Australia’s energy exports increase global greenhouse emissions, not decrease them


Frank Jotzo, Crawford School of Public Policy, Australian National University and Salim Mazouz, Australian National University

When unveiling government data revealing Australia’s rising greenhouse emissions, federal energy minister Angus Taylor sought to temper the news by pointing out that much of the increase is due to liquefied natural gas (LNG) exports, and claiming that these exports help cut emissions elsewhere.

LNG exports, Taylor argued, help to reduce global emissions by replacing the burning of coal overseas, which has a higher emissions factor than gas. In reality, Australian gas displaces a mix of energy sources, including gas from other exporters. Whether and to what extent Australian gas exports reduce emissions therefore remains unclear. Meanwhile, Australia’s coal exports clearly do increase global emissions.

The way Australia can help clean up world energy systems in the future is through large-scale production and export of renewable energy.




Read more:
Here’s how a 100% renewable energy future can create jobs and even save the gas industry


In a statement accompanying the latest quarterly emissions figures, the Department of Environment and Energy stated:

Australia’s total LNG exports are estimated to have the potential to lower emissions in importing countries by around 148Mt CO₂-e [million tonnes of carbon dioxide equivalent] in 2018, if they displace coal consumption in those countries.

In truth, the assumption that every unit of Australia’s exported gas displaces coal is silly. The claim of a 148Mt saving is wrong and unfounded. The real number would be much smaller, and there could even be an increase in emissions as a result of LNG exports.

For the most part, exported gas probably displaces natural gas that would otherwise be produced elsewhere, leaving overall emissions roughly the same. Some smaller share may displace coal. But it could just as easily displace renewable or nuclear energy, in which case Australian gas exports would increase global emissions, not reduce them.

How much might gas exports really cut emissions?

Serious analysis would be needed to establish the true amount of emissions displaced by Australian gas. It depends on the specific requirements that importers have, their alternatives for domestic energy production and other imports, changes in relative prices, resulting changes in energy balances in third-country markets, trajectories for investments in energy demand and supply infrastructure, and so forth. No such analysis seems available.

But for illustration, let’s make an optimistic assumption that gas displaces twice as much coal as it does renewable or nuclear energy. Specifically, let’s assume – purely for illustration – that each energy unit of Australian exported LNG replaces 0.7 units of gas from elsewhere, 0.2 units of coal, and 0.1 units of renewables or nuclear.

Australia exported 70 million tonnes of LNG in 2018. A Department of Environment and Energy source told Guardian Australia that this amount of gas would emit 197 million tonnes of CO₂ when burned. We calculate a similar number, on the basis of official emissions factors and export statistics.

Under the optimistic and illustrative set of assumptions outlined above, we calculate that Australia’s LNG exports would have reduced emissions in importing countries by about 10 million tonnes of CO₂ per year. (See the end of the article for a summary of our calculations.)

They might equally have reduced emissions by less, or they might in fact have increased these countries’ emissions, if more renewables or nuclear was displaced than coal. But whatever the the actual number, it’s certainly a long way short of the 148 million tonnes of emissions reduction claimed by the government.

We also should consider the emissions within Australia of producing LNG. The national emissions accounting shows that the increase in national emissions of 3.5 million tonnes of CO₂-e compared with the year before is mostly because of a 22% increase in LNG exports. This means that LNG production in Australia overall may be responsible for 16 million tonnes of CO₂ emissions per year.

A full analysis of global effects would also need to factor in the emissions that would be incurred from the production of alternative energy sources displaced by Australia’s LNG.




Read more:
Whichever way you spin it, Australia’s greenhouse emissions have been climbing since 2015


Coal exports unambiguously raise emissions

The picture is more clear-cut for coal. If there was no Australian thermal coal (the type used in power stations) in world markets, much of this would be replaced by more coal mined elsewhere. The remainder would be replaced by gas, renewables or nuclear. As for the case of gas, the precise substitution effects are a matter of complex interactions.

