Buzz off honey industry, our national parks shouldn’t be milked for money


Patrick O’Connor, University of Adelaide; James B. Dorey, Flinders University, and Richard V Glatz, University of Adelaide

Among the vast number of native species damaged by the recent bushfire crisis, we must not forget native pollinators. These animals, mainly insects such as native bees, help sustain ecosystems by pollinating native plants.

Native pollinator populations have been decimated in burned areas. They will only recover if they can recolonise from unburned areas as vegetation regenerates.

Since the fires, Australia’s beekeeping industry has been pushing for access to national parks and other unburned public land. This would give introduced pollinators such as the European honeybee, (Apis mellifera) access to floral resources.

But our native pollinators badly need these resources – and the recovery of our landscapes depends on them. While we acknowledge the losses sustained by the honey industry, authorities should not jeopardise our native species to protect commercial interests.

The commercial honeybee industry wants access to national parks.
Flickr

The bush: a hive of activity

The European honeybee is the main commercial bee species in Australia. It exists in two contexts: in hives managed for honey production, and as a pest exploiting almost every wild habitat. Honeybees in managed hives are classified as livestock, the same way pigs and goats are.

Feral and (to a lesser extent) managed honeybees contribute a broad variety of crop pollination services, including for almond, apple and lucerne (also called alfalfa) crops.




Read more:
Keeping honeybees doesn’t save bees – or the environment


Pollinators visit the flowers of the crop plants and ensure they are fertilised to produce fruit and seed. Beekeepers are often paid to put their bees in orchards since trees (such as almond trees) cannot produce a crop without insect pollination.

But native species of bees, beetles, flies and birds are just as important for crops. They are also essential for pollination, seed production and the regulation of Australia’s unique ecosystems – which evolved without honeybees.

Nature at risk

The honeybee industry sustained considerable losses in the recent fires, particularly in New South Wales and on South Australia’s Kangaroo Island. Commercial hives were destroyed and floral resources were burned, reducing the availability of sites for commercial hives. This has prompted calls from beekeepers to place hives in national parks.

Currently, beekeepers’ access to conservation areas is limited. This is because bees from commercial hives, and feral bees from previous escapes, damage native ecosystems. They compete with native species for nectar and pollen, and pollinate certain plant species over others.

In NSW, honeybees are listed as a key threatening process to biodiversity.

Untold damage

Allowing commercial hives in our national parks compromises these valuable places for conservation and could do untold damage.

Australia’s native birds, mammals and other insects rely on the same nectar from flowers as honeybees, which are abundant and voracious competitors for this sugary food.

Also, honeybees pollinate invasive weeds, such as gorse, lantana and scotch broom. These are adapted to recover and spread after fire, and are very expensive to control.

Many native plant species are not pollinated, or are pollinated inefficiently, by honeybees. This means a concentration of honeybee hives in a conservation area could shift the entire makeup of native vegetation, damaging the ecosystem.

Bringing managed hives into national parks would also risk transferring damaging diseases such as Nosema ceranae to native bee species.

Gorse (Ulex europaeus) is considered an invasive weed.
James Gaither/Flickr, CC BY-NC-ND

Chokehold on our flora and fauna

Currently, the commercially important honeybee is kept mainly on agricultural land. In national parks and reserves, native species are prioritised.

The amount of land set aside for conservation is already insufficient to preserve the species and systems we value.




Read more:
Fire almost wiped out rare species in the Australian Alps. Feral horses are finishing the job


Australia’s national parks also suffer from mismanagement of grazing by native and introduced animals, and other activities permitted in parks, such as road development and in some cases, mining.

National parks must be allowed to recover from bushfire damage. Where they are unburned, they must be protected so native plants and animals can recover and recolonise burned areas.

National parks decimated by the bushfires should be allowed to recover.
AAP/Daniel Mariuz

Protecting nature and the beekeeping industry

The demand for commercial beekeeping in national parks is a result of native vegetation being cleared for agriculture in many parts of Australia.

In the short term, one solution is for beekeepers to artificially feed their hives with sugar syrup, as is common practise in winter. Thus, they could continue to produce honey and provide commercial pollination services.

While production levels may fall as a result of the reduced feed, and honey may become more expensive, at least consumers would know the product was made without damaging native wildlife and vegetation.

A long-term solution is to increase the area of native vegetation for both biodiversity and commercial beekeeping, by stepping up Australia’s meagre re-vegetation programs.




Read more:
To reduce fire risk and meet climate targets, over 300 scientists call for stronger land clearing laws


Unfortunately, vegetation clearance rates in Australia remain extremely high.

Protecting and enhancing native vegetation would have both commercial and public benefits. Programs like the recently announced Agricultural Stewardship Package could be designed, to pay farmers for vegetation protection and revegetation.

Increasing vegetation in our landscapes is an insurance policy that will not only protect biodiversity, but support the honey industry.The Conversation

Patrick O’Connor, Associate Professor, University of Adelaide; James B. Dorey, PhD Candidate, Flinders University, and Richard V Glatz, Associate research scientist, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Critical minerals are vital for renewable energy. We must learn to mine them responsibly


Bénédicte Cenki-Tok, University of Sydney

As the world shifts away from fossil fuels, we will need to produce enormous numbers of wind turbines, solar panels, electric vehicles and batteries. Demand for the materials needed to build them will skyrocket.

This includes common industrial metals such as steel and copper, but also less familiar minerals such as the lithium used in rechargeable batteries and the rare earth elements used in the powerful magnets required by wind turbines and electric cars. Production of many of these critical minerals has grown enormously over the past decade with no sign of slowing down.

Australia is well placed to take advantage of this growth – some claim we are on the cusp of a rare earths boom – but unless we learn how to do it in a responsible manner, we will only create a new environmental crisis.

What are critical minerals?

Critical minerals” are metals and non-metals that are essential for our economic future but whose supply may be uncertain. Their supply may be threatened by geopolitics, geological accessibility, legislation, economic rules or other factors.

One consequence of a massive transition to renewables will be a drastic increase not only in the consumption of raw materials (including concrete, steel, aluminium, copper and glass) but also in the diversity of materials used.

Three centuries ago, the technologies used by humanity required half a dozen metals. Today we use more than 50, spanning almost the entire periodic table. However, like fossil fuels, minerals are finite.




Read more:
Metals and minerals will be the next finite resource shortfall


Can we ‘unlearn’ renewables to make them sustainable?

If we take a traditional approach to mining critical minerals, in a few decades they will run out – and we will face a new environmental crisis. At the same time, it is still unclear how we will secure supply of these minerals as demand surges.

This is further complicated by geopolitics. China is a major producer, accounting for more than 60% of rare earth elements, and significant amounts of tungsten, bismuth and germanium.

This makes other countries, including Australia, dependent on China, and also means the environmental pollution due to mining occurs in China.

The opportunity for Australia is to produce its own minerals, and to do so in a way that minimises environmental harm and is sustainable.

Where to mine?

Australia has well established resources in base metals (such as gold, iron, copper, zinc and lead) and presents an outstanding potential in critical minerals. Australia already produces almost half of lithium worldwide, for example.

Existing and potential sites for mining critical minerals.
Geoscience Australia

In recent years, Geoscience Australia and several universities have focused research on determining which critical minerals are associated with specific base ores.

For example, the critical minerals gallium and indium are commonly found as by-products in deposits of lead and zinc.

To work out the best places to look for critical minerals, we will need to understand the geological processes that create concentrations of them in the Earth’s crust.

Critical minerals are mostly located in magmatic rocks, which originate from the Earth’s mantle, and metamorphic rocks, which have been transformed during the formation of mountains. Understanding these rocks is key to finding critical minerals and recovering them from the bulk ores.

Magmatic rocks such as carbonatite may contain rare earth elements.
Bénédicte Cenki-Tok, Author provided

Fuelling the transition

For most western economies, rare earth elements are the most vital. These have electromagnetic properties that make them essential for permanent magnets, rechargeable batteries, catalytic converters, LCD screens and more. Australia shows a great potential in various deposit types across all states.

The Northern Territory is leading with the Nolans Bore mine already in early-stage operations. But many other minerals are vital to economies like ours.

Cobalt and lithium are essential to ion batteries. Gallium is used in photodetectors and photovoltaics systems. Indium is used for its conductive properties in screens.

