversible change on global scales. The second is that we don’t have much time – the narrative that eventually plays out will depend on choices made in the coming decade.

Change in Antarctica has global impacts

Despite being the most remote region on Earth, changes in Antarctica and the Southern Ocean will have global consequences for the planet and humanity.

For example, the rate of sea-level rise depends on the response of the Antarctic ice sheet to warming of the atmosphere and ocean, while the speed of climate change depends on how much heat and carbon dioxide is taken up by the Southern Ocean. What’s more, marine ecosystems all over the world are sustained by the nutrients exported from the Southern Ocean to lower latitudes.

From a political perspective, Antarctica and the Southern Ocean are among the largest shared spaces on Earth, regulated by a unique governance regime known as the Antarctic Treaty System. So far this regime has been successful at managing the environment and avoiding discord.

However, just as the physical and biological systems of Antarctica face challenges from rapid environmental change driven by human activities, so too does the management of the continent.

Antarctica in 2070

We considered two narratives of the next 50 years for Antarctica, each describing a plausible future based on the latest science.

In the first scenario, global greenhouse gas emissions remain unchecked, the climate continues to warm, and little policy action is taken to respond to environmental factors and human activities that affect the Antarctic.

Under this scenario, Antarctica and the Southern Ocean undergo widespread and rapid change, with global consequences. Warming of the ocean and atmosphere result in dramatic loss of major ice shelves. This causes increased loss of ice from the Antarctic ice sheet and acceleration of sea-level rise to rates not seen since the end of the last glacial period more than 10,000 years ago.

Warming, sea-ice retreat and ocean acidification significantly change marine ecosystems. And unrestricted growth in human use of Antarctica degrades the environment and results in the establishment of invasive species.

Under the high-emissions scenario, widespread changes occur by 2070 in Antarctica and the Southern Ocean, with global impacts.
Rintoul et al. 2018. Click image to enlarge.

In the second scenario, ambitious action is taken to limit greenhouse gas emissions and to establish policies that reduce human pressure on Antarctica’s environment.

Under this scenario, Antarctica in 2070 looks much like it does today. The ice shelves remain largely intact, reducing loss of ice from the Antarctic ice sheet and therefore limiting sea-level rise.

An increasingly collaborative and effective governance regime helps to alleviate human pressures on Antarctica and the Southern Ocean. Marine ecosystems remain largely intact as warming and acidification are held in check. On land, biological invasions remain rare. Antarctica’s unique invertebrates and microbes continue to flourish.

Antarctica and the Southern Ocean in 2070, under the low-emissions (left) and high-emissions (right) scenarios. Each of these systems will continue to change after 2070, with the magnitude of the change to which we are committed being generally much larger than the change realised by 2070.
Rintoul et al. 2018. Click image to enlarge.

The choice is ours

We can choose which of these trajectories we follow over the coming half-century. But the window of opportunity is closing fast.

Global warming is determined by global greenhouse emissions, which continue to grow. This will commit us to further unavoidable climate impacts, some of which will take decades or centuries to play out. Greenhouse gas emissions must peak and start falling within the coming decade if our second narrative is to stand a chance of coming true.

If our more optimistic scenario for Antarctica plays out, there is a good chance that the continent’s buttressing ice shelves will survive and that Antarctica’s contribution to sea-level rise will remain below 1 metre. A rise of 1m or more would displace millions of people and cause substantial economic hardship.

Under the more damaging of our potential scenarios, many Antarctic ice shelves will likely be lost and the Antarctic ice sheet will contribute as much as 3m of sea level rise by 2300, with an irreversible commitment of 5-15m in the coming millennia.

The ConversationWhile challenging, we can take action now to prevent Antarctica and the world from suffering out-of-control climate consequences. Success will demonstrate the power of peaceful international collaboration and show that, when it comes to the crunch, we can use scientific evidence to take decisions that are in our long-term best interest.

The choice is ours.

Steve Rintoul, Research Team Leader, Marine & Atmospheric Research, CSIRO and Steven Chown, Professor of Biological Sciences, Monash University

This article was originally published on The Conversation. Read the original article.

How Antarctic ice melt can be a tipping point for the whole planet’s climate


File 20170912 26996 15apq9m
Melting Antarctic ice can trigger effects on the other side of the globe.
NASA/Jane Peterson

Chris Turney, UNSW; Jonathan Palmer, UNSW; Peter Kershaw, Monash University; Steven Phipps, University of Tasmania, and Zoë Thomas, UNSW

Melting of Antarctica’s ice can trigger rapid warming on the other side of the planet, according to our new research which details how just such an abrupt climate event happened 30,000 years ago, in which the North Atlantic region warmed dramatically.

This idea of “tipping points” in Earth’s system has had something of a bad rap ever since the 2004 blockbuster The Day After Tomorrow purportedly showed how melting polar ice can trigger all manner of global changes.