The crucial point is that all alternative fuels are less emissions-intensive than coal. In the substitution of Australian-mined coal for coal from other sources, there could be some substitution towards coal with higher emissions factors, but this is highly unlikely to outweigh the emissions savings from the substitution to nuclear, renewables and gas.

So, removing Australian coal from the world market would reduce global emissions. Conversely, adding Australian coal to the world market would increase global emissions.

Australia exported 208 million tonnes of thermal coal in 2018, which according to the official emissions factors would release 506 million tonnes of CO₂ when burned. On top of this, Australia also exported 178 million tonnes of coking coal for steel production.

If a similar “replacement mix” assumed above for gas is also applied to coal – that is, every unit of coal is replaced by 0.7 units of coal from elsewhere, 0.2 units of gas, and 0.1 units of renewables or nuclear – then adding that thermal coal to the international market would increase emissions by about 19% of the embodied emissions in that coal. As in the case of LNG, this is purely an illustrative assumption.

So, in this illustrative case, Australia’s thermal coal exports would increase net greenhouse emissions in importing countries by about 96 million tonnes per year.

This figure does not consider the coking coal exports, nor the emissions from mining the coal in Australia and transporting it.

The real opportunity is in export of renewable energy

Thankfully, there actually is a way for Australia to help the world cut emissions, and in a big way. That is by producing large amounts of renewable energy for export, in the form of hydrogen, ammonia, and other fuels produced using wind and solar power and shipped to other countries that are less blessed with abundant renewable energy resources.

Even emissions-free production of energy-intensive goods like aluminium and steel could become cost-competitive in Australia, given the ever-falling costs of renewable energy and the almost unlimited potential to produce renewable energy in the outback. Australia really could be a renewable energy superpower.

Such exports will then unambiguously reduce global emissions, because they will in part displace the use of coal, gas and oil.

Once we have a large-scale renewable energy industry in operation, the relevant minister in office then will be right to point out Australia’s contribution to solving the global challenge through our energy exports. In the meantime, our energy exports are clearly a net addition to global emissions.


Summary of data and calculations

LNG emissions and displacement – illustrative scenario

Emissions inherent in Australia’s LNG exports of 69.5 million tonnes (in calendar year 2018) are 197 million tonnes (Mt) of carbon dioxide, based on emissions factors published by the Australian government.

If the same amount of energy was served using coal, emissions would be:

197Mt CO₂ + 148Mt CO₂ = 345Mt CO₂

Emissions under the mix assumed for illustration here would be:

0.7 x 197 (LNG) + 0.2 x 345 (coal) + 0.1 x 0 (renewables/nuclear) = 207Mt CO₂

That is 10Mt higher than without Australian LNG.

Coal emissions and displacement – illustrative scenario

Australia’s thermal coal exports were 208Mt in calendar year 2018. Emissions when burning this coal were 506Mt CO₂, based on government emissions factors.

Assuming typical emissions factors for fuel use in electricity generation of 0.9 tonnes of CO₂ per megawatt-hour (MWh) from black coal and 0.5 tonnes of CO₂ per MWh from gas, the emissions intensity of electricity generation under the mix assumed for illustration here would be:

0.7 x 0.9 (coal) + 0.2 x 0.5 (gas) + 0.1 x 0 (renewables/nuclear) = 0.73 tonnes CO₂ per MWh

This is 19% lower than the emissions intensity of purely coal-fired electricity, of 0.9 tonnes CO₂ per MWh.

