More livestock, more carbon dioxide, less ice: the world’s climate change progress since 2019 is (mostly) bad news


Thomas Newsome, University of Sydney; Christopher Wolf, Oregon State University, and William Ripple, Oregon State UniversityBack in 2019, more than 11,000 scientists declared a global climate emergency. They established a comprehensive set of vital signs that impact or reflect the planet’s health, such as forest loss, fossil fuel subsidies, glacier thickness, ocean acidity and surface temperature.

In a new paper published today, we show how these vital signs have changed since the original publication, including through the COVID-19 pandemic. In general, while we’ve seen lots of positive talk and commitments from some governments, our vital signs are mostly not trending in the right direction.

So, let’s look at how things have progressed since 2019, from the growing number of livestock to the meagre influence of the pandemic.

Is it all bad news?

No, thankfully. Fossil fuel divestment and fossil fuel subsidies have improved in record-setting ways, potentially signalling an economic shift to a renewable energy future.

The graph on the left shows an increase in fossil fuel divestment by 1,117 organisations based on data from 350.org, and the graph on the right shows a decrease in subsidies for fossil fuels based on the International Energy Agency subsidies database. The red lines show changes since our original publication in 2019.

However, most of the other vital signs reflect the consequences of the so far unrelenting “business as usual” approach to climate change policy worldwide.

Especially troubling is the unprecedented surge in climate-related disasters since 2019. This includes devastating flash floods in the South Kalimantan province of Indonesia, record heatwaves in the southwestern United States, extraordinary storms in India and, of course, the 2019-2020 megafires in Australia.

In addition, three main greenhouse gases — carbon dioxide, methane and nitrous oxide — set records for atmospheric concentrations in 2020 and again in 2021. In April this year, carbon dioxide concentration reached 416 parts per million, the highest monthly global average concentration ever recorded.

Time series of three climate-related responses. The red lines show changes since our original publication in 2019.

Last year was also the second hottest year in recorded history, with the five hottest years on record all occurring since 2015.

Ruminant livestock — cattle, buffalo, sheep, and goats — now number more than 4 billion, and their total mass is more than that of all humans and wild mammals combined. This is a problem because these animals are responsible for impacting biodiversity, releasing huge amounts of methane emissions, and land continues to be cleared to make room for them.

There are now more than 4 billion livestock on Earth.
Flickr

In better news, recent per capita meat production declined by about 5.7% (2.9 kilograms per person) between 2018 and 2020. But this is likely because of an outbreak of African swine fever in China that reduced the pork supply, and possibly also as one of the impacts of the pandemic.

Tragically, Brazilian Amazon annual forest loss rates increased in both 2019 and 2020. It reached a 12-year high of 1.11 million hectares deforested in 2020.

Ocean acidification is also near an all-time record. Together with heat stress from warming waters, acidification threatens the coral reefs that more than half a billion people depend on for food, tourism dollars and storm surge protection.

Map of land-ocean temperature index anomaly in June, relative to the 1951-1980 baseline.
Oregon State/NASA

What about the pandemic?

With its myriad economic interruptions, the COVID-19 pandemic had the side effect of providing some climate relief, but only of the ephemeral variety.

For example, fossil-fuel consumption has gone down since 2019 as did airline travel levels.

But all of these are expected to significantly rise as the economy reopens. While global gross domestic product dropped by 3.6% in 2020, it is projected to rebound to an all-time high.

So, a major lesson of the pandemic is that even when fossil-fuel consumption and transportation sharply decrease, it’s still insufficient to tackle climate change.

There is growing evidence we’re getting close to or have already gone beyond tipping points associated with important parts of the Earth system, including warm-water coral reefs, the Amazon rainforest and the West Antarctic and Greenland ice sheets.

Warming waters are threatening West Antarctic and Greenland ice sheets.
Flickr

OK, so what do we do about it?

In our 2019 paper, we urged six critical and interrelated steps governments — and the rest of humanity — can take to lessen the worst effects of climate change:

  1. prioritise energy efficiency, and replace fossil fuels with low-carbon renewable energy
  2. reduce emissions of short-lived pollutants such as methane and soot
  3. curb land clearing to protect and restore the Earth’s ecosystems
  4. reduce our meat consumption
  5. move away from unsustainable ideas of ever-increasing economic and resource consumption
  6. stabilise and, ideally, gradually reduce human populations while improving human well-being especially by educating girls and women globally.

