Climate explained: when Antarctica melts, will gravity changes lift up land and lower sea levels?


Shutterstock/Nickolya

Robert McLachlan, Massey University


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


I’ve heard the gravity changes when Antarctica melts will lower the seas around New Zealand. Will that save us from sea level rise?

The gravitational changes when Antarctica melts do indeed affect sea levels all over the world — but not enough to save New Zealand from rising seas.

The ice ages and their effects on sea level, geology, flora and fauna were topics of intense scientific and public interest all through the 19th century. Here’s how James Croll explained the “gravity effect” of melting ice in his 1875 book Climate and Time in their Geologic Relations:

Let us now consider the effect that this condition of things would have upon the level of the sea. It would evidently tend to produce an elevation of the sea-level on the northern hemisphere in two ways. First, the addition to the sea occasioned by the melting of the ice from off the Antarctic land would tend to raise the general level of the sea. Secondly, the removal of the ice would also tend to shift the earth’s centre of gravity to the north of its present position – and as the sea must shift along with the centre, a rise of the sea on the northern hemisphere would necessarily take place.

His back-of-the-envelope calculation suggested the effect on sea level from ice melting in Antarctica would be about a third bigger than average in the northern hemisphere and a third smaller in the south.

A more detailed mathematical study by Robert Woodward in 1888 has falling sea level as far as 2000km from Antarctica, but still rising by a third more than average in the north.




Read more:
Ancient Antarctic ice melt caused extreme sea level rise 129,000 years ago – and it could happen again


Sea-level fingerprints

Woodward’s method is the basis of determining what is now called the “sea-level fingerprint” of melting ice. Two other factors also come into play.

  1. The elasticity of the earth’s surface means the land will bounce up when it has less ice weighing it down. This pushes water away.
  2. If the ice is not at the pole, its melting shifts the south pole (the axis of rotation), redistributing water.

Combining these effects gives the sea-level fingerprints of one metre of sea-level rise from either the West Antarctic Ice Sheet (WAIS) and Greenland (GIS), as shown here:

Red areas get more than the average sea level rise, blue areas get less.
Fingerprints of sea-level change following melting of ice from West Antartica (WAIS) and Greenland (GIS) equivalent to one metre of sea-level rise on average. Red areas get up to 40% more than the average sea-level rise, blue areas get less.
Author provided, CC BY-SA

Woodward’s method from 1888 holds up pretty well – some locations in the northern hemisphere can get a third more than the average sea level rise. New Zealand gets a little bit below the average effect from Antarctica, and a little more than average from Greenland. Overall, New Zealand can expect slightly higher than average sea level rise.

Combining the sea-level fingerprints of all known sources of melting ice, together with other known changes of local land level such as subsidence and uplift, gives a good fit to the observed pattern of sea level rise around the world. For example, sea level has been falling near West Antarctica, due to the gravity effect.

Changes in sea level around the world, 1993-2019

NOAA

Sea-level rise is accelerating, but the future rate is uncertain

The global average rise in sea level is 110mm for 1900-1993 and 100mm for 1993–2020. The recent acceleration is mostly due to increased thermal expansion of the top two kilometres of the oceans (warm water is less dense and expands) and increased melting of Greenland.

But the Gravity Recovery and Climate Experiment satellite has revealed the melting of Antarctica has accelerated by a factor of five in recent decades. Future changes in Antarctica represent a major source of uncertainty when trying to forecast sea levels.

Much of West Antarctica lies below sea level and is potentially subject to an instability in which warming ocean water melts the ice front from below. This would cause the ice sheet to peel off the ocean floor, accelerating the flow of the glacier towards the sea.

In fact, this has been directly observed, both in the location of glacial “grounding lines”, some of which have retreated by tens of kilometres in recent decades, and most recently by the Icefin submersible robot which visited the grounding line of the Thwaites Glacier, 2000km east of Scott Base, and found the water temperature to be 2℃ above the local freezing point.




Read more:
If warming exceeds 2°C, Antarctica’s melting ice sheets could raise seas 20 metres in coming centuries


The big question is whether this instability has been irreversibly set into motion. Some glaciologists say it has, but the balance of opinion, summarised by the IPCC’s report on the cryosphere, is that:

Observed grounding line retreat … is not definitive proof that Marine Ice Sheet Instability is underway. Whether unstable West Antarctic Ice Sheet retreat has begun or is imminent remains a critical uncertainty.

The IPCC special report on 1.5℃ concluded that “these instabilities could be triggered at around 1.5℃ to 2℃ of global warming”.

What’s in store for New Zealand

Predictions for New Zealand range from a further 0.46 metres of sea-level rise by 2100 (under a low-emission scenario, with warming kept under 2℃) to 1.05 metres (under a high-emission scenario).

A continued rise in sea levels over future centuries may be inevitable — there are 66m of sea level rise locked up in ice at present — but the rate will depend on how fast we can reduce emissions.

A five-year, NZ$7m research project, NZ SeaRise, is now underway, seeking to improve predictions of sea-level rise out to 2100 and beyond and their implications for local planning.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Renewables need land – and lots of it. That poses tricky questions for regional Australia



Shutterstock

Bonnie McBain, University of Newcastle

Renewable energy capacity in Australia is expected to double, or even triple, over the next 20 years. There is one oft-overlooked question in this transition: where will it all be built?

Many renewable energy technologies need extensive land area. Wind turbines, for instance, cannot be located too close together, or they won’t work efficiently.

Some land will be in urban areas. But in the transition to 100% renewable energy, land in the regions will also be needed. This presents big challenges, and opportunities, for the farming sector.

Two important factors lie at the heart of a smooth transition. First, we must recognise that building renewable energy infrastructure in rural landscapes is a complex social undertaking. And second, we must plan to ensure renewables are built where they’ll perform best.

Aerial view of solar farm
Australia’s renewable energy expansion will require plenty of space – most of it in the regions.
Shutterstock

Bringing renewables to the regions

My research has examined how much land future energy generation will require, and the best way to locate a 100% renewable electricity sector in Australia.

A National Farmers Federation paper released last week called for a greater policy focus on renewable energy in regional Australia. It said so-called renewable energy zones should “be at the centre of any regionalisation agenda” and that this would give the technology a competitive advantage.

Hosting renewable energy infrastructure gives farmers a second income stream. This can diversify a farming business and help it withstand periods of financial pressure such as drought. An influx of new infrastructure also boosts regional economies.

But successfully integrating renewables into the agricultural landscape is not without challenges.

A wicked problem

Renewable energy enjoys widespread public support. However its development can lead to social conflicts. For example, opposition to wind wind farms, often concentrated at the local level, can be motivated by concerns about:

  • perceived health impacts
  • changes to the landscape
  • damage to wildlife
  • loss of amenity
  • reduced property values
  • procedural fairness.

