Here’s how a 100% renewable energy future can create jobs and even save the gas industry



File 20190123 122904 1whjg0s.jpg?ixlib=rb 1.1
The gas industry of the future could manufacture and deliver renewable fuels, rather than mining and processing natural gas.
Shutterstock.com

Sven Teske, University of Technology Sydney

The world can limit global warming to 1.5℃ and move to 100% renewable energy while still preserving a role for the gas industry, and without relying on technological fixes such as carbon capture and storage, according to our new analysis.

The One Earth Climate Model – a collaboration between researchers at the University of Technology Sydney, the German Aerospace Center and the University of Melbourne, and financed by the Leonardo DiCaprio Foundation – sets out how the global energy supply can move to 100% renewable energy by 2050, while creating jobs along the way.

It also envisions how the gas industry can fulfil its role as a “transition fuel” in the energy transition without its infrastructure becoming obsolete once natural gas is phased out.




Read more:
Want to boost the domestic gas industry? Put a price on carbon


Our scenario, which will be published in detail as an open access book in February 2019, sets out how the world’s energy can go fully renewable by:

  • increasing electrification in the heating and transport sector

  • significant increase in “energy productivity” – the amount of economic output per unit of energy use

  • the phase-out of all fossil fuels, and the conversion of the gas industry to synthetic fuels and hydrogen over the coming decades.

Our model also explains how to deliver the “negative emissions” necessary to stay within the world’s carbon budget, without relying on unproven technology such as carbon capture and storage.

If the renewable energy transition is accompanied by a worldwide moratorium on deforestation and a major land restoration effort, we can remove the equiavalent of 159 billion tonnes of carbon dioxide from the atmosphere (2015-2100).

Combining models

We compiled our scenario by combining various computer models. We used three climate models to calculate the impacts of specific greenhouse gas emission pathways. We then used another model to analyse the potential contributions of solar and wind energy – including factoring in the space constraints for their installation.

We also used a long-term energy model to calculate future energy demand, broken down by sector (power, heat, industry, transport) for 10 world regions in five-year steps. We then further divided these 10 world regions into 72 subregions, and simulated their electricity systems on an hourly basis. This allowed us to determine the precise requirements in terms of grid infrastructure and energy demand.

Interactions between the models used for the One Earth Model.
One Earth Model, Author provided

‘Recycling’ the gas industry

Unlike many other 1.5℃ and/or 100% renewable energy scenarios, our analysis deliberately integrates the existing infrastructure of the global gas industry, rather than requiring that these expensive investments be phased out in a relatively short time.

Natural gas will be increasingly replaced by hydrogen and/or renewable methane produced by solar power and wind turbines. While most scenarios rely on batteries and pumped hydro as main storage technologies, these renewable forms of gas can also play a significant role in the energy mix.

In our scenario, the conversion of gas infrastructure from natural gas to hydrogen and synthetic fuels will start slowly between 2020 and 2030, with the conversion of power plants with annual capacities of around 2 gigawatts. However, after 2030, this transition will accelerate significantly, with the conversion of a total of 197GW gas power plants and gas co-generation facilities each year.

Along the way the gas industry will have to redefine its business model from a supply-driven mining industry, to a synthetic gas or hydrogen fuel production industry that provides renewable fuels for the electricity, industry and transport sectors. In the electricity sector, these fuels can be used to help smooth out supply and demand in networks with significant amounts of variable renewable generation.

A just transition for the fossil fuel industry

The implementation of the 1.5℃ scenario will have a significant impact on the global fossil fuel industry. While this may seem to be stating the obvious, there has so far been little rational and open debate about how to make an orderly withdrawal from the coal, oil, and gas extraction industries. Instead, the political debate has been focused on prices and security of supply. Yet limiting climate change is only possible when fossil fuels are phased out.

Under our scenario, gas production will only decrease by 0.2% per year until 2025, and thereafter by an average of 4% a year until 2040. This represents a rather slow phase-out, and will allow the gas industry to transfer gradually to hydrogen.

Our scenario will generate more energy-sector jobs in the world as a whole. By 2050 there would be 46.3 million jobs in the global energy sector – 16.4 million more than under existing forecasts.




Read more:
The government is right to fund energy storage: a 100% renewable grid is within reach


Our analysis also investigated the specific occupations that will be required for a renewables-based energy industry. The global number of jobs would increase across all of these occupations between 2015 and 2025, with the exception of metal trades which would decline by 2%, as shown below.

Division of occupations between fossil fuel and renewable energy industries in 2015 and 2025.
One Earth Model, Author provided

However, these results are not uniform across regions. China and India, for example, will both experience a reduction in the number of jobs for managers and clerical and administrative workers between 2015 and 2025.