These solutions still apply. But in our updated 2021 paper, we go further, highlighting the potential for a three-pronged approach for near-term policy:

  1. a globally implemented carbon price
  2. a phase-out and eventual ban of fossil fuels
  3. strategic environmental reserves to safeguard and restore natural carbon sinks and biodiversity.

A global price for carbon needs to be high enough to induce decarbonisation across industry.

And our suggestion to create strategic environmental reserves, such as forests and wetlands, reflects the need to stop treating the climate emergency as a stand-alone issue.

By stopping the unsustainable exploitation of natural habitats through, for example, creeping urbanisation, and land degradation for mining, agriculture and forestry, we can reduce animal-borne disease risks, protect carbon stocks and conserve biodiversity — all at the same time.

A kangaroo in burnt bushland
There has been a worrying number of disasters since 2019, including Australia’s megafires.
Shutterstock

Is this actually possible?

Yes, and many opportunities still exist to shift pandemic-related financial support measures into climate friendly activities. Currently, only 17% of such funds had been allocated that way worldwide, as of early March 2021. This percentage could be lifted with serious coordinated, global commitment.

Greening the economy could also address the longer term need for major transformative change to reduce emissions and, more broadly, the over-exploitation of the planet.

Our planetary vital signs make it clear we need urgent action to address climate change. With new commitments getting made by governments all over the world, we hope to see the curves in our graphs changing in the right directions soon.




Read more:
11,000 scientists warn: climate change isn’t just about temperature


The Conversation


Thomas Newsome, Academic Fellow, University of Sydney; Christopher Wolf, Postdoctoral Scholar, Oregon State University, and William Ripple, Distinguished Professor and Director, Trophic Cascades Program, Oregon State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Severe heatwaves show the need to adapt livestock management for climate



Image 20170227 27378 u8yry6
Cows don’t do well in the heat.
Shutterstock

Elisabeth Vogel, University of Melbourne; Christin Meyer, Potsdam Institute for Climate Impact Research, and Richard Eckard, University of Melbourne

Climate change and extreme weather events are already impacting our food, from meat and vegetables, right through to wine. In our series on the Climate and Food, we’re looking at what this means for the food chain. The Conversation


During the recent heatwave in New South Wales, which saw record-breaking temperatures for two days in a row, 40 dairy cows died in Shoalhaven, a city just south of Sydney.

Climate change doubled the likelihood of this kind of record-breaking heatwave. And even the higher minimum temperatures we’ve recently experienced may soon be the “new normal” for this time of the year.

Farmers that already find it difficult to make a profit will need to adapt to these changing conditions, ensuring they mitigate the effects on their livestock. This could take the form of more shade and shelter, but also the selection of different breeds to suit the conditions.

What’s happening?

Cattle are vulnerable to changes in rainfall patterns (variability and extremes), temperature (average and extremes), humidity, and evaporation. These climactic changes can affect livestock directly, and also indirectly through pasture growth, forage crop quantity and quality, the production and price of feed-grain as well as spatial changes in disease and pest distribution.

The greatest risks stem from extreme events such as heatwaves and droughts, as they are less predictable and much more difficult to adapt to than gradual changes.

Dairy cows are particularly affected by heatwaves, which can not only reduce milk production, but, as the NSW heatwave illustrated, cause illness or death. Further, the effects on milk production and the protein content of the milk can last for several weeks.

Similar to humans, instances of high relative air humidity and little wind worsen the negative effects of high temperatures on livestock. When this occurs, the animals cannot easily offload excess heat through transpiration. This is compounded when there is little or no cloud cover, as the cattle are exposed to more solar radiation.

Milk production is also impacted by night-time temperatures and the timing of the heatwave. When night-time temperatures are high, cows cannot offload excess heat. If a heatwave occurs after the cows’ peak of lactation, milk production is less likely to recover and the impact is even worse.