A proposed A$2 billion wind energy development on Tasmania’s King Island shows the difficulties involved in winning community support. The project was eventually scrapped in 2014, for economic reasons.

Research showed how despite the proponents TasWind using a “best practice” mode of community engagement, the proposal caused much social conflict. For example, the holding of a vote served to further polarise the community, and locals were concerned that the community consultation process was not impartial.




Read more:
Against the odds, South Australia is a renewable energy powerhouse. How on Earth did they do it?


The local context was also significant: the recent closure of an abattoir, and associated job losses, had increased the community’s stress and sense of vulnerability. This led some to frame the new proposal as an attempt by a large corporation to capitalise on the island’s misfortune.

The King Island experience has all the hallmarks of a “wicked problem” – one that is highly complex and hard to resolve. Such problems are common in policy areas such as land-use planning and environmental protection.

People protest against wind farm proposal
Achieving community consensus on wind farm developments can be challenging.
Daniel Mariuz/AAP

Wicked problems typically involve competing perspectives and interests. Often, there is no single, correct solution that works for everyone. For example at King Island, the abattoir closure did not mean all locals considered the wind energy proposal to be the answer.

When seeking to address complex policy problems, such as building renewable energy in regional areas, the best approach involves:

  • collaboration between all affected parties, including people beyond the property where the infrastructure will be located
  • relationship-building between all those involved, to allow each to see the other’s perspective
  • shared decision-making on whether the infrastructure will be built, and where.

Competition for land is intensifying around the world, especially as the population grows. High consumption levels in the West require ever-more land for resources such as food, and land degradation is rife.

To help alleviate this pressure, renewable energy developments may need to co-exist with other land uses, such as cattle grazing around wind turbines. And in many cases, renewable energy should not be built on the most productive cropping land.

Cows graze in front of wind turbines
Cattle grazing and wind turbines can co-exist.
Mick Tsikas/AAP

Recipe for success

A successful energy transition will require strategic, long-term planning to determine where renewable generation is best located.

Our research indicates that while many places in Australia have renewable energy potential, some are far better than others. Wind energy is usually best located near the coast, solar farms in arid inland regions and rooftop solar power in densely-populated eastern Australia.




Read more:
Explainer: what is the electricity transmission system, and why does it need fixing?


Traditionally, Australia’s electricity grid infrastructure, such as high-voltage transmission lines, has been located around coal-fired generators and large population centres. Locating renewables near this infrastructure might make it cheaper to connect to the grid. But those sites may not be particularly windy or sunny.

Australia’s electricity grid should be upgraded and expanded to ensure renewables generators are located where they can perform best. Such strategic planning is just what the National Farmers Federation is asking for. Improved connectivity will also help make electricity supplies more reliable, allowing electricity to be transferred between regions if needed.

Making renewables do-able

The economic and environmental benefits of renewable energy are well known. But without social acceptance by communities hosting the infrastructure, the clean energy transition will be slowed. There is more work to be done to ensure new renewables projects better respond to the needs of regional communities.

And to ensure Australia best fulfils its renewable energy potential, electricity grid technology must be upgraded and expanded. To date, such planning has not featured prominently enough in public conversation and government policy.

If Australia can overcome these two tricky problems, it will be well on the way to ensuring more reliable electricity, the best return on investment and a low-carbon energy sector.




Read more:
People need to see the benefits from local renewable energy projects, and that means jobs


The Conversation


Bonnie McBain, Lecturer, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fences have big effects on land and wildlife around the world that are rarely measured



Australia’s dingo fences, built to protect livestock from wild dogs, stretch for thousands of kilometers.
Marian Deschain/Wikimedia, CC BY-SA

Alex McInturff, University of California Santa Barbara; Christine Wilkinson, University of California, Berkeley, and Wenjing Xu, University of California, Berkeley

What is the most common form of human infrastructure in the world? It may well be the fence. Recent estimates suggest that the total length of all fencing around the globe is 10 times greater than the total length of roads. If our planet’s fences were stretched end to end, they would likely bridge the distance from Earth to the Sun multiple times.

On every continent, from cities to rural areas and from ancient to modern times, humans have built fences. But we know almost nothing about their ecological effects. Border fences are often in the news, but other fences are so ubiquitous that they disappear into the landscape, becoming scenery rather than subject.

In a recently published study, our team sought to change this situation by offering a set of findings, frameworks and questions that can form the basis of a new discipline: fence ecology. By compiling studies from ecosystems around the world, our research shows that fences produce a complex range of ecological effects.

Some of them influence small-scale processes like the building of spider webs. Others have much broader effects, such as hastening the collapse of Kenya’s Mara ecosystem. Our findings reveal a world that has been utterly reorganized by a rapidly growing latticework of fences.

Conservationists and scientists have raised concerns about the ecological effects of the U.S.-Mexico border wall, most of which is essentially a fence.

Connecting the dots

If fences seem like an odd thing for ecologists to study, consider that until recently no one thought much about how roads affected the places around them. Then, in a burst of research in the 1990s, scientists showed that roads – which also have been part of human civilization for millennia – had narrow footprints but produced enormous environmental effects.

For example, roads can destroy or fragment habitats that wild species rely on to survive. They also can promote air and water pollution and vehicle collisions with wildlife. This work generated a new scientific discipline, road ecology, that offers unique insights into the startling extent of humanity’s reach.

Our research team became interested in fences by watching animals. In California, Kenya, China and Mongolia, we had all observed animals behaving oddly around fences – gazelles taking long detours around them, for example, or predators following “highways” along fence lines.

We reviewed a large body of academic literature looking for explanations. There were many studies of individual species, but each of them told us only a little on its own. Research had not yet connected the dots between many disparate findings. By linking all these studies together, we uncovered important new discoveries about our fenced world.

Vintage ad for barbed wire.
Early advertisement for barbed wire fencing, 1880-1889. The advent of barbed wire dramatically changed ranching and land use in the American West by ending the open range system.
Kansas Historical Society, CC BY-ND

Remaking ecosystems

Perhaps the most striking pattern we found was that fences rarely are unambiguously good or bad for an ecosystem. Instead, they have myriad ecological effects that produce winners and losers, helping to dictate the rules of the ecosystems where they occur.

Even “good” fences that are designed to protect threatened species or restore sensitive habitats can still fragment and isolate ecosystems. For example, fences constructed in Botswana to prevent disease transmission between wildlife and livestock have stopped migrating wildebeests in their tracks, producing haunting images of injured and dead animals strewn along fencelines.