19% of 506Mt CO₂ is 96Mt CO₂.The Conversation

Frank Jotzo, Director, Centre for Climate Economics and Policy, Crawford School of Public Policy, Australian National University and Salim Mazouz, Research Manager, Crawford School of Public Policy; and Director at EcoPerspectives, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

As Arctic ship traffic increases, narwhals and other unique animals are at risk


File 20180806 191019 48ky5r.jpg?ixlib=rb 1.1
A pod of narwhals (Monodon monoceros) in central Baffin Bay. Narwhals are the most vulnerable animals to increased ship traffic in the Arctic Ocean.
Kristin Laidre/University of Washington, CC BY-ND

Donna Hauser, University of Alaska Fairbanks; Harry Stern, University of Washington, and Kristin Laidre, University of Washington

Most Americans associate fall with football and raking leaves, but in the Arctic this season is about ice. Every year, floating sea ice in the Arctic thins and melts in spring and summer, then thickens and expands in fall and winter.

As climate change warms the Arctic, its sea ice cover is declining. This year scientists estimate that the Arctic sea ice minimum in late September covered 1.77 million square miles (4.59 million square kilometers), tying the sixth lowest summertime minimum on record.

With less sea ice, there is burgeoning interest in shipping and other commercial activity throughout the Northwest Passage – the fabled route that links the Atlantic and Pacific oceans, via Canada’s convoluted Arctic archipelago – as well as the Northern Sea Route, which cuts across Russia’s northern seas. This trend has serious potential impacts for Arctic sea life.

In a recent study, we assessed the vulnerability of 80 populations of Arctic marine mammals during the “open-water” period of September, when sea ice is at its minimum extent. We wanted to understand the relative risks of vessel traffic across Arctic marine mammal species, populations and regions. We found that more than half (53 percent) of these populations – including walruses and several types of whales – would be exposed to vessels in Arctic sea routes. This could lead to collisions, noise disturbance or changes in the animals’ behavior.

Map of the Arctic region showing the the Northern Sea Route and Northwest Passage.
Arctic Council/Susie Harder

Less ice, more ships

More than a century ago, Norwegian explorer Roald Amundsen became the first European to navigate the entire Northwest Passage. Due to the short Arctic summer, it took Amundsen’s 70-foot wooden sailing ship three years to make the journey, wintering in protected harbors.

Fast-forward to summer 2016, when a cruise ship carrying more than 1,000 passengers negotiated the Northwest Passage in 32 days. The summer “open-water” period in the Arctic has now increased by more than two months in some regions. Summer sea ice cover has shrunk by over 30 percent since satellites started regular monitoring in 1979.

Bowhead whale (Balaena mysticetus) in Disko Bay, West Greenland.
Kristin Laidre, CC BY

Arctic seas are home to a specialized group of marine mammals found nowhere else on Earth, including beluga and bowhead whales, narwhals, walruses, ringed and bearded seals and polar bears. These species are critical members of Arctic marine ecosystems, and provide traditional resources to Indigenous communities across the Arctic.

According to ecologists, all of these animals are susceptible to sea ice loss. Research at lower latitudes has also shown that marine mammals can be affected by noise from vessels because of their reliance on sound, as well as by ship strikes. These findings raise concerns about increasing vessel traffic in the Arctic.

Ringed seal (Pusa hispida) pup in Alaska.
NOAA

Sensitivity times exposure equals vulnerability

To determine which species could be at risk, we estimated two key factors: Exposure – how much a population’s distribution overlaps with the Northwest Passage or Northern Sea Route during September – and sensitivity, a combination of biological, ecological and vessel factors that may put a population at a higher risk.

As an illustration, imagine calculating vulnerability to air pollution. People generally are more exposed to air pollution in cities than in rural areas. Some groups, such as children and the elderly, are also more sensitive because their lungs are not as strong as those of average adults.

We found that many whale and walrus populations were both highly exposed and sensitive to vessels during the open-water period. Narwhals – medium-sized toothed whales with a large spiral tusk – scored as most vulnerable overall. These animals are endemic to the Arctic, and spend much of their time in winter and spring in areas with heavy concentrations of sea ice. In our study, they ranked as both highly exposed and highly sensitive to vessel effects in September.