But while the movie certainly exaggerated the speed and severity of abrupt climate change, we do know that many natural systems are vulnerable to being pushed into different modes of operation. The melting of Greenland’s ice sheet, the retreat of Arctic summer sea ice, and the collapse of the global ocean circulation are all examples of potential vulnerability in a future, warmer world.


Read more: Chasing ice: how ice cores shape our understanding of ancient climate.


Of course it is notoriously hard to predict when and where elements of Earth’s system will abruptly tip into a different state. A key limitation is that historical climate records are often too short to test the skill of our computer models used to predict future environmental change, hampering our ability to plan for potential abrupt changes.

Fortunately, however, nature preserves a wealth of evidence in the landscape that allows us to understand how longer time-scale shifts can happen.

Core values

One of the most important sources of information on past climate tipping points are the kilometre-long cores of ice drilled from the Greenland and Antarctic ice sheets, which preserve exquisitely detailed information stretching back up to 800,000 years.

The Greenland ice cores record massive, millennial-scale swings in temperature that have occurred across the North Atlantic region over the past 90,000 years. The scale of these swings is staggering: in some cases temperatures rose by 16℃ in just a few decades or even years.

Twenty-five of these major so-called Dansgaard–Oeschger (D-O) warming events have been identified. These abrupt swings in temperature happened too quickly to have been caused by Earth’s slowly changing orbit around the Sun. Fascinatingly, when ice cores from Antarctica are compared with those from Greenland, we see a “seesaw” relationship: when it warms in the north, the south cools, and vice versa.

Attempts to explain the cause of this bipolar seesaw have traditionally focused on the North Atlantic region, and include melting ice sheets, changes in ocean circulation or wind patterns.

But as our new research shows, these might not be the only cause of D-O events.

Our new paper, published today in Nature Communications, suggests that another mechanism, with its origins in Antarctica, has also contributed to these rapid seesaws in global temperature.

Tree of knowledge

The 30,000-year-old key to climate secrets.
Chris Turney, Author provided

We know that there have been major collapses of the Antarctic ice sheet in the past, raising the possibility that these may have tipped one or more parts of the Earth system into a different state. To investigate this idea, we analysed an ancient New Zealand kauri tree that was extracted from a peat swamp near Dargaville, Northland, and which lived between 29,000 and 31,000 years ago.

Through accurate dating, we know that this tree lived through a short D-O event, during which (as explained above) temperatures in the Northern Hemisphere would have risen. Importantly, the unique pattern of atmospheric radioactive carbon (or carbon-14) found in the tree rings allowed us to identify similar changes preserved in climate records from ocean and ice cores (the latter using beryllium-10, an isotope formed by similar processes to carbon-14). This tree thus allows us to compare directly what the climate was doing during a D-O event beyond the polar regions, providing a global picture.

The extraordinary thing we discovered is that the warm D-O event coincided with a 400-year period of surface cooling in the south and a major retreat of Antarctic ice.

When we searched through other climate records for more information about what was happening at the time, we found no evidence of a change in ocean circulation. Instead we found a collapse in the rain-bearing Pacific trade winds over tropical northeast Australia that was coincident with the 400-year southern cooling.


Read more: Two centuries of continuous volcanic eruption may have triggered the end of the ice age.


To explore how melting Antarctic ice might cause such dramatic change in the global climate, we used a climate model to simulate the release of large volumes of freshwater into the Southern Ocean. The model simulations all showed the same response, in agreement with our climate reconstructions: regardless of the amount of freshwater released into the Southern Ocean, the surface waters of the tropical Pacific nevertheless warmed, causing changes to wind patterns that in turn triggered the North Atlantic to warm too.

The ConversationFuture work is now focusing on what caused the Antarctic ice sheets to retreat so dramatically. Regardless of how it happened, it looks like melting ice in the south can drive abrupt global change, something of which we should be aware in a future warmer world.

Chris Turney, Professor of Earth Sciences and Climate Change, UNSW; Jonathan Palmer, Research Fellow, School of Biological, Earth and Environmental Sciences., UNSW; Peter Kershaw, Emeritus Professor, Earth, Atmosphere and Environment, Monash University; Steven Phipps, Palaeo Ice Sheet Modeller, University of Tasmania, and Zoë Thomas, Research Associate, UNSW

This article was originally published on The Conversation. Read the original article.

Antarctic ice reveals that fossil fuel extraction leaks more methane than thought



File 20170823 13299 1u60k1n
The analysis of large amounts of ice from Antarctica’s Taylor Valley has helped scientists to tease apart the natural and human-made sources of the potent greenhouse gas methane.
Hinrich Schaefer, CC BY-ND

Hinrich Schaefer, National Institute of Water and Atmospheric

The fossil fuel industry is a larger contributor to atmospheric methane levels than previously thought, according to our research which shows that natural seepage of this potent greenhouse gas from oil and gas reservoirs is more modest than had been assumed.

In our research, published in Nature today, our international team studied Antarctic ice dating back to the last time the planet warmed rapidly, roughly 11,000 years ago.

Katja Riedel and Hinrich Schaefer discuss NIWA’s ice coring work at Taylor Glacier in Antarctica.

