Citizen scientist scuba divers shed light on the impact of warming oceans on marine life

File 20171019 1045 3eh0e1.jpg?ixlib=rb 1.1
A volunteer diver surveys marine life at Lord Howe Island.
Rick Stuart-Smith/Reef Life Survey, Author provided

Madeleine De Gabriele, The Conversation

Rising ocean temperatures may result in worldwide change for shallow reef ecosystems, according to research published yesterday in Science Advances.

The study, based on thousands of surveys carried out by volunteer scuba divers, gives new insights into the relationship of fish numbers to water temperatures – suggesting that warmer oceans may drive fish to significantly expand their habitat, displacing other sea creatures.

Citizen science

The study draws from Reef Life Survey, a 10-year citizen science project that trains volunteer scuba divers to survey marine plants and animals. Over the past ten years, more than 200 divers have surveyed 2,406 ocean sites in 44 countries, creating a uniquely comprehensive data set on ocean life.

Reef Life Survey takes volunteers on surveying expeditions at hard-to-reach coral reefs around the world.
Rick Stuart-Smith/Reef Life Survey, Author provided

Lead author Professor Graham Edgar, who founded Reef Life Survey, said the unprecedented scope of their survey allowed them to investigate global patterns in marine life. The abundance of life in warm regions (such as tropical rainforests and coral reefs) has long intrigued naturalists. At least 30 theories have been put forward, but most studies have been based on relatively limited surveys restricted to a single continent or group of species.

By tapping into the recreational scuba diving community, Reef Life Survey has vastly increased the amount of information researchers have to work with. Professor Edgar and his colleagues provide one-on-one training to volunteers, teaching them how to carry out comprehensive scans of plants and animals in specific areas.

Dr Adriana Vergés, a researcher at the University of New South Wales specialising in the impact of climate change on ocean ecosystems, said that the Reef Life Survey has already substantially improved our understanding of the marine environment.

“For example, Reef Life Survey data has greatly contributed to our understanding of the factors that determine the effectiveness of effectiveness of marine-protected areas worldwide. The team have made all their data publicly available and more and more research is increasingly making use of it to answer research questions,” she said.

Some of the divers have been working with Reef Life Survey for a decade, although others participate when they can. One volunteer, according to Professor Edgar, was so inspired by the project that he began a doctorate in marine biology (he graduated this year).

There’s a strong link between fish numbers and water warmth, which means warming oceans are likely to change global fish distribution.
Rick Stuart-Smith/Reef Life Survey, Author provided

Warming oceans means fish on the move

One of the important insights delivered by the Reef Life Survey datatbase is the relationship between water temperature and the ratio of fish to invertebrates in an ecosystem. Essentially, the warmer the water, the more fish. Conversely, colder waters contain more invertebrates like lobster, crabs and shrimp.

Professor Stewart Frusher, director of the Centre for Marine Socioecology at the University of Tasmania (and a former colleague of Professor Edgar) told The Conversation that he believes we will see wide-scale changes in fish distribution as climate change warms the oceans.

“Species are moving into either deeper water or towards the poles. We also know that not all species are moving at the same rate, and thus new mixtures of ecosystems will occur, with the fast-moving species of one ecosystem mixing with the slower moving of another,” he said.

As species migrate or expand into newly warmed waters, according to Professor Frusher, they will compete with and prey on the species already living in that area. And while it’s uncertain exactly how disruptive this will be, we do know that small ecosystem changes can rapidly lead to larger-scale impacts.

In order to predict and manage these global changes, scientists need reliable and detailed world-wide data. Professor Frusher said that, with research funding declining, scientists do not have the resources to monitor at the scales required.

The Conversation“Well-developed citizen science programs fill an important niche for improving our understanding of how the earth is responding to change,” he said.

Madeleine De Gabriele, Deputy Editor: Energy + Environment, The Conversation

This article was originally published on The Conversation. Read the original article.


El Niño in the Pacific has an impact on dolphins over in Western Australia

File 20171006 9797 1for0lt
Leaping bottlenose dolphins.
Kate Sprogis/MUCRU, Author provided

Kate Sprogis, Murdoch University; Fredrik Christiansen, Murdoch University; Lars Bejder, Murdoch University, and Moritz Wandres, University of Western Australia

Indo-Pacific bottlenose dolphins (Tursiops aduncus) are a regular sight in the waters around Australia, including the Bunbury area in Western Australia where they attract tourists.

The dolphin population here, about 180km south of Perth, has been studied quite intensively since 2007 by the Murdoch University Cetacean Unit. We know the dolphins here have seasonal patterns of abundance, with highs in summer/autumn (the breeding season) and lows in winter/spring.

But in winter 2009, the dolphin population fell by more than half.

A leaping bottlenose dolphin.
Kate Sprogis/MUCRU, Author provided

This decrease in numbers in WA could be linked to an El Niño event that originated far away in the Pacific Ocean, we suggest in a paper published today in Global Change Biology. The findings could have implications for future sudden drops in dolphin numbers here and elsewhere.

Read more: Tackling the kraken: unique dolphin strategy delivers dangerous octopus for dinner

A Pacific event

The El Niño Southern Oscillation (ENSO) results from an interaction between the atmosphere and the tropical Pacific Ocean. ENSO periodically fluctuates between three phases: La Niña, Neutral and El Niño.