The response of cattle to heat stress also depends on the breed. This can differ as a result of, among other things, differences in metabolic rate, sweating rate, coat texture and colour. Researchers have even identified a “slick hair gene”, responsible for producing cattle with shorter, slicker hair that reduces their vulnerability to direct radiative heat. The full benefits of the slick gene still require more research as a strategy for animals to cope in future climates.

Sheep are generally less affected by high temperatures than dairy cows. However, heatwaves with temperatures beyond 40℃ can cause heat stress. Hot days may have short-term impacts on rams’ fertility, and recently shorn sheep are at risk of sunburn if they are exposed to direct sunlight.

Factors that are unique to each individual animal, such as previous heat exposure and overall health and age, also play a role in how vulnerable they are to heat.

Mitigation

In the short run, farmers can mitigate the worst of these issues by providing high-quality water and shade (such as from trees, buildings, and shade cloth) in the heat, warm shelter in the cold, and by adjusting feed. During heatwaves, farmers can also adjust milking procedures and milk their cows very early in the morning or late at night. To provide immediate cooling they can also use sprinklers or misting systems. But care is needed to avoid simply increasing humidity around the animals.

Mitigation can be as simple as providing a bit of shade.
Shutterstock

A more long-term option is to selectively choose breeds that are better adapted to higher temperatures (such as breeds with lighter coat colour or Bos indicus types or crosses). Unfortunately, breeds adapted to warmer climates, such as the Brahman, tend not to be high milk producers or to do as well in feedlots as the traditional British beef breeds, so there will be a hit to productivity.

As the impact of climate change isn’t solely on the animals themselves, farmers will also have to adjust their work patterns and other aspects of their operations. To cope with heat, farmers themselves may need to consider working more during the cooler hours of the day. Farming both crops and livestock together can also provide a buffer against the impact of an extreme event. The combined production of wheat and wool is a typical example of spreading of risk on farm.

But for these strategies to really be effective, farmers need more information.

This includes accurate and timely forecasts of weather (temperature, rainfall, solar radiation) and heat (such as the temperature humidity index, THI) at daily, weekly and seasonal scales. Armed with this data, farmers and livestock managers can effectively plan and implement protection measures ahead of time.

A wide range of agricultural, climate and weather services exist. For example, the Bureau of Meteorology weather forecasts, seasonal outlooks of rainfall and temperature, and the current water balance and soil moisture information. There’s also the the Cool Cows website, the Dairy Forecast Service and the Cattle heat load toolbox.

We also need more research into improving our understanding of the climate system, to develop risk management plans for industries by regions, and more accurate and reliable forecasts, so that farmers and livestock managers can make management decisions and ensure the wellbeing of themselves and their animals.

Elisabeth Vogel, PhD Student, University of Melbourne; Christin Meyer, PhD student, Potsdam Institute for Climate Impact Research, and Richard Eckard, Professor & Director, Primary Industries Climate Challenges Centre, University of Melbourne

This article was originally published on The Conversation. Read the original article.

CROCODILE ATTACK: TRAPPING BEGINS NEAR COOKTOWN


The body of Vietnam veteran Arthur Booker, of Logan, Queensland, has still not been found following a suspected crocodile attack earlier this week. It is thought that Booker was taken by a large crocodile while checking crab traps along the Endeavour River near Cooktown on Tuesday. All that has been found in the search for the missing 62-year-old man has been his footwear and watch.

The search for Booker has now entered a new stage with police suspending their search of the river. Queensland Environmental Protection Officers (EPA) have now begun to lay crocodile traps in the area so that crocodiles can be examined for remains without harming or killing them.

The investigation into the disappearance of Arthur Booker has yet to determine if he was in fact taken by a crocodile, although this remains the most likely scenario.  There are a number of large crocodiles inhabiting the area, including the 6m ‘Charlie.’

Charlie is known to be responsible for the loss of pet dogs, livestock, eating a 3.5m crocodile and was once seen taking a horse.

The probable crocodile attack has once again brought the call for crocodile culling back into the public arena. At the moment any thought of culling by officials has been dismissed.

BELOW: Footage reporting the disappearance of Arthur Booker