We found that natural seepage of methane from oil and gas fields is much lower than anticipated, implying that leakage caused by fossil fuel extraction has a larger role in today’s emissions of this greenhouse gas.

However, we also found that vast stores of methane in permafrost and undersea gas hydrates did not release large amounts of their contents during the rapid warming at the end of the most recent ice age, relieving fears of a catastrophic methane release in response to the current warming.

The ice is processed in a large melter before samples are shipped back to New Zealand.
Hinrich Schaefer, CC BY-ND

A greenhouse gas history

Methane levels started to increase with the industrial revolution and are now 2.5 times higher than they ever were naturally. They have caused one-third of the observed increase in global average temperatures relative to pre-industrial times.

If we are to reduce methane emissions, we need to understand where it comes from. Quantifying different sources is notoriously tricky, but it is especially hard when natural and human-driven emissions happen at the same time, through similar processes.


Read more: Detecting methane leaks with infrared cameras: they’re fast, but are they effective


The most important of these cases is natural methane seepage from oil and gas fields, also known as geologic emissions, which often occurs alongside leakage from production wells and pipelines.

The total is reasonably well known, but where is the split between natural and industrial?

To make matters worse, human-caused climate change could destabilise permafrost or ice-like sediments called gas hydrates (or clathrates), both of which have the potential to release more methane than any human activity and reinforce climate change. This scenario has been hypothesised for past warming events (the “clathrate gun”) and for future runaway climate change (the so-called “Arctic methane bomb”). But how likely are these events?

Antarctic ice traps tiny bubbles of air, which represents a sample of ancient atmospheres.
Hinrich Schaefer, CC BY-ND

The time capsule

To find answers, we needed a time capsule. This is provided by tiny air bubbles enclosed in polar ice, which preserve ancient atmospheres. By using radiocarbon (14C) dating to determine the age of methane from the end of the last ice age, we can work out how much methane comes from contemporary processes, like wetland production, and how much is from previously stored methane. During the time the methane is stored in permafrost, sediments or gas fields, the 14C decays away so that these sources emit methane that is radiocarbon-free.

In the absence of strong environmental change and industrial fossil fuel production, all radiocarbon-free methane in samples from, say, 12,000 years ago will be from geologic emissions. From that baseline, we can then see if additional radiocarbon-free methane is released from permafrost or hydrates during rapid warming, which occurred around 11,500 years ago while methane levels shot up.

Tracking methane in ice

The problem is that there is not much air in an ice sample, very little methane in that air, and a tiny fraction of that methane contains a radiocarbon (14C) atom. There is no hope of doing the measurements on traditional ice cores.

Our team therefore went to Taylor Glacier, in the Dry Valleys of Antarctica. Here, topography, glacier flow and wind force ancient ice layers to the surface. This provides virtually unlimited sample material that spans the end of the last ice age.

A tonne of ice yielded only a drop of methane.
Hinrich Schaefer, CC BY-ND

For a single measurement, we drilled a tonne of ice (equivalent to a cube with one-metre sides) and melted it in the field to liberate the enclosed air. From the gas-tight melter, the air was transferred to vacuum flasks and shipped to New Zealand. In the laboratory, we extracted the pure methane out of these 100-litre air samples, to obtain a volume the size of a water drop.

Only every trillionth of the methane molecules contains a 14C atom. Our collaborators in Australia were able to measure exactly how big that minute fraction is in each sample and if it changed during the studied period.

Low seepage, no gun, no bomb

Because radiocarbon decays at a known rate, the amount of 14C gives a radiocarbon age. In all our samples the radiocarbon date was consistent with the sample age.

Radiocarbon-free methane emissions did not increase the radiocarbon age. They must have been very low in pre-industrial times, even during a rapid warming event. The latter indicates that there was no clathrate gun or Arctic methane bomb going off.

So, while today’s conditions differ from the ice-covered world 12,000 years ago, our findings implicate that permafrost and gas hydrates are not too likely to release large amounts of methane in future warming. That is good news.

Wetlands must have been responsible for the increase in methane at the end of the ice age. They have a lesser capacity for emissions than the immense permafrost and clathrate stores.

Geologic emissions are likely to be lower today than in the ice age, partly because we have since drained shallow gas fields that are most prone to natural seepage. Yet, our highest estimates are only about half of the lower margin estimated for today. The total assessment (natural plus industrial) for fossil-fuel methane emissions has recently been increased.

In addition, we now find that a larger part of that must come from industrial activities, raising the latter to one third of all methane sources globally. For comparison, the last IPCC report put them at 17%.

The ConversationMeasurements in modern air suggest that the rise in methane levels over the last years is dominated by agricultural emissions, which must therefore be mitigated. Our new research shows that the impact of fossil fuel use on the historic methane rise is larger than assumed. In order to mitigate climate change, methane emissions from oil, gas and coal production must be cut sharply.

Hinrich Schaefer, Research Scientist Trace Gases, National Institute of Water and Atmospheric

This article was originally published on The Conversation. Read the original article.