Our analysis shows how the various technical and economic barriers to implementing the Paris Agreement can be overcome. The remaining hurdles are purely political.The Conversation

Sven Teske, Research Director, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Three charts on: the incredible shrinking renewable energy job market


Paul Burke, Australian National University

This is the first piece in our new Three Charts series, in which we aim to highlight interesting trends in three simple charts. The Conversation

Australia is embarking on a transition from an electricity system that relies largely on coal to one that may one day be 100% renewable. Last week’s closure of the Hazelwood coal-fired generator was an important milestone on this path.

The development of the renewables sector has not, however, been a smooth ride.

Estimates released by the Australian Bureau of Statistics suggest that the number of direct full-time equivalent jobs in renewable energy activities has continued to fall from its 2011-12 peak. Over a period in which the Australian economy saw around 600,000 additional people get jobs, employment in the renewables sector has been going backwards.

https://datawrapper.dwcdn.net/7pTc0/2/

A small employer

The renewables sector is estimated to have directly provided only 11,150 full-time equivalent jobs in 2015-16. The Australian labour force exceeds 12.6 million people. The sector thus makes a small contribution to national employment, although one that is quite important in some local economies.

Around half of the jobs in renewables in 2015-16 were in installing (and maintaining) rooftop solar systems. Hydroelectricity generation provides 1,840 full-time equivalent jobs, a number that is likely to increase if pumped storage is to make a larger contribution to smoothing Australia’s electricity supply. Biomass provides 1,430 full-time jobs, and the wind industry around 620.

The fact that renewables is a small employer – especially once installations are up and running – is not a bad thing. If renewables were labour-intensive, they would be expensive.

https://datawrapper.dwcdn.net/FS39f/2/

Up then down

The rise and then fall in renewables jobs is primarily a result of what has happened to installations of rooftop solar. The annual number of small-scale solar installations (PV and solar water heaters) skyrocketed over the four years to 2011. This rapid growth was spurred by generous feed-in-tariffs, rebates, and rules for federal government solar credits. There was also a national program to install solar panels on schools.

When these arrangements were curtailed, uptake fell. Annual installations of small-scale solar PV and water heaters are down by more than 60% from their peak. We are still installing a lot of new systems (more than 183,000 in 2016), but fewer than before. Employment estimates for small-scale solar closely track installation rates. The decline in employment in the wind energy sector is also worth noting.

The largest fall in renewables jobs has been in Queensland, a state that substantially tightened its feed-in-tariff scheme for rooftop solar in several steps from 2011 on. Queensland also holds the title of having Australia’s highest residential rooftop solar PV penetration rate (32%). South Australia is not far behind, at 31%.

https://datawrapper.dwcdn.net/NGD1p/1/

Ramping up large-scale renewables

Recent years of policy uncertainty and backtracking have not helped the rollout of large-scale renewables. The termination of Australia’s carbon price and downwards renegotiation of the Renewable Energy Target had chilling effects on investment.

Those events are now behind us. With continued reductions in the cost of renewables, brighter days for the sector appear to be ahead, especially if our governments get policy settings right.

We can expect particularly rapid growth in jobs installing large-scale solar PV. Just last week, for example, it was announced that South Australia is to have a large new solar farm.

Paul Burke, Fellow, Crawford School, Australian National University

This article was originally published on The Conversation. Read the original article.

CSIRO is poised to slash climate research jobs – experts react


Sarah Perkins-Kirkpatrick, UNSW Australia; Clive Hamilton; Ian Lowe, Griffith University; Kevin Walsh, University of Melbourne; Neville Nicholls, Monash University, and Steve Sherwood, UNSW Australia

CSIRO is set to cut dozens of jobs from its climate research units, as part of a wider series of job losses.

In a message to staff, chief executive Larry Marshall said that the question of human-induced climate change has largely been answered, and outlined a list of new priorities for the agency, including health, technology, and “big data” research fields such as radioastronomy.

“Our climate models are among the best in the world and our measurements honed those models to prove global climate change. That question has been answered, and the new question is what do we do about it, and how can we find solutions for the climate we will be living with?” he said.

A reported 110 jobs could be lost in climate research, among a total of 350 job losses from CSIRO’s staff of 4,832 full-time positions.

Below, experts react to the news.


Neville Nicholls, Professor Emeritus, School of Earth, Atmosphere and Environment, Monash University

For 30 years Australia has punched above its weight in international climate policy negotiations because the rest of the world recognised that our government was provided with high-quality, unbiased climate science by the Bureau of Meteorology and (especially) CSIRO. The crippling of CSIRO climate research means that from henceforth the world will view our future governments as captive to either left-wing activists or right-wing ideologues, unconstrained by science.

This decision cedes our place at the big table with the adults discussing what to do about climate change. From today we join the minnows on the little table on the veranda, waiting to be told what we will have to do by the grown-up countries that still have access to high-quality climate science.


Kevin Walsh, School of Earth Sciences, University of Melbourne

The proposed cuts to climate science expertise at CSIRO are disturbing, at a time when climate change is becoming more important to Australia and to the world, not less important. It is very naïve to expect that climate science expertise can be substantially reduced in Australia and then expect that reduction to have no effect on our ability to understand and adapt to the potential impacts of climate change in this country.