Critical minerals mining is seen now as an unprecedented economic opportunity for exploration, extraction and exportation.

Recent agreements to secure supply to the US opens new avenues for the Australian mining industry.

How can we make it sustainable?

Beyond the economic opportunity, this is also an environmental one. Australia has the chance to set an example to the world of how to make the supply of critical minerals sustainable. The question is: are we willing to?

Many of the techniques for creating sustainable minerals supply still need to be invented. We must invest in geosciences, create new tools for exploration, extraction, beneficiation and recovery, treat the leftover material from mining as a resource instead of waste, develop urban mining and find substitutes and effective recycling procedures.

In short, we must develop an integrated approach to the circular economy of critical minerals. One potential example to follow here is the European EURARE project initiated a decade ago to secure a future supply of rare earth elements.

More than ever, we need to bridge the gap between disciplines and create new synergies to make a sustainable future. It is essential to act now for a better planet.The Conversation

Bénédicte Cenki-Tok, Associate professor at Montpellier University, EU H2020 MSCA visiting researcher, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What the US defence industry can tell us about how to fight climate change



The GPS system of global positioning satellites is just one of the innovations that have sprung from the US military and transformed our lives.
Shutterstock

David C Mowery, University of California, Berkeley

Achieving the large-scale cuts in greenhouse gas emissions that will be needed will require the development and adoption of new technologies at a rate not seen since the information technology revolution.

Which presents a fairly obvious idea. Why not do what we did in the information technology revolution?

There’s no mystery about what that was.

The IT revolution was sparked by the work of the US defence department and associated agencies in three related fields: semiconductors, computer hardware, and computer software.

More recently it has spawned the system of GPS global positioning satellites that can give us a readout on our locations wherever we are.




Read more:
Australia could fall apart under climate change. But there’s a way to avoid it


The lessons from how the US military industrial complex transformed information technology throughout the world can tell us a lot – but not everything – about what might succeed in stalling climate change.

It did it by spending a huge amount on research and development in its own right (as much as 80% of all government R&D spending during the late 1950s) and acting as a “lead customer,” for early and often very costly versions of technologies developed by private firms, enabling them to improve their innovations over time.

Seeds sown during the cold war

The improvements reduced costs and enhanced reliability, facilitating their penetration into civilian markets.

The US made the money available because of the cold war. Universities were also harnessed for the task, training the scientists and engineers who later assumed key leadership roles in emerging R&D enterprises.

As well, similarities in the technologies and operating environments of early military and civilian versions of new information technology products meant civilian markets for many of them expanded rapidly.

The defence programs also had a “pro-competition” bias.




Read more:
Happy birthday, SA’s big battery, and many happy returns (of your recyclable parts)


New firms played important roles as suppliers of innovations such as integrated circuits, and – in a series of largely coincidental developments – the rigorous enforcement of US antitrust laws meant potentially dominant firms as IBM or AT&T found it hard to impede others.

As a result, intra-industry diffusion of technical knowledge occurred rapidly, complementing high levels of labour mobility within the emerging sector.

The very success of these military research and development programs in spawning vibrant industries means defence markets now account for a much smaller share of the demand for IT products than they did at the time.

Today’s challenges are different…

Climate change is different from post-war research and development in that it is as much an issue of technological substitution as development.

The urgency of the challenge will require the blending of support for the development of new technological solutions with support for the accelerated adoption of existing solutions, such as replacing coal-fired electricity generation with renewable generation.

“Stranded assets” such as abandoned coal-fired power stations and related political and economic challenges will loom large.




Read more:
To feed the world in 2050 we need to build the plants that evolution didn’t


The geographic and technological breadth of the responses needed to limit climate change also dwarf that faced by the US defence establishment during the Cold War.

Also different is the fact that the prospective users of new technologies are by and large not the funders or developers of it. When US defence-related agencies acted as “venture capitalists,” beginning in the 1950s, they were focused primarily on supporting their own needs.

…but there are lessons we can learn

There are some things the diffusion of defence-related information technology can tell us.

One is the importance of rapid adoption.

Much of the large-scale investment in technology improvement and deployment will be the responsibility of private firms. They will require policies that create supportive, credible signals that their innovations will have a market – policies such as carbon taxes.