Enclosing an area to protect one species may injure or kill others, or create entry pathways for invasive species.

One finding that we believe is critical is that for every winner, fences typically produce multiple losers. As a result, they can create ecological “no man’s lands” where only species and ecosystems with a narrow range of traits can survive and thrive.

Altering regions and continents

Examples from around the world demonstrate fences’ powerful and often unintended consequences. The U.S.-Mexico border wall – most of which fits our definition of a fence – has genetically isolated populations of large mammals such as bighorn sheep, leading to population declines and genetic isolation. It has even had surprising effects on birds, like ferruginous pygmy owls, that fly low to the ground.

Australia’s dingo fences, built to protect livestock from the nation’s iconic canines, are among the world’s longest man-made structures, stretching thousands of kilometers each. These fences have started ecological chain reactions called trophic cascades that have affected an entire continent’s ecology.

The absence of dingoes, a top predator, from one side of the fence means that populations of prey species like kangaroos can explode, causing categorical shifts in plant composition and even depleting the soil of nutrients. On either side of the fence there now are two distinct “ecological universes.”

Our review shows that fences affect ecosystems at every scale, leading to cascades of change that may, in the worst cases, culminate in what some conservation biologists have described as total “ecological meltdown.” But this peril often is overlooked.

Map showing the density of fencing in the western U.S.
The authors assembled a conservative data set of potential fence lines across the U.S. West. They calculated the nearest distance to any given fence to be less than 31 miles (50 kilometers), with a mean of about 2 miles (3.1 kilometers).
McInturff et al,. 2020, CC BY-ND

To demonstrate this point, we looked more closely at the western U.S., which is known for huge open spaces but also is the homeland of barbed wire fencing. Our analysis shows that vast areas viewed by researchers as relatively untrodden by the human footprint are silently entangled in dense networks of fences.

Do less harm

Fences clearly are here to stay. As fence ecology develops into a discipline, its practitioners should consider the complex roles fences play in human social, economic and political systems. Even now, however, there is enough evidence to identify actions that could reduce their harmful impacts.

There are many ways to change fence design and construction without affecting their functionality. For example, in Wyoming and Montana, federal land managers have experimented with wildlife-friendly designs that allow species like pronghorn antelope to pass through fences with fewer obstacles and injuries. This kind of modification shows great promise for wildlife and may produce broader ecological benefits.

Another option is aligning fences along natural ecological boundaries, like watercourses or topographical features. This approach can help minimize their effects on ecosystems at low cost. And land agencies or nonprofit organizations could offer incentives for land owners to remove fences that are derelict and no longer serve a purpose.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]

Nonetheless, once a fence is built its effects are long lasting. Even after removal, “ghost fences” can live on, with species continuing to behave as if a fence were still present for generations.

Knowing this, we believe that policymakers and landowners should be more cautious about installing fences in the first place. Instead of considering only a fence’s short-term purpose and the landscape nearby, we would like to see people view a new fence as yet another permanent link in a chain encircling the planet many times over.The Conversation

Alex McInturff, Postdoctoral Researcher, University of California Santa Barbara; Christine Wilkinson, Ph.D. Candidate in Environmental Science, Policy and Management, University of California, Berkeley, and Wenjing Xu, PhD Candidate in Environmental Science, Policy and Management, University of California, Berkeley

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why most Aboriginal people have little say over clean energy projects planned for their land



Pexels, Author provided

Lily O’Neill, Australian National University; Brad Riley, Australian National University; Ganur Maynard, Australian National University, and Janet Hunt, Australian National University

Huge clean energy projects, such as the Asian Renewable Energy Hub in the Pilbara, Western Australia, are set to produce gigawatts of electricity over vast expanses of land in the near future.

The Asian Renewable Energy Hub is planning to erect wind turbines and solar arrays across 6,500 square kilometres of land. But, like with other renewable energy mega projects, this land is subject to Aboriginal rights and interests — known as the Indigenous Estate.

While renewable energy projects are essential for transitioning Australia to a zero-carbon economy, they come with a caveat: most traditional owners in Australia have little legal say over them.

A red-dirt road through the WA desert, with a tree either side.
Wind turbines will be built across 6,500 square kilometres in the Pilbara.
Shutterstock

Projects on the Indigenous Estate

How much say Aboriginal people have over mining and renewable energy projects depends on the legal regime their land is under.

In the Northern Territory, the Aboriginal Land Rights (Northern Territory) Act 1976 (Cth) (ALRA) allows traditional owners to say no to developments proposed for their land. While the commonwealth can override this veto, they never have as far as we know.

In comparison, the dominant Aboriginal land tenure in Western Australia (and nationwide) is native title.

Native title — as recognised in the 1992 Mabo decision and later codified in the Native Title Act 1993 — recognises that Aboriginal peoples’ rights to land and waters still exist under certain circumstances despite British colonisation.




Read more:
Indigenous people no longer have the legal right to say no to the Adani mine – here’s what it means for equality


But unlike the ALRA, the Native Title Act does not allow traditional owners to veto developments proposed for their land.

Both the Native Title Act and the the ALRA are federal laws, but the ALRA only applies in the NT. The Native Title Act applies nationwide, including in some parts of the NT.

Shortcomings in the Native Title Act

Native title holders can enter into a voluntary agreement with a company, known as an Indigenous Land Use Agreement, when a development is proposed for their land. This allows both parties to negotiate how the land and waters would be used, among other things.

If this is not negotiated, then native title holders have only certain, limited safeguards.

The strongest of these safeguards is known as the “right to negotiate”. This says resource companies must negotiate in good faith for at least six months with native title holders, and aim to reach an agreement.

But it is not a veto right. The company can fail to get the agreement of native title holders and still be granted access to the land by government.

For example, Fortescue Metals Group controversially built their Solomon iron ore mine in the Pilbara, despite not getting the agreement of the Yindjibarndi people who hold native title to the area.

In fact, the National Native Title Tribunal — which rules on disputes between native title holders and companies — has sided with native title holders only three times, and with companies 126 times (of which 55 had conditions attached).

There are also lesser safeguards in the act, which stipulate that native title holders should be consulted, or notified, about proposed developments, and may have certain objection rights.

Negotiating fair agreements

So how does the Native Title Act treat large-scale renewable energy developments?

The answer is complicated because a renewable energy development likely contains different aspects (for example: wind turbines, roads and HVDC cables), and the act may treat each differently.

Broadly speaking, these huge developments don’t fall under the right to negotiate, but under lesser safeguards.

Does this matter? Yes, it does. We know from experience in the mining industry that while some companies negotiate fair agreements with Aboriginal landowners, some do not.