During our study from 2007 to 2013, there were three La Niña events. There was one El Niño event in 2009, with the initial phase in winter being the strongest across Australia.

The blue vertical line shows the decline in dolphin numbers (d) during the 2009 El Niño event.
Kate Sprogis, Author provided

Coupled with El Niño, there was a weakening of the Leeuwin Current, the dominant ocean current off WA. There was also a decrease in sea surface temperature and above average rainfall.

ENSO is known to affect the strength of the south-ward flowing Leeuwin Current.

During La Niña, easterly trade winds pile warm water on the western side of the Pacific Ocean. This westerly flow of warm water across the top of Australia through the Indonesian Throughflow results in a stronger Leeuwin Current.

During El Niño, trade winds weaken or reverse and the pool of warm water in the Pacific Ocean gathers on the eastern side of the Pacific Ocean. This results in a weaker Indonesian Throughflow across the top of Australia and a weakening in strength of the Leeuwin Current.

A chart showing sea surface temperature (SST) anomalies off Western Australia. Note the extremes for the moderate El Niño in 2009 (blue rectangle), and the strong La Niña in 2011 (red rectangle)
Moritz Wandres, Author provided

The strength and variability of the Leeuwin Current coupled with ENSO affects species biology and ecology in WA waters. This includes the distribution of fish species, the transport of rock lobster larvae, the seasonal migration of whale sharks and even seabird breeding success.

The question we asked then was whether ENSO could affect dolphin abundance?

What happened during the El Niño?

These El Niño associated conditions may have affected the distribution of dolphin prey, resulting in the movement of dolphins out of the study area in search of adequate prey elsewhere.

A surfacing bottlenose dolphin.
Kate Sprogis/MUCRU, Author provided

This is similar to what happens for seabirds in WA. During an El Niño event with a weakened Leeuwin Current, the distribution of prey changes around seabird’s breeding colonies resulting in a lower abundance of important prey species, such as salmon.

This in turn negatively impacts seabirds, including a decrease in reproductive output and changes in foraging.

In southwestern Australia, the amount of rainfall is strongly connected to sea surface temperature. When the water temperature in the Indian Ocean decreases, the region receives higher rainfall during winter.

High levels of rainfall contribute to terrestrial runoff and alters freshwater inputs into rivers and estuaries. The changes in salinity influences the distribution and abundance of dolphin prey.

This is particularly the case for the river, estuary, inlet and bay around Bunbury. Rapid changes in salinity during the onset of El Niño may have affected the abundance and distribution of fish species.

In 2009, there was also a peak in strandings of dead bottlenose dolphins in WA (between 1981-2010), but the cause of this remains unknown.

Of these strandings, in southwest Australia, there was a peak in June that coincided with the onset of the 2009 El Niño.

Specifically, in the Swan River, Perth, there were several dolphin deaths, with some resident dolphins that developed fatal skin lesions that were enhanced by the low-salinity waters.

What does all this mean?

Our study is the first to describe the effects of climate variability on a coastal, resident dolphin population.

A group of bottlenose dolphins.
Kate Sprogis/MUCRU, Author provided

We suggest that the decline in dolphin abundance during the El Niño event was temporary. The dolphins may have moved out of the study area due to changes in prey availability and/or potentially unfavourable water quality conditions in certain areas (such as the river and estuary).

Read more: Explainer: El Niño and La Niña

Long-term, time-series datasets are required to detect these biological responses to anomalous climate conditions. But few long-term datasets with data collected year-round for cetaceans (whales, dolphins and porpoises) are available because of logistical difficulties and financial costs.

Continued long-term monitoring of dolphin populations is important as climate models provide evidence for the doubling in frequency of extreme El Niño events (from one event every 20 years to one event every ten years) due to global warming.

The ConversationWith a projected global increase in frequency and intensity of extreme weather events (such as floods, cyclones), coastal dolphins may not only have to contend with increasing coastal human-related activities (vessel disturbance, entanglement in fishing gear, and coastal development), but also have to adapt to large-scale climatic changes.

Kate Sprogis, Research associate, Murdoch University; Fredrik Christiansen, Postdoctoral Research Fellow, Murdoch University; Lars Bejder, Professor, Cetacean Research Unit, Murdoch University, Murdoch University, and Moritz Wandres, Oceanographer PhD Student, University of Western Australia

This article was originally published on The Conversation. Read the original article.

Climate Change Impact


Australia: Global Warming and the Musky Rat-Kangaroo

The link below is to an article that takes a look at the impact of climate change on the Musky Rat-Kangaroo.

For more visit:


Climate Change and the World’s Ecosystems

The link below is to an article that looks at the way climate change will impact on the world’s ecosystems.

For more visit:


Peak Water & Food Supplies

The link below is to an article that takes a look at what is being called ‘peak water,’ as groundwater supplies begin to dry up around the world and its impact on global food supplies.

For more visit:


Australia: Top End Ferals

The link below is to an article that reports on the impact of feral cats on Top End native fauna and some of the cats are enormous.

For more visit: