We have the blueprint for liveable, low-carbon cities. We just need to use it



Increasing heat in Sydney and other Australian cities highlights the urgent need to apply our knowledge of how to create liveable low-carbon cities.
Taras Vyshnya/Shutterstock

Deo Prasad, UNSW

Over the past seven years more than 100 research projects at the Co-operative Research Centre for Low Carbon Living, in collaboration with industry across Australia, have pondered a very big question: How do we build future cities that are sustainable, liveable and affordable?

This is exactly what Australians want, as the recent Greater Sydney Commission report, The Pulse of Greater Sydney, revealed. People want cities in which they live close to jobs and have reasonable commuting times. They want access to parks and green space, and relief from ever-increasing urban heat.




Read more:
If we want liveable cities in 2060 we’ll have to work together to transform urban systems


The good news is we already know what it will take to deliver on much of this wish list. Since 2012, I have headed the A$100 million Low Carbon Living CRC, which has brought together Australian businesses, industries, communities and many of our brightest researchers to work out how to steer change.

Our Cooling Sydney Strategy, for instance, is the result of years of research into how to combat urban heatwaves. The burden of this heat is unevenly spread across our cities.

For example, residents of Sydney’s western suburbs are exposed to many more days hotter than 35 degrees than Sydneysiders living in the CBD and the city’s north. Last summer that meant over a month’s worth of intense heat in the suburb of Penrith, including nine days in a row above 35°C.




Read more:
Building cool cities for a hot future


While the recent winter sun might feel welcome, the negative impacts of increasingly hot cities on our health, lifestyle and energy use greatly outweigh any winter comfort.

So what are the solutions?

Our researchers have already found how we can offset increasing heat. The strategies includes cool and permeable pavements, water features and evaporative cooling, shade structures, vertical gardens, street trees and other plants – even special heat refuge stations.

Keeping cool inside, without huge power bills, is possible too. During last summer’s heatwave, our pilot 10-star energy-efficient house in Perth remained a comfortable 24°C inside, without air conditioning, when it was over 40°C outside. The exceptional thermal performance of the house was down to its evidence-based design.

Josh Byrne explains how his house keeps temperatures comfortable year-round with low energy use and no net emissions.



Read more:
When the heat is on, we need city-wide plans to keep cool


This work is just one part of our wider remit. Our UNSW-based centre is on track to deliver independently verified cuts of 10 megatonnes of carbon emissions generated by Australia’s built environment by 2020. By integrating renewable energy systems, smart technologies, low-carbon materials and people-centred design into buildings and urban precincts, we have developed a sustainable, liveable and affordable urban blueprint for Australia. A PwC study (yet to be released) estimated cumulative economic benefits totalling A$684 million by 2027.

To put this another way, we have identified and verified evidence-based pathways to cut emissions equivalent to taking some 2.1 million cars off the road.




Read more:
Cutting cities’ emissions does have economic benefits – and these ultimately outweigh the costs


Some of the progress to date is not immediately obvious to the casual observer. Take an otherwise unremarkable stretch of road along the back way to Sydney Airport. Recently, a 30-metre section of concrete was installed, which looks more like an ad hoc road repair than an important scientific pilot study.

Bu 15 metres is paved with a new geopolymer concrete that slashes greenhouse gas emissions by 50%. The other 15 metres is conventional concrete, the most widely used man-made material on the planet. Concrete production, using cement as its binder, accounts for about 8% of all global emissions.

The geopolymer concrete developed through our research centre is a similarly high-performance product but its binder safely incorporates otherwise noxious industrial waste streams, such as fly ash from coal-fired power stations and slag from blast furnaces. Australia has stockpiled about 400 million tonnes of waste from coal-fired power generation and steelmaking.

In Alexandria, in collaboration with the City of Sydney, we are testing this low-carbon concrete as a road surface that could help clean up industrial waste while slashing emissions. Working with NSW Ports, we’ve also shaped it into low-carbon bollards to form a breakwater to protect the coastline at Port Kembla from extreme weather.

Waste from coal-fired power stations has been used to make low-carbon bollards to protect the coastline at Port Kembla.

We now have the know-how to do better

There are many such success stories, but with 150 CRC Low Carbon Living projects the list is too long to detail. What’s more important, as our funding period comes to an end and Australia loses its only innovation hub committed to lowering carbon in the built environment, is to note how we got to where we are today.

The federal government’s Co-operative Research Centre program fosters co-operation and collaboration on a grand scale. Industries, businesses, government organisations and communities with a stake in solving big, complex challenges partner with researchers from a wide range of academic fields. This structure brings together sectors and people whose paths might otherwise rarely cross.

The cross-fertilisation of ideas, expertise and skills delivers innovative solutions. Research worldwide has consistently shown that collaboration drives innovation, and that innovation drives economic growth. Our experience confirms that as we partnered with organisations such as Multiplex, AECOM, BlueScope Steel, Sydney Water, ISCA, CSIRO and the United Nations Environment Program.