Read more:
Rio Tinto just blasted away an ancient Aboriginal site. Here’s why that was allowed


For example, two very similar LNG projects — one in Western Australia and the other in Queensland — resulted in land access and benefit sharing agreements that were poles apart. The WA project’s agreements with traditional owners were worth A$1.5 billion, while the Queensland project’s agreements were worth just A$10 million.

Likewise, Rio Tinto’s agreement for the area including Juukan Gorge reportedly “gagged” traditional owners from objecting to any activities by the company, which then destroyed the 46,000-year-old rock shelters.

A matter of leverage

We also know the likelihood of a new development having positive impacts for Aboriginal communities depends in part on the leverage they have to negotiate a strong agreement.




Read more:
Uranium mines harm Indigenous people – so why have we approved a new one?


And the best leverage is political power. This comes from the ability to wage community campaigns against companies to force politicians to listen, or galvanise nation-wide protests that prevent work on a development continuing.

Legal rights are also very effective: the stronger your legal rights are, the better your negotiation position. And the strongest legal position to be in is if you can say no to the development.

For land under the Aboriginal Land Rights (Northern Territory) Act 1976, this ability to say no means traditional owners are in a good position to negotiate strong environmental, cultural heritage and economic benefits.

For land under the Native Title Act, traditional owners are in a weaker legal position. It is not a level playing field.

A just transition

To remedy this imbalance, the federal government must give native title holders the same rights for renewable energy projects as traditional owners have under the Aboriginal Land Rights Act in the NT.




Read more:
Charles Perkins forced Australia to confront its racist past. His fight for justice continues today


Or, at the very least, extend the right to negotiate to cover the types of large-scale renewable energy projects likely to be proposed for native title land in coming decades.

We must ensure the transition to a zero-carbon economy is a just transition for First Nations.The Conversation

Lily O’Neill, Research Fellow, Australian National University; Brad Riley, Research Fellow, Australian National University; Ganur Maynard, Visiting Indigenous Fellow, Australian National University, and Janet Hunt, Associate Professor, CAEPR, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia, you have unfinished business. It’s time to let our ‘fire people’ care for this land



Rangers from Kanyirninpa Jukurrpa, conducting cool season burning on Martu Country.
Tony Jupp,The Nature Conservancy

David Bowman, University of Tasmania and Greg Lehman, University of Tasmania

Since last summer’s bushfire crisis, there’s been a quantum shift in public awareness of Aboriginal fire management. It’s now more widely understood that Aboriginal people used landscape burning to sustain biodiversity and suppress large bushfires.

The Morrison government’s bushfire royal commission, which began hearings this week, recognises the potential of incorporating Aboriginal knowledge into mainstream fire management.

Its terms of reference seek to understand ways “the traditional land and fire management practices of Indigenous Australians could improve Australia’s resilience to natural disasters”.

Incorporating Aboriginal knowledge is essential to tackling future bushfire crises. But it risks perpetuating historical injustices, by appropriating Aboriginal knowledge without recognition or compensation. So while the bushfire threat demands urgent action, we must also take care.

Accommodating traditional fire knowledge is a long-overdue accompaniment to recent advances in land rights and native title. It is an essential part of the unfinished business of post-colonial Australia.

Grant Stewart, a ranger from Kanyirninpa Jukurrpa. The benefits of Indigenous fire practices are becoming well-known.
Louie Davis

A living record

Before 1788, Aboriginal cultures across Australia used fire to deliberately and skilfully manage the bush.

Broadly, it involved numerous, frequent fires that created fine-scale mosaics of burnt and unburnt patches. Developed over thousands of years, such burning made intense bushfires uncommon and made plant and animal foods more abundant. This benefited wildlife and sustained a biodiversity of animals and plants.

Following European settlement, Aboriginal people were dispossessed of their land and the opportunity to manage it with fire. Since then, the Australian bush has seen dramatic biodiversity declines, tree invasion of grasslands and more frequent and destructive bushfires.




Read more:
A surprising answer to a hot question: controlled burns often fail to slow a bushfire


In many parts of Australia, particularly densely settled areas, cultural burning practices have been severely disrupted. But in some regions, such as clan estates in Arnhem Land, unbroken traditions of fire management date back to the mid to late Pleistocene some 50,000 years ago.

Not all nations can draw on these living records of traditional fire management.

Indigenous people around the world, including in western Europe, used fire to manage flammable landscapes. But industrialisation, intensive agriculture and colonisation led to these practices being lost.

In most cases, historical records are the only way to learn about them.

Aborigines Using Fire to Hunt Kangaroos, by Joseph Lycett. Indigenous people have used cultural fire practices for thousands of years.
National Library of Australia

Rising from the ashes

In Australia, many Aboriginal people are rekindling cultural practices, sometimes in collaboration with non-indigenous land managers. They are drawing on retained community knowledge of past fire practices – and in some cases, embracing practices from other regions.

Burning programs can be adapted to the challenges of a rapidly changing world. These include the need to protect assets, and new threats such as weeds, climate change, forest disturbances from logging and fire, and feral animals.




Read more:
There’s no evidence ‘greenies’ block bushfire hazard reduction but here’s a controlled burn idea worth trying


This process is outlined well in Victor Steffensen’s recent book Fire Country: How Indigenous Fire Management Could Help Save Australia. Steffensen describes how, as an Aboriginal man born into two cultures, he made a journey of self-discovery – learning about fire management while being guided and mentored by two Aboriginal elders.

Together, they reintroduced fire into traditional lands on Cape York. These practices had been prohibited after European-based systems of land tenure and management were imposed.

Steffensen extended his experience to cultural renewal and ecological restoration across Australia, arguing this was critical to addressing the bushfire crisis:

The bottom line for me is that we need to work towards a whole other division of fire managers on the land […] A skilled team of indigenous and non-indigenous people that works in with the entire community, agencies and emergency services to deliver an effective and educational strategy into the future. One that is culturally based and connects to all the benefits for the community.

Making it happen

So how do we realise this ideal? Explicit affirmative action policies, funded by state and federal governments, are a practical way to protect and extend Aboriginal burning cultures.

Specifically, such programs should provide ways for Aboriginal people and communities to:

  • develop their fire management knowledge and capacity
  • maintain and renew traditional cultural practices
  • enter mainstream fire management, including in leadership roles
  • enter a broad cross section of agencies, and community groups involved in fire management.

This will require rapidly building capacity to train and employ Aboriginal fire practitioners.

In some instances, where the impact of colonisation has been most intense, action is needed to support Aboriginal communities to re-establish relationships with forested areas, following generations of forced removal from their Country.