Another is that what’s needed is a program of research and development that spans an array of institutions throughout the developing and industrial economies.

Yet another is the importance of policies that encourage competition and co-operation among innovators rather than patent wars.

The success of the US military industrial complex in creating one revolution provides pointers to (but not a complete guide to) the next.


Emeritus Professor David C. Mowery will be presening the Tom Spurling Oration at Swinburne University on Wednesday 27 November at 5.45pm.The Conversation

David C Mowery, Professor Emeritus of New Enterprise Development, University of California, Berkeley

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We create 20m tons of construction industry waste each year. Here’s how to stop it going to landfill



Building construction and demolition create enormous amounts of waste and much of it goes into landfill.
Sytilin Pavel/Shutterstock

Salman Shooshtarian, RMIT University; Malik Khalfan, RMIT University; Peter S.P. Wong, RMIT University; Rebecca Yang, RMIT University, and Tayyab Maqsood, RMIT University

The Australian construction industry has grown significantly in the past two decades. Population growth has led to the need for extensive property development, better public transport and improved infrastructure. This means there has been a substantial increase in waste produced by construction and demolition.

In 2017, the industry generated 20.4 million tons (or megatonnes, MT) of waste from construction and demolition, such as for road and rail maintenance and land excavation. Typically, the waste from these activities include bricks, concrete, metal, timber, plasterboard, asphalt, rock and soil.

Between 2016 and 2017, more than 6.7MT of this waste went into landfills across Australia. The rest is either recycled, illegally dumped, reused, reprocessed or stockpiled.

But with high social, economic and environmental costs, sending waste to landfill is the worst strategy to manage this waste.




Read more:
With the right tools, we can mine cities


What’s more, China introduced its “National Sword Policy” and restricted waste imports, banning certain foreign waste materials and setting stricter limits on contamination. So Australia’s need for solutions to landfill waste has become urgent.

China has long been the main end-market for recycling materials from Australia and other countries. In 2016 alone, China imported US$18 billion worth of recyclables.

Their new policy has mixed meanings for Australia’s waste and resource recovery industry. While it has closed China’s market to some of our waste, it encourages the development of an Australian domestic market for salvaged and recycled waste.

But there are several issues standing in the way of effective management of Australia’s construction and demolition waste.




Read more:
A crisis too big to waste: China’s recycling ban calls for a long-term rethink in Australia


The producers should take more responsibility

In Australia, the main strategy to reduce the waste sent to landfill is the use of levies. But the effectiveness of levies has been questioned in recent years by experts who argue for smarter strategies to manage waste from construction and demolition. They say that imposing a landfill levy has not achieved the intended goals, such as a reduction in waste disposal or an increase in waste recovery activities.

One effective strategy Australia should expand is extended producer responsibility (EPR).

The idea originated in Germany in 1991 as a result of a landfill shortage. At the time, packaging made up 30% by weight and 50% by volume of Germany’s total municipal waste stream.

To slow down the filling of landfills, Germany introduced “the German Packaging Ordinance”. This law made manufacturers responsible for their own packaging waste. They either had to take back their packaging from consumers and distributors or pay the national packaging waste management organisation to collect it.

Australia has no specific EPR-driven legal instrument for the construction and demolition waste stream, nor any nationally adopted EPR regulations.

Waste piled at a demolition site at Little A’Beckett Street in Melbourne in April 2019.
Salman Shooshtarian, Author provided

But some largely voluntary approaches have had an impact. These include the national Product Stewardship Act 2011, New South Wales’ Extended Producer Responsibility Priority Statement 2010 and Western Australia’s 2008 Policy Statement on Extended Producer Responsibility.

These schemes have provided an impetus for industry engagement in national integrated management of some types of waste, such as e-waste, oil, batteries and fluorescent lights. Voluntary industry programs also cover materials such as PVC, gypsum, waffle pod and carpet.




Read more:
Indonesia has sent Australia’s recycling home – it’s time to clean up our act


For instance, since 2002, the Vinyl Council of Australia has voluntarily agreed to apply EPR principles. Armstrong Australia, the world’s largest manufacturer of resilient PVC flooring products, collects the offcuts and end-of-life flooring materials for recycling and processing into a new product. These materials would otherwise have been sent to landfill.