Cities are complex, exciting beasts, but we have the knowledge and expertise to live better, more comfortable urban lives in Australia while reducing demand for energy, water and materials. That is, we have the blueprint for low-carbon urban living. We must now choose to use it.


This article has been updated to correct the number of CRC Low Carbon Living projects to 150 and the amount of stockpiled waste from coal-fired power generation and steelmaking to 400 million tonnes.The Conversation

Deo Prasad, Scientia Professor and CEO, Co-operative Research Centre for Low Carbon Living, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

The science is clear: we have to start creating our low-carbon future today


Alan Finkel, Office of the Chief Scientist

This week’s release of the special report from the Intergovernmental Panel on Climate Change (IPCC) has put scientific evidence on the front page of the world’s newspapers.

As Australia’s Chief Scientist, I hope it will be recognised as a tremendous validation of the work that scientists do.

The people of the world, speaking through their governments, requested this report to quantify the impacts of warming by 1.5℃ and what steps might be taken to limit it. They asked for the clearest possible picture of the consequences and feasible solutions.




Read more:
The UN’s 1.5°C special climate report at a glance


It is not my intention in this article to offer a detailed commentary on the IPCC’s findings. I commend the many scientists with expertise in climate systems who have helped Australians to understand the messages of this report.

My purpose is to urge all decision-makers – in government, industry and the community – to listen to the science.

Focus on the goal

It would be possible for the public to take from this week’s headlines an overwhelming sense of despair.

The message I take is that we do not have time for fatalism.

We have to look squarely at the goal of a zero-emissions planet, then work out how to get there while maximising our economic growth. It requires an orderly transition, and that transition will have to be managed over several decades.

That is why my review of the National Electricity Market called for a whole-of-economy emissions reduction strategy for 2050, to be in place by the end of 2020.




Read more:
The Finkel Review at a glance


We have to be upfront with the community about the magnitude of the task. In a word, it is huge.

Many of the technologies in the IPCC’s most optimistic scenarios are at an early stage, or conceptual. Two that stand out in that category are:

  • carbon dioxide removal (CDR): large-scale technologies to remove carbon dioxide from the atmosphere.

  • carbon capture and sequestration (CCS): technology to capture and store carbon dioxide from electricity generation.

It will take a decade or more for these technologies to be developed to the point at which they have proven impact, then more decades to be widely deployed.

The IPCC’s pathways for rapid emissions reduction also include a substantial role for behavioural change. Behavioural change is with us always, but it is incremental.

Driving change of this magnitude, across all societies, in fundamental matters like the homes we build and the foods we eat, will only succeed if we give it time – and avoid the inevitable backlash from pushing too fast.

The IPCC has made it clear that the level of emissions reduction we can achieve in the next decade will be crucial. So we cannot afford to wait.

Many options

No option should be ruled off the table without rigorous consideration.

In that context, the Finkel Review pointed to a crucial role for natural gas, particularly in the next vital decade, as we scale up renewable energy.

The IPCC has made the same point, not just for Australia but for the world.

The question should not be “renewables or coal”. The focus should be on atmospheric greenhouse emissions. This is the outcome that matters.

Denying ourselves options makes it harder, not easier, to get to the goal.

There also has to be serious consideration of other options modelled by the IPCC, including biofuels, catchment hydroelectricity, and nuclear power.

My own focus in recent months has been on the potential for clean hydrogen, the newest entrant to the world’s energy markets.




Read more:
How hydrogen power can help us cut emissions, boost exports, and even drive further between refills


In future, I expect hydrogen to be used as an alternative to fossil fuels to power long-distance travel for cars, trucks, trains and ships; for heating buildings; for electricity storage; and, in some countries, for electricity generation.

We have in Australia the abundant resources required to produce clean hydrogen for the global market at a competitive price, on either of the two viable pathways: splitting water using solar and wind electricity, or deriving hydrogen from natural gas and coal in combination with carbon capture and sequestration.

Building an export hydrogen industry will be a major undertaking. But it will also bring jobs and infrastructure development, largely in regional communities, for decades.

So the scale of the task is all the more reason to press on today – at the same time as we press on with mining lithium for batteries, clearing the path for electric vehicles, planning more carbon-efficient cities, and so much more.

There are no easy answers. I hope, through this and other reports, there are newly determined people ready to contribute to the global good.The Conversation

Alan Finkel, Australia’s Chief Scientist, Office of the Chief Scientist

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia: New South Wales – Sydney


The link below is to a media release from Origin Energy concerning an agreement with the City of Sydney to develop low-carbon electricity generation for the city.

For more, visit:
http://www.originenergy.com.au/news/article/asxmedia-releases/1380