Read more:
Our land is burning, and western science does not have all the answers


Importantly, this empowerment will enable Aboriginal communities to re-establish their own cultural priorities and practices in caring for Country. Where these differ from the Eurocentric values of mainstream Australia, we must understand and respect the wisdom of those who have been custodians of this flammable landscape for millennia.

Non-indigenous Australians should also pay for these ancient skills. Funding schemes could include training, and ensuring affirmative action programs are implemented and achieve their goals.

Involving Aboriginal people and communities in the development of fire management will ensure cultural knowledge is shared on culturally agreed terms.

Fire people, fire country

In many ways, last summer’s fire season is a reminder of the brutal acquisition of land in Australia and its ongoing consequences for all Australians.

The challenges involved in helping to right this wrong, by enabling Aboriginal people to use their fire management practices, are complex. They span social justice, funding, legal liability, cultural rights, fire management and science.

Fundamentally, we must recognise that Aborigines are “fire people” who live on “fire country”. It’s time to embrace this ancient fact.

Andry Sculthorpe of the Tasmanian Aboriginal Centre contributed to this article.The Conversation

David Bowman, Professor of Pyrogeography and Fire Science, University of Tasmania and Greg Lehman, Pro Vice Chancellor, Aboriginal Leadership, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

To reduce fire risk and meet climate targets, over 300 scientists call for stronger land clearing laws



File 20190308 150700 3qu1wc.jpg?ixlib=rb 1.1
Without significant tree cover, dry and dusty landscapes can result.
Don Driscoll, Author provided

Martine Maron, The University of Queensland; Andrea Griffin, University of Newcastle; April Reside, The University of Queensland; Bill Laurance, James Cook University; Don Driscoll, Deakin University; Euan Ritchie, Deakin University, and Steve Turton, CQUniversity Australia

Australia’s high rates of forest loss and weakening land clearing laws are increasing bushfire risk, and undermining our ability to meet national targets aimed at curbing climate change.

This dire situation is why we are among the more than 300 scientists and practitioners who have signed a declaration calling for governments to restore, or better strengthen regulations to protect native vegetation.




Read more:
Land clearing on the rise as legal ‘thinning’ proves far from clear-cut


Land clearing laws have been contentious in several states for years. New South Wales relaxed its land clearing controls in 2017, triggering concerns over irreversible environmental damage. Although it is too early to know the impact of those changes, a recent analysis found that land clearing has increased sharply in some areas since the laws changed.

The Queensland Labor government’s 2018 strengthening of land clearing laws came after years of systematic weakening of these protections. Yet the issue has remained politically divisive. While discussing a federal inquiry into the impact of these policies on farmers, federal agriculture minister David Littleproud suggested that the strenthening of regulations may have worsened Queensland’s December bushfires.

We argue such an assertion is at odds with scientific evidence. And, while the conservation issues associated with widespread land clearing are generally well understood by the public, the consequences for farmers and fire risks are much less so.

Tree loss can increase fire risk

During December’s heatwave in northern Queensland, some regions were at “catastrophic” bushfire risk for the first time since ratings began. Even normally wet rainforests, such as at Eungella National Park inland from Mackay, sustained burns in some areas during “unprecedented” fire conditions.

There is no evidence to support the suggestion that 2018’s land clearing law changes contributed to the fires. No changes were made to how vegetation can be managed to reduce fire risk. This is governed under separate laws, which remained unaltered.

In fact, shortly after the fires, Queensland’s land clearing figures were released. They showed that in the three years to June 2018, an area equivalent to roughly 570,000 Melbourne Cricket Grounds (1,138,000 hectares) of bushland was cleared, including 284,000 hectares of remnant (old-growth) ecosystems.

Tree clearing can worsen fire risk in several ways. It can affect the regional climate. In parts of eastern Australia, tree cover reductions are estimated to have increased summer surface temperatures by up to 2℃ and southwest Western Australia by 0.4–0.8℃, reduced rainfall in southeast Australia, and made droughts hotter and longer.

Removing forest vegetation depletes soil moisture. Large, intact areas of forest typically have cooler, wetter microclimates buffered from extreme temperatures. Over time, some forest types can even become fire-resistant, but smaller patches of trees are typically drier and more flammable.

Trees also form a natural windbreak that can slow the spread of bushfires. An analysis of the 2005 Wangary fire in South Australia found that fires spread most rapidly through paddocks, rather than through areas lined with native trees.

Trends from 1978 to 2017 in the annual (July to June) sum of the daily Forest Fire Danger Index, an indicator of the severity of fire weather conditions. Positive trends, shown in the yellow to red colours, indicate increasing length and intensity of the fire weather season. Areas where there are sparse data coverage, such as central parts of Western Australia, are faded.
CSIRO/Bureau of Meteorology/State of the Climate 2018

Finally, Australia’s increasing risk of bushfire and worsening drought are driven by global climate change, to which land clearing is a major contributor.

Farmers on the frontline of environmental risk

Extensive tree clearing also leads to problems for farmers, including rising salinity, reduced water quality, and soil erosion. Governments and rural communities spend significant money and labour redressing the aftermath of excessive clearing.

Sensible regulation of native vegetation removal does not restrict existing agriculture, but rather seeks to support sustainable production. Retained trees can help deal with many environmental risks that hamper agricultural productivity, including animal health, long-term pasture productivity, risks to the water cycle, pest control, and human well-being.

Rampant tree clearing is undoing climate policy too. Much of the federal government’s A$2.55 billion Emissions Reduction Fund has gone towards tree planting. But it would take almost this entire sum just to replace the trees cleared in Queensland since 2012.




Read more:
Stopping land clearing and replanting trees could help keep Australia cool in a warmer future


In 2019, Australians might reasonably expect that our relatively wealthy and well-educated country has moved beyond a frontier-style reliance on continued deforestation, and we would do well to better acknowledge and learn lessons from Indigenous Australians with respect to their land management practices.

Yet the periodic weakening of land clearing laws in many parts of Australia has accelerated the problem. The negative impacts on industry, society and wildlife are numerous and well established. They should not be ignored.The Conversation

Martine Maron, ARC Future Fellow and Associate Professor of Environmental Management, The University of Queensland; Andrea Griffin, Senior Lecturer, School of Psychology, University of Newcastle; April Reside, Researcher, Centre for Biodiversity and Conservation Science, The University of Queensland; Bill Laurance, Distinguished Research Professor and Australian Laureate, James Cook University; Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, and Steve Turton, Adjunct Professor of Environmental Geography, CQUniversity Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Lava in Hawai’i is reaching the ocean, creating new land but also corrosive acid mist


Dave McGarvie, The Open University and Ian Skilling, The University of South Wales

There is something special and awe-inspiring about watching new land form. This is what is now happening in Hawai’i as its Kīlauea volcano erupts. Lava is reaching the ocean and building land while producing spectacular plumes of steam. These eruptions are hugely important for the creation of new land. But they are also dangerous. Where the lava meets the ocean, corrosive acid mist is produced and glass particles are shattered and flung into the air. Volcanic explosions can also hurl lava blocks hundreds of metres and produce waves of scalding hot water.