In another example, CSR Gyprock uses a take-back scheme to collect offcuts and demolition materials. After installation, the fixing contractor arranges collection with CSR Gyprock’s recycling contractor who charges the builder a reasonable fee.

Connecting industries

But extending producer responsibility in a sustainable way comes with a few challenges.

Everyone in the supply chain should be included: those who produce and supply materials, those involved in construction and demolition, and those who recover, recycle and dispose of waste.

The goal of our work is to connect organisations and industries across the country so waste can be traded instead of sent to landfill.




Read more:
The 20th century saw a 23-fold increase in natural resources used for building


But the lack of an efficient supply chain system can discourage stakeholders from taking part in such schemes. An inefficient supply chain increases the costs associated with labour and admin staff at construction sites, transport, storage, separation of waste and insurance premiums.

All of these are not only seen as a financial burden but also add complexities to an already complicated system.

Australia needs a system with a balanced involvement of producers, consumers and delivery services to extend producer responsibility.

How can research and development help?

In our research, we’re seeking to develop a national economic approach to deal with the barriers preventing the effective management of construction and demolition waste in Australia, such as implementing an extended producer responsibility.

And a project aimed to find ways to integrate supply chain systems in the construction and demolition waste and resource recovery industry is supporting our efforts.

The goal is to ensure well-established connections between all parts in the construction supply chain. A more seamless system will boost markets for these materials, making waste recovery more economically viable. And that in turn will benefit society, economy and the environment.The Conversation

Salman Shooshtarian, Research Fellow, RMIT University; Malik Khalfan, Associate Professor, Property, Construction and Project Management, RMIT University; Peter S.P. Wong, Associate Professor and Associate Dean, School of Property, Construction and Project Management, RMIT University; Rebecca Yang, Senior Lecturer, Property, Construction and Project Management, RMIT University, and Tayyab Maqsood, Associate Professor in Project Management, RMIT University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Electric cars can clean up the mining industry – here’s how



File 20190416 147514 1952tye.jpg?ixlib=rb 1.1
Electric vehicles and renewable energy must mine more responsibly.
Ioanac/Shutterstock

Elsa Dominish, University of Technology Sydney and Nick Florin, University of Technology Sydney

Growing demand for electric vehicles is important to help cut transport emissions, but it will also lead to new mining. Without a careful approach, we could create new environmental damage while trying to solve an environmental problem.

Like solar panels, wind turbines and battery storage technologies, electric vehicles require a complex mix of metals, many of which have only been previously mined in small amounts.

These include cobalt, nickel and lithium for batteries used for electric vehicles and storage; rare earth metals for permanent magnets in electric vehicles and some wind turbines; and silver for solar panels.




Read more:
Time for a global agreement on minerals to fuel the clean energy transition


Our new research (commissioned by Earthworks) at the Institute of Sustainable Futures found that under a 100% renewable energy scenario, demand for metals for electric vehicles and renewable energy technologies could exceed reserves for cobalt, lithium and nickel.

To ensure the transition to renewables does not increase the already significant environmental and human impacts of mining, greater rates of recycling and responsible sourcing are essential.

Greater uptake of electric vehicles will translate to more mining of metals such as cobalt.
Shutterstock

Recycling can offset demand for new mining

Electric vehicles are only a very small share of the global vehicle market, but their uptake is expected to accelerate rapidly as costs reduce. This global shift is the main driver of demand for lithium, cobalt and rare earths, which all have a big effect on the environment.




Read more:
Politically charged: do you know where your batteries come from?


Although electric vehicles clearly help us by reducing transport emissions, the electric vehicle and battery industries face the urgent challenge of improving the environmental effects of their supply chains.

Our research shows recycling metals can significantly reduce primary demand for electric vehicle batteries. If 90% of cobalt from electric vehicle and energy storage batteries was recycled, for instance, the cumulative demand for cobalt would reduce by half by 2050.

So what happens to the supply when recycling can’t fully meet the demand? New mining is inevitable, particularly in the short term.

In fact, we are already seeing new mines linked to the increasing demand for renewable technologies.