Nor will our friends in the Northern Hemisphere pick up the slack for us: they have climate problems of their own. Australia’s unusual climate has always demanded that we pay particular attention to developing and nurturing our own expertise in climate science, a decades-long effort that now may be abandoned.


Sarah Perkins-Kirkpatrick, DECRA Research Fellow, Climate Change Research Centre, The University of New South Wales

The latest round of job cuts from CSIRO is nothing short of appalling. The climate research work conducted by CSIRO has been pioneering and of global standard. While we know that the climate is changing because of human activity, we have not simply “answered” that question after the Paris agreement – many more questions remain.

Like other scientific fields – such as biology, chemistry and medicine – continual research is required to continually improve our methods, understanding and knowledge. Research in any field does not and cannot stop after an apparent question has been answered.

In terms of climate science, much more research needs to be done on furthering our understanding of these changes, monitoring the climate as it does change, and making our climate and weather models more efficient and improving their capabilities. Much of this work was undertaken by CSIRO, and so now a big hole will be left.

If we want to properly safeguard our country from climate change, we require ongoing fundamental climate research – we cannot create innovative and effective solutions towards climate change without it.


Andrew Holmes, President, Australian Academy of Science

Our climate and environmental scientists are some of the best in the world. We wouldn’t stop supporting our elite Olympic athletes just as they’re winning gold medals. Nor should we pull the rug out from under our elite scientists.

Australia is internationally recognised for its expertise and unique position in climate and environmental research. Realistically, there are no other countries in the Southern Hemisphere that are able to do what we do. We have a singular contribution to make towards global and regional climate knowledge, and with this role comes a great responsibility to the global community.


Ian Lowe, Emeritus Professor of Science, Technology and Society, Griffith University

It is always disappointing when science is cut back, especially when we need to be more innovative to overcome the economic problem of falling commodity prices. It is particularly bad when the cuts are in such areas as Oceans & Atmosphere, Land & Water and Manufacturing, as these are critical to our chances of a sustainable future.

More worrying than the cuts is the language used by the new chief executive. There won’t be scientists sacked, there will be “reductions in headcount”! And these aren’t research areas, they are “business units”, headed not by top scientists but “business leaders”. The cuts are “something that we must do to renew our business”, according to the CEO. The language reveals that the government is trying to sabotage our public science body and turn it into a consulting business.


Clive Hamilton, Professor of Public Ethics, Charles Sturt University

CSIRO climate scientists are world-class and are researching the most decisive factor that will influence the future of the world. To slash their numbers at a time when the urgency of understanding and responding to climate change has never been greater suggests that the government does not want to hear the facts.


Nerilie Abram, Associate Professor, Australian National University

The notion that somehow the question of global climate change has been answered is ludicrous. Yes, it is now absolutely certain that the greenhouse gases we have added to the atmosphere are causing Earth’s climate to warm, but that big-picture knowledge does not allow us to predict and prepare for the many ways in which climate changes are going to impact on the safety and prosperity of Australia in the future. To not invest in understanding this enormous problem will cripple this country’s ability to effectively respond to the many challenges facing us as the Earth’s climate continues to warm.

Climate models, including Australia’s ACCESS model developed by CSIRO researchers, have undoubtedly played an important role in proving the physical theory that greenhouse gases are causing Earth’s climate to warm. But one aspect where models consistently show we still have much to learn about exactly how the pieces of the climate jigsaw puzzle fit together is in their ability to accurately represent the Southern Hemisphere. Gutting Australia’s capabilities in climate science will severely hinder momentum in solving this and many other unanswered questions that will directly impact Australia’s future prosperity and security.


Steve Sherwood, ARC Laureate Fellow and Director, Climate Change Research Centre, University of New South Wales

Larry Marshall surely has a point about rejuvenating organisations and solving new challenges, but I worry about his statement that there is no further need after the Paris climate summit to understand climate change since we now know it is real. Effective action requires detailed understanding. For example, Marshall speaks of contributing to the proposed agricultural development of the Northern Territory, but we don’t know for how much longer this region will still support agriculture or even human habitation as the Earth keeps warming, nor how much drying (if any) Australia’s existing agricultural regions will experience. The groups that would help provide answers are the ones he says we don’t need any more.

Comments compiled with the Australian Science Media Centre.

The Conversation

Sarah Perkins-Kirkpatrick, Research Fellow, UNSW Australia; Clive Hamilton, Professor of Public Ethics, Centre For Applied Philosophy & Public Ethics (CAPPE); Ian Lowe, Emeritus Professor, School of Science, Griffith University; Kevin Walsh, Reader, School of Earth Sciences, University of Melbourne; Neville Nicholls, Professor emeritus, School of Earth, Atmosphere and Environment, Monash University, and Steve Sherwood, Director, Climate Change Research Centre, UNSW Australia

This article was originally published on The Conversation. Read the original article.