At Kīlauea, lava is erupting from a line of vents on the volcano’s flanks, and is moving downslope to the edge of the island, where it enters the ocean. This is a process that has been witnessed many times at Hawai’i and other volcanic islands. And it is through many thousands of such eruptions that volcanic islands like Hawai’i form.

The new lava being added to Hawai’i by this latest Kīlauea eruption replaces older land that is being lost by erosion, and so prolongs the island’s lifespan. In contrast, older islands to the north-west have no active volcanoes, so they are being eroded by the ocean and will eventually disappear beneath the waves. The opposite is happening to the south-east of Hawai’i, where an underwater volcano (Lōʻihi Seamount) is building the foundations of what will eventually become the next volcanic island in this area.

How lava gets to the ocean at Hawai’i

The lava erupting from the current Kīlauea vents has a temperature of roughly 1150 degrees °C, and has a journey of between 4.5km and 5.5km to reach the ocean. As this lava moves swiftly in channels, it loses little heat and so it can enter the ocean at a temperature of over 1000 degrees°C.

When lava meets the sea, new land is formed.
EPA

What happens when lava meets the ocean?

We are witnessing one of the most spectacular sights in nature – billowing white plumes of steam (technically water droplets) as hot lava boils seawater. Although these billowing steam clouds appear harmless, they are dangerous because they contain small glass shards (fragmented lava) and acid mist (from seawater). This acid mist known as “laze” (lava haze) can be hot and corrosive. If anyone goes to near it, they can experience breathing difficulties and irritation of their eyes and skin.

Apart from the laze, the entry of lava into the ocean is usually a gentle process, and when steam is free to expand and move away, there are no violent steam-driven explosions.

But a hidden danger lurks beneath the ocean. The lava entering the sea breaks up into blobs (known as pillows), angular blocks, and smaller fragments of glass that form a steep slope beneath the water. This is called a lava delta.

A newly formed lava delta is an unstable beast, and it can collapse without warning. This can trap water within the hot rock, leading to violent steam-driven explosions that can hurl metre-sized blocks up to 250 metres. Explosions occur because when the water turns to steam it suddenly expands to around 1,700 times its original volume. Waves of scalding water can also injure people who are too close. People have died and been seriously injured during lava delta collapses

So, the ocean entry points where lava and seawater meet are doubly dangerous, and anyone in the area should pay careful attention to official advice on staying away from them.

Pillow Lavas form underneath the ocean.
National Oceanic & Atmospheric Adminstration (NOAA)

What more can we learn from these eruptions?

Once lava deltas have cooled and become stable they represent new land. Studies have revealed that lava deltas have distinctive features, and this has enabled volcanologists to recognise lava deltas in older rocks.

Remarkable examples of lava deltas have been discovered near the top of extinct volcanoes (called tuyas) in Iceland and Antarctica. These deltas can only form in water and the only plausible source of this water in this case is melted ice. This means that these volcanoes had melted water-filled holes up to 1.5km deep in ice sheets, which is an astonishing feat. In fact, these lava deltas are the only remaining evidence of long-vanished ice sheets.

The ConversationIt is a privilege to see these incredible scenes of lava meeting the ocean. The ongoing eruptions form part of the natural process that enables beautiful volcano islands like Hawai’i to exist. But the creation of new land here can also bring danger to those who get too close, whether it be collapsing lava deltas or acid mist.

Dave McGarvie, School of Physical Sciences, The Open University and Ian Skilling, Senior Lecturer (Volcanology), The University of South Wales

This article was originally published on The Conversation. Read the original article.

On dangerous ground: land degradation is turning soils into deserts


Abbas El-Zein, University of Sydney

If any of us still has the slightest doubt that we are facing an ecological crisis on an unprecedented scale, then a new report on land degradation, released this week by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), provides yet another piece of evidence.

Land degradation can take many forms, but always entails a serious disruption of a healthy balance between five key ecosystem functions. These are: food production; fibre provision; microclimate regulation; water retention; and carbon storage.

Its impacts can be far-reaching, including loss of soil fertility, destruction of species habitat and biodiversity, soil erosion, and excessive nutrient runoff into lakes.




Read more:
The immense challenge of desertification in sub-Saharan Africa


Land degradation also has serious knock-on effects for humans, such as malnutrition, disease, forced migration, cultural damage, and even war.

At its worst, land degradation can result in the desertification or abandonment of land (or both). Protracted drought and loss of fertile land may have been contributing factors in the wars in Sudan and Syria.

According to the new report, 43% of world populations live in regions affected by land degradation. By 2050, the report estimates, 4 billion people will be living in drylands. These are defined by the United Nations as land with an “aridity ratio” of less than 0.65, meaning that the amount of water lost far outweighs the amount received in precipitation.

Such areas are highly vulnerable to food and water insecurity, especially in sub-Saharan Africa and the Middle East.

A global threat

It would be wrong to infer that land degradation is purely a problem for developing countries. Overall, land is generally more degraded in the developed world – as shown, for example, by greater declines in soil organic carbon content, a measure of soil health. However, in richer nations the rate of degradation has slowed, and people in these regions are generally less vulnerable to its effects.

It is in sub-Saharan Africa, Asia and South and Central America that the problem is growing most rapidly. But climate change, especially where droughts and forest fires are becoming more frequent, can cause land degradation even in affluent places such as California and Australia.

What’s more, a decline in the overall availability of agricultural land is bound to affect food prices globally. By 2050, the report states, humans will have transformed almost every part of the planet, apart from uninhabitable stretches such as deserts, mountains, tundra and polar regions.

Perhaps most chillingly, the report predicts that the combined effects of land degradation and climate change will have displaced between 50 million and 700 million people by 2050, potentially triggering conflict over disputed land.

Some of this migration will inevitably be across international borders – how much is impossible to tell. While the impacts on migrants are almost always devastating, the ripple effects, as we have seen recently with the Syrian war, can spread far and wide, affecting electoral outcomes, border controls and social security systems throughout the world.

Globalised causes

The two most significant direct causes of land degradation are the conversion of native vegetation into crop and grazing lands, and unsustainable land-management practices. Other factors include the effects of climate change and loss of land to urbanisation, infrastructure and mining.

However, the underlying driver of all these changes is rising per-capita demand from growing populations for protein, fibre and bioenergy. This in turn leads to more demand for land and further encroachment into areas with marginal soils.