Clean energy is not so clean

Without responsible management, greater clean energy uptake has the potential to create new environmental and social problems. Heavy metals, for instance, could contaminate water and agricultural soils, leading to health issues for surrounding communities and workers.




Read more:
Dirty deeds: how to stop Australian miners abroad being linked to death and destruction


Most of the world’s cobalt is mined in the Democratic Republic of Congo, and around 20% of this is from artisanal and small-scale miners who work in dangerous conditions in hand-dug mines.

This includes an estimated 40,000 children under 15.

Rare earths processing requires large amounts of harmful chemicals and produces large volumes of solid waste, gas and wastewater, which have contaminated villages in China.

Copper mining has led to pollution of large areas through tailings dam failures, including in the US and Canada. A tailings dam is typically an earth-filled embankment dam used to store mining byproducts.

A tailings dam.
Edvision/Shutterstock

When supply cannot be met by recycling, we argue companies should responsibly source these metals through verified certification schemes, such as the IRMA Standard for Responsible Mining.

What would a sustainable electric vehicle system look like?

A sustainable renewable energy and transport system would focus on improving practices for recycling and responsible sourcing.

Many electric vehicle and battery manufacturers have been proactively establishing recycling initiatives and investigating new options, such as reusing electric vehicle batteries as energy storage once they are no longer efficient enough for vehicles.




Read more:
Treasure from trash: how mining waste can be mined a second time


But there is still potential to improve recycling rates. Not all types of metals are currently being recovered in the recycling process. For example, often only higher value cobalt and nickel are recovered, whereas lithium and manganese are not.

And while electric vehicle manufacturers are beginning to engage in responsible sourcing, many are concerned about the ability to secure enough supply from responsibly sourced mines.

If the auto industry makes public commitments to responsible sourcing, it will have a flow-on effect. More mines would be encouraged to engage with responsible practices and certification schemes.

These responsible sourcing practices need to ensure they do not lead to unintended negative consequences, such as increasing poverty, by avoiding sourcing from countries with poorer governance.

Focusing on supporting responsible operations in these countries will have a better long-term impact than avoiding those nations altogether.

What does this mean for Australia?

The Australian government has committed to supporting industry in better managing batteries and solar panels at the end of their life.

But stronger policies will be needed to ensure reuse and recycling if the industry does not establish effective schemes on their own, and quickly.

Australia is already the largest supplier of lithium, but most of this is exported unprocessed to China. However, this may change as the battery industry expands.




Read more:
Charging ahead: how Australia is innovating in battery technology


For example, lithium processing facilities are under development in Western Australia. Mining company Lithium Australia already own a battery component manufacturer in Australia, and recently announced they acquired significant shares in battery recycling company Envirostream.

This could help to close the loop on battery materials and create more employment within the sector.

Human rights must not be sidelined

The renewable energy transition will only be sustainable if human rights are made a top priority in the communities where mining takes place and along the supply chain.

The makers of electric cars have the opportunity to lead these industries, driving change up the supply chain, and influence their suppliers to adopt responsible practices.

Governments and industry must also urgently invest in recycling and reuse schemes to ensure the valuable metals used in these technologies are recovered, so only what is necessary is mined.The Conversation

Elsa Dominish, Senior Research Consultant, Institute for Sustainable Futures, University of Technology Sydney and Nick Florin, Research Director, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Fashion Industry and the Environment


The link below is to an article that takes a look at the impact of the fashion industry on the environment.

For more visit:
https://inhabitat.com/the-environmental-secrets-the-fashion-industry-does-not-want-you-to-know/

Here’s how a 100% renewable energy future can create jobs and even save the gas industry



File 20190123 122904 1whjg0s.jpg?ixlib=rb 1.1
The gas industry of the future could manufacture and deliver renewable fuels, rather than mining and processing natural gas.
Shutterstock.com

Sven Teske, University of Technology Sydney

The world can limit global warming to 1.5℃ and move to 100% renewable energy while still preserving a role for the gas industry, and without relying on technological fixes such as carbon capture and storage, according to our new analysis.

The One Earth Climate Model – a collaboration between researchers at the University of Technology Sydney, the German Aerospace Center and the University of Melbourne, and financed by the Leonardo DiCaprio Foundation – sets out how the global energy supply can move to 100% renewable energy by 2050, while creating jobs along the way.