Narwhals have a relatively restricted range. Each summer they migrate to the same areas in the Canadian high Arctic and around Greenland. In fall they migrate south in pods to offshore areas in Baffin Bay and Davis Strait, where they spend the winter making deep dives under the dense ice to feed on Greenland halibut. Many narwhal populations’ core summer and fall habitat is right in the middle of the Northwest Passage.

A pod of narwhals (Monodon monoceros) in central Baffin Bay. Narwhals are the most vulnerable animals to increased ship traffic in the Arctic during September.
NOAA/OAR/OER/Kristin Laidre

Vulnerable Arctic regions, species and key uncertainties

The western end of the Northwest Passage and the eastern end of the Northern Sea Route converge at the Bering Strait, a 50-mile-wide waterway separating Russia and Alaska. This area is also a key migratory corridor for thousands of beluga and bowhead whales, Pacific walruses and ringed and bearded seals. In this geographic bottleneck and other narrow channels, marine mammals are particularly vulnerable to vessel traffic.

Among the species we assessed, polar bears were least vulnerable to September vessel traffic because they generally spend the ice-free season on land. Of course, longer ice-free seasons are also bad for polar bears, which need sea ice as a platform for hunting seals. They may also be vulnerable to oil spills year-round.

Research in the harsh and remote Arctic seas is notoriously difficult, and there are many gaps in our knowledge. Certain areas, such as the Russian Arctic, are less studied. Data are sparse on many marine mammals, especially ringed and bearded seals. These factors increased the uncertainty in our vessel vulnerability scores.

We concentrated on late summer, when vessel traffic is expected to be greatest due to reduced ice cover. However, ice-strengthened vessels can also operate during spring, with potential impacts on seals and polar bears that are less vulnerable in September. The window of opportunity for navigation is growing as sea ice break-up happens earlier in the year and freeze-up occurs later. These changes also shift the times and places where marine mammals could be exposed to vessels.

The Arctic Ocean is covered with floating sea ice in winter, but the area of sea ice in late summer has decreased more than 30 percent since 1979. The Arctic Ocean is projected to be ice-free in summer within decades.

Planning for a navigable Arctic

Recent initiatives in the lower 48 states offer some models for anticipating and managing vessel-marine mammal interactions. One recent study showed that modeling could be used to predict blue whale locations off the California coast to help ships avoid key habitats. And since 2008, federal regulations have imposed seasonal and speed restrictions on ships in the North Atlantic to minimize threats to critically endangered right whales. These practical examples, along with our vulnerability ranking, could provide a foundation for similar steps to protect marine mammals in the Arctic.

The International Maritime Organization has already adopted a Polar Code, which was developed to promote safe ship travel in polar waters. It recommends identifying areas of ecological importance, but does not currently include direct strategies to designate important habitats or reduce vessel effects on marine mammals, although the organization has taken steps to protect marine habitat in the Bering Sea.

Even if nations take rigorous action to mitigate climate change, models predict that September Arctic sea ice will continue to decrease over the next 30 years. There is an opportunity now to plan for an increasingly accessible and rapidly changing Arctic, and to minimize risks to creatures that are found nowhere else on Earth.The Conversation

Donna Hauser, Research Assistant Professor, International Arctic Research Center, University of Alaska Fairbanks; Harry Stern, Principal Mathematician, Polar Science Center, University of Washington, and Kristin Laidre, Associate Professor of Aquatic and Fishery Sciences, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Earth Day: April 22


Earth Day is about the earth and the people who live on it. The Earth Day Network believes that all people, no matter who they are, have a right to a healthy and sustainable environment. Those who support Earth Day are a veritable who’s who of environmentalism. The network not only educates and increases awareness of environmental issues, it also actively seeks to bring about change in order to achieve a healthy and sustainable environment.

Earth Day is celebrated on the 22nd April each year, with supporters getting involved in all manner of environmentally responsible activities.

Find out more about Earth Day and the Earth Day Network at:

http://www.earthday.org/