Market deregulation, which has been a global trend since the 1980s, can lead to the destruction of sustainable land management practices in favour of monocultures, and can encourage a race to the bottom as far as environmental protection is concerned. The vast geographical distance between demand for consumer goods and the land needed to produce them – between, in other words, the cause of land degradation and its effect – makes it much harder to address the problem politically.

Sadly, the timid history of attempts to create global governance regimes over the past century – from human rights, to conflict prevention, arms control, social protections and environmental treaties – has seen more failures than successes.

On the positive side, success stories in land management are well documented: agroforestry, conservation agriculture, soil fertility management, regeneration and water conservation. In fact, the new report states that the economic case for land restoration is strong, with benefits averaging ten times the costs, even when looking at very different types of lands and communities of flora and fauna. A common feature of many of these success stories is major involvement by indigenous populations and local farmers.

And yet these achievements remain far short of the scope of the problem. Significant obstacles remain – including, according to the report, increasing demand for land, lack of awareness of the extent of land degradation, fragmented decision-making within and between countries, and increased costs of restoration as time goes by.

On the other hand, the report’s authors emphasise that a host of existing multilateral agreements, including conventions on desertification, climate change, biodiversity and wetlands, provide a strong platform for combating land degradation. However, whether these agreements will be successful in overcoming the obstacles mentioned above remains to be seen.




Read more:
If the world’s soils keep drying out that’s bad news for microbes (and people)


What can we do as citizens, especially those of us who live in cities and have little direct interaction with the land? The most obvious action is to eat less meat and, more generally, to inform ourselves about the sources and impacts of the food we buy – including its packaging, fuel and transport.

But the problem is not just about individual choices, important as these are. Underlying systemic causes need to be addressed, including deregulated international trading systems, lack of protection for local communities powerless to resist global market forces, ideologies of unfettered growth and perverse incentives for more consumption.

The ConversationArguably, what is needed is a broadening of the active scope of national politics, from an almost exclusive concern with short-term economic well-being to the making of global futures. Next time you meet your local representative, ask them what they are doing to protect the interests of your children and grandchildren. Or, even better, inform yourself, talk to others about it, form your own opinion about what should be done, then try to make it happen.

Abbas El-Zein, Professor of Environmental Engineering, University of Sydney

This article was originally published on The Conversation. Read the original article.

Supreme Court ruling on NZ’s largest irrigation dam proposal respects conservation law and protected land



File 20170725 5139 auwmjj
This aerial view shows the catchment of the Makaroro river, in the Ruahine Forest Park. The river was to be dammed for the Ruataniwha irrigation scheme.
Peter Scott, CC BY-ND

Christine Cheyne, Massey University

Earlier this month, New Zealand’s Supreme Court rejected a proposed land swap that would have flooded conservation land for the construction of the country’s largest irrigation dam.

The court was considering whether the Hawke’s Bay Regional Council’s investment arm could build a dam on 22 hectares of the protected Ruahine Forest Park in exchange for 170 hectares of private farm land. The proposed dam is part of the $900 million Ruataniwha water storage and irrigation scheme.

The New Zealand government’s response to the ruling was to consider a law change to make land swaps easier. Such a move flies in the face of good governance.

Natural capital vs development

The Supreme Court ruling has significant implications for the Ruataniwha dam. In addition, it asserts the importance of permanent protection of high-value conservation land.

The ecological value of the Ruahine Forest Park land was never in question. The conservation land includes indigenous forest, a unique braided river and wetlands that would have been destroyed.

The area is home to a dozen plants and animals that are classified as threatened or at risk. The developer’s ecological assessment acknowledged the destruction of ecologically significant land and water bodies. However, it argued that mitigation and offsetting would ensure that any effects of habitat loss were at an acceptable level.

The Mohaka River also flows through the Hawke’s Bay.
Christine Cheyne, CC BY-ND

Challenge to NZ’s 100% Pure brand

New Zealand’s environmental legislation states that adverse effects are to be avoided, remedied or mitigated. However, no priority is given to avoiding adverse effects. Government guidance on offsetting does not require outcomes with no net loss.

In Pathways to prosperity, policy analyst Marie Brown argues that offsetting is not always appropriate when the affected biodiversity is vulnerable and irreplaceable.

Recent public concern about declining water quality has provided significant momentum to address pollution and over-allocation to irrigation. Similarly, awareness of New Zealand’s loss of indigenous biodiversity is building.

These issues were highlighted in this year’s OECD Environmental Performance Review and a report by the Parliamentary Commissioner for the Environment on the parlous state of New Zealand’s native birds.

Both issues damage New Zealand’s 100% Pure branding and pose significant risks to tourism and the export food sector. Indigenous ecosystems are a huge draw card to surging numbers of international tourists.

Battle lines in fight for the environment

Powerful economic arguments have been put forward by business actors, both internationally and in New Zealand. For example, Pure Advantage supports protection of ecosystems and landscapes. Yet, governance mechanisms are limited.

Since 2009, environmental protection and conservation have increasingly become major battle lines as the National government doggedly pursues its business growth agenda. This favours short-term economic growth over environmental protection.

A key principle behind the Supreme Court decision is that protected conservation land cannot be traded off. It follows a High Court case in which environmental organisations argued unsuccessfully that the transfer of land was unlawful.

However, in August 2016, the Court of Appeal ruled against the Director-General of Conservation’s decision to allow the land transfer. It had been supported on the grounds that there would be a net gain to the conservation estate. The court’s ruling said that the intrinsic values of the protected land had been disregarded.

The Supreme Court has reinforced the importance of the permanent protection status recognised by the Court of Appeal.

Anticipatory governance

In response to the court’s decisions, the government argued that land swaps of protected areas should be allowed. It may seek to amend legislation to facilitate such exchanges.

The Supreme Court made reference to section 2 of the Conservation Act 1987. It defines conservation as “the preservation and protection of natural and historic resources for the purpose of maintaining their intrinsic values, providing for their appreciation and recreational enjoyment by the public, and safeguarding the options of future generations”.

Section 6 of the act states that the Department of Conservation should “promote the benefits to present and future generations of the conservation of natural and historic resources”. As such, the legislation and the department contribute to what is known as “anticipatory governance”.

Anticipatory governance is fundamental to good governance, as Jonathan Boston argues in his recent publication Safeguarding the future: governing in an uncertain world.

It requires protecting long-term public interests. Conservation of our unique ecosystems and landscapes protects their intrinsic values and the services they provide. These include tourism benefits and basic needs such as water, soil and the materials that sustain human life.

The department has correctly recognised that conservation promotes prosperity. However, long-term prosperity is quite different from the short-term exploitation associated with the government’s business growth agenda.