It also envisions how the gas industry can fulfil its role as a “transition fuel” in the energy transition without its infrastructure becoming obsolete once natural gas is phased out.




Read more:
Want to boost the domestic gas industry? Put a price on carbon


Our scenario, which will be published in detail as an open access book in February 2019, sets out how the world’s energy can go fully renewable by:

  • increasing electrification in the heating and transport sector

  • significant increase in “energy productivity” – the amount of economic output per unit of energy use

  • the phase-out of all fossil fuels, and the conversion of the gas industry to synthetic fuels and hydrogen over the coming decades.

Our model also explains how to deliver the “negative emissions” necessary to stay within the world’s carbon budget, without relying on unproven technology such as carbon capture and storage.

If the renewable energy transition is accompanied by a worldwide moratorium on deforestation and a major land restoration effort, we can remove the equiavalent of 159 billion tonnes of carbon dioxide from the atmosphere (2015-2100).

Combining models

We compiled our scenario by combining various computer models. We used three climate models to calculate the impacts of specific greenhouse gas emission pathways. We then used another model to analyse the potential contributions of solar and wind energy – including factoring in the space constraints for their installation.

We also used a long-term energy model to calculate future energy demand, broken down by sector (power, heat, industry, transport) for 10 world regions in five-year steps. We then further divided these 10 world regions into 72 subregions, and simulated their electricity systems on an hourly basis. This allowed us to determine the precise requirements in terms of grid infrastructure and energy demand.

Interactions between the models used for the One Earth Model.
One Earth Model, Author provided

‘Recycling’ the gas industry

Unlike many other 1.5℃ and/or 100% renewable energy scenarios, our analysis deliberately integrates the existing infrastructure of the global gas industry, rather than requiring that these expensive investments be phased out in a relatively short time.

Natural gas will be increasingly replaced by hydrogen and/or renewable methane produced by solar power and wind turbines. While most scenarios rely on batteries and pumped hydro as main storage technologies, these renewable forms of gas can also play a significant role in the energy mix.

In our scenario, the conversion of gas infrastructure from natural gas to hydrogen and synthetic fuels will start slowly between 2020 and 2030, with the conversion of power plants with annual capacities of around 2 gigawatts. However, after 2030, this transition will accelerate significantly, with the conversion of a total of 197GW gas power plants and gas co-generation facilities each year.

Along the way the gas industry will have to redefine its business model from a supply-driven mining industry, to a synthetic gas or hydrogen fuel production industry that provides renewable fuels for the electricity, industry and transport sectors. In the electricity sector, these fuels can be used to help smooth out supply and demand in networks with significant amounts of variable renewable generation.

A just transition for the fossil fuel industry

The implementation of the 1.5℃ scenario will have a significant impact on the global fossil fuel industry. While this may seem to be stating the obvious, there has so far been little rational and open debate about how to make an orderly withdrawal from the coal, oil, and gas extraction industries. Instead, the political debate has been focused on prices and security of supply. Yet limiting climate change is only possible when fossil fuels are phased out.

Under our scenario, gas production will only decrease by 0.2% per year until 2025, and thereafter by an average of 4% a year until 2040. This represents a rather slow phase-out, and will allow the gas industry to transfer gradually to hydrogen.

Our scenario will generate more energy-sector jobs in the world as a whole. By 2050 there would be 46.3 million jobs in the global energy sector – 16.4 million more than under existing forecasts.




Read more:
The government is right to fund energy storage: a 100% renewable grid is within reach


Our analysis also investigated the specific occupations that will be required for a renewables-based energy industry. The global number of jobs would increase across all of these occupations between 2015 and 2025, with the exception of metal trades which would decline by 2%, as shown below.

Division of occupations between fossil fuel and renewable energy industries in 2015 and 2025.
One Earth Model, Author provided

However, these results are not uniform across regions. China and India, for example, will both experience a reduction in the number of jobs for managers and clerical and administrative workers between 2015 and 2025.

Our analysis shows how the various technical and economic barriers to implementing the Paris Agreement can be overcome. The remaining hurdles are purely political.The Conversation

Sven Teske, Research Director, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.