This promotes exploitation in the form of mining on conservation land and increased infrastructure for tourism and other industries, such as the proposed Ruataniwha dam.

The ConversationAmending the Conservation Act to allow land swaps involves a significant discounting of the future in favour of present day citizens. This is disingenuous and an affront to constitutional democracy. It would weaken one of New Zealand’s few anticipatory governance mechanisms at a time when they are needed more than ever.

Christine Cheyne, Associate Professor, Massey University

This article was originally published on The Conversation. Read the original article.

EcoCheck: can the Brigalow Belt bounce back?


Leonie Seabrook, The University of Queensland; Clive McAlpine, The University of Queensland, and Martine Maron, The University of Queensland

Our EcoCheck series takes the pulse of some of Australia’s most important ecosystems to find out if they’re in good health or on the wane.

Queensland’s Brigalow Belt is among Australia’s most significant biodiversity hotspots. Extending over an area of 36.4 million hectares from Townsville down into New South Wales, it was famously where the explorer Ludwig Leichhardt travelled, prickly pear was vanquished, and the now-extinct paradise parrot once lived.

The Brigalow Belt bioregions.
Hesperian/IBRA/Wikimedia Commons

Although the region contains diverse ecosystems, from dry vine scrub to grasslands, it is named after the species of tree that once dominated: the brigalow (Acacia harpophylla). This unusual, long-lived acacia with its dark, fissured bark and distinctive silver leaves forms dense woodlands, home to unique and threatened plants and animals.

Before clearing, brigalow-dominated ecological communities covered an estimated 7.5 million ha within the Brigalow bioregion. But those vast brigalow woodlands are no longer here.

Remnant brigalow woodland, Queensland.

Sought-after soil

Since the arrival of Europeans in the 1850s, 90% of brigalow forest has been cleared. Brigalow grows on fertile, cracking clay soils – the same soils needed for agriculture. Only 790,000 ha of brigalow ecosystems remain – just over 10% of the original extent. Sixteen out of 22 ecosystems where brigalow is the dominant or co-dominant species have less than 10% left – and even those are under threat.

Clearing of brigalow for crops and pasture began soon after European settlement. Initially, the task of turning the Brigalow into a breadbasket turned out to be more challenging than the settlers expected. Brigalow trees have a well-developed lateral root system. If the tree or roots are damaged, dense “suckers” spring up. This growth stage can last for 20-30 years and is followed by a “whipstick” stage lasting another 20-30 years before mature forest is formed.

This habit made permanent removal very difficult, as suckers can occur at a density of 20,000 stems per hectare.

Very young brigalow regrowth.

Agricultural development was also delayed by the invasion by prickly pear. Between 1901 and 1925, these spiky American cacti spread across 24 million ha of Queensland and NSW. Communities and governments despaired of being able to control this weed, but by 1932 a biological control agent, the Cactoblastis moth, had almost completely destroyed prickly pear.

It was not until the 1960s – and a “perfect storm” of mechanised land clearing, favourable government policies, scientific research into brigalow control, and a push for agricultural development – that clearing could occur on a grand scale. Once the problem was cracked, clearing rates soared. At times, rates equalled those in tropical forest regions such as the Amazon and Southeast Asia.

Legacy of loss

Today, the Brigalow Belt is a precious, but threatened, reservoir of endemic diversity. Brigalow woodland is nationally endangered, with severe consequences for the animals of the Brigalow Belt. Four species, including the paradise parrot, are extinct. Another 17 are on the threatened species list in either NSW or Queensland.

The Brigalow Belt is home to the threatened golden-tailed gecko.
Dave Fleming/Atlas of Living Australia

Remaining patches of brigalow are often modified by the removal of understorey shrubs and fallen timber. This affects habitat structure for reptiles and woodland birds in particular, reducing population sizes and encouraging aggressive competitors such as the noisy miner.

Many exotic species have been introduced, including pasture grasses. The most widespread of these is buffel grass, which has been a boon for pastoralists. Unfortunately, its invasion of remnant brigalow and contribution to fuelling bushfires has had dramatic effects on plant and animal biodiversity.

The Brigalow Belt is also home to 13 reptile species that are found only in this region, and another 14 for which the region is their main home. Eleven of the 148 reptile species found in the Brigalow Belt are threatened.

But the very suckering habit that made brigalow trees so difficult to clear in the early days may now be its salvation. Although brigalow regrowth is initially very different from old-growth woodland, if it is allowed to persist, the vegetation structure becomes more and more complex and diverse. After 30-50 years, mature regrowth can support as many bird species as old-growth woodland.

The future of the brigalow

Only 1% of the remaining brigalow woodland is in protected areas. The rest is highly fragmented, existing mainly as tiny patches, linear strips along roads and fence lines, and areas of regrowth.

Land-use change for agriculture, coal mining and coal seam gas extraction continues to nibble away at remaining brigalow ecosystems, despite protection by state and federal laws. In 2013-14, 44% of all woody vegetation clearing in Queensland occurred in the Brigalow Belt.

Legislation controlling most broadscale clearing of remnant native vegetation was introduced through the Queensland Vegetation Management Act 1999. This phased out clearing of remnant vegetation by December 2006. In 2008, recognising that the only way to recover threatened ecosystems like brigalow forest was to increase their extent, mature “high-value” regrowth of threatened ecosystems was also protected.

But in 2013 came a setback, with the introduction of the Vegetation Management Framework Amendment Act 2013, which allowed for much more vegetation clearing and removed the protections for high-value regrowth. Laws to reinstate those protections are before the Queensland Parliament.

The opportunity to recover the brigalow will not last forever. With repeated clearing, burning and cultivation, these forests could eventually disappear for good. But in those areas where some resilient regrowth remains, there is potential for recovery.

In 2009, there was an estimated 7,226 square km of regrowth, comprising a range of structures from juvenile bushes (aged 5-10 years) to almost mature stands (aged 30-50 years). This regrowth provides a promising and cost-effective way to increase habitat area for both fauna and flora, and reduce their risk of extinction.

To do this, however, we need to find ways to make retention of brigalow regrowth attractive and valuable to landholders, through stewardship schemes or carbon offsets. Only then might the Brigalow Belt bounce back.

Are you a researcher who studies an iconic Australian ecosystem and would like to give it an EcoCheck? Get in touch.

The Conversation

Leonie Seabrook, Landscape Ecologist, The University of Queensland; Clive McAlpine, Senior Research Fellow in Ecology, The University of Queensland, and Martine Maron, ARC Future Fellow and Associate Professor of Environmental Management, The University of Queensland

This article was originally published on The Conversation. Read the original article.