Satellites reveal melting of rocks under volcanic zone, deep in Earth’s mantle

File 20170705 9733 ityqvm
Mount Ngauruhoe, in the foreground, and Mount Ruapehu are two of the active volcanoes in the Taupo volcanic zone.
Guillaume Piolle/Wikimedia Commons, CC BY-ND

Simon Lamb, Victoria University of Wellington and Timothy Stern, Victoria University of Wellington

Volcanoes erupt when magma rises through cracks in the Earth’s crust, but the exact processes that lead to the melting of rocks in the Earth’s mantle below are difficult to study.

In our paper, published today in the journal Nature, we show how it is possible to use satellite measurements of movements of the Earth’s surface to observe the melting process deep below New Zealand’s central North Island, one of the world’s most active volcanic regions.

Rifting in the Taupo volcanic zone

The solid outer layer of the Earth is known as the crust, and this overlies the Earth’s mantle. But these layers are not fixed. They are broken up into tectonic plates that slowly move relative to each other.

It is along the boundaries of the tectonic plates that most of the geological action at the Earth’s surface occurs, such as earthquakes, volcanic activity and mountain building. This makes New Zealand a particularly dynamic place, geologically speaking, because it straddles the boundary between the Australian and Pacific plates.

The central region of the North Island is known as the Taupo volcanic zone, or TVZ. It is named after Lake Taupo, the flooded crater of the region’s largest volcano, and it has been active for two million years. Several volcanoes continue to erupt regularly.

The TVZ is the southern tip of a zone of expansion, or rifting, in the Earth’s crust that extends offshore for thousands of kilometres, all the way north in the Pacific Ocean to Tonga. Offshore, this takes place through sea floor spreading in the Havre Trough, creating both new oceanic crust and a narrow sliver of a plate right along the edge of the Australian tectonic plate. Surprisingly, this spreading is going on at the same time as the adjacent Pacific tectonic plate is sliding beneath the Australian plate in a subduction zone, triggering some of the major earthquakes in the region.

Sea floor spreading results in melting of the Earth’s mantle, but it is very difficult to observe this process directly in the deep ocean. However, sea floor spreading in the Havre Trough transitions abruptly onshore into the volcanic activity in the TVZ. This provides an opportunity to observe the melting in the Earth’s mantle on land.

Lake Taupo is the caldera of the region’s largest volcano.
NASA/Wikimedia Commons, CC BY-ND

In general, volcanic activity happens whenever there is molten rock at depth, and therefore the volcanism in the North Island indicates vast volumes of molten rock beneath the surface. However, it has been a tricky problem to understand exactly what is causing the melting in the first place, because the underlying rocks are buried by thick layers of volcanic material.

We have tackled this problem using data from Global Positioning System (GPS) sensors, some of which form part of New Zealand’s GeoNet network and some that have been used in measurement campaigns since 1995. The sensors measure horizontal and vertical shifts in the Earth’s surface to millimetre precision, and our research is based on data collected over the past two decades.

Bending of the earth’s surface

The GPS measurements in the Taupo volcanic zone reveal that it is widening east-west at a rate of 6-15 millimetres per year – in other words, the region, overall, is expanding, as we anticipated from our previous geological understanding. But it was surprising to discover that, at least for the past 15 years, a roughly 70-kilometre stretch is undergoing strong horizontal contraction and is also rapidly subsiding, quite the opposite of what one might anticipate.

Also unexpectedly, the contracting zone is surrounded by regions that are expanding, but also uplifting. Trying to make sense of these observations turned out to be the key to our new insight into the process of melting beneath the TVZ.

We found that the pattern of contraction and subsidence, together with expansion and uplift, in the context of the overall rifting of the TVZ, could be explained by a simple model that involves the bending and curving of an elastic upper crust, pulled downwards or pushed upwards by an underlying vertical driving force. The size of the region that is behaving like this, extending for about 100 kilometres in width and 200 kilometres in length, requires this force to originate nearly 20 kilometres underground, in the Earth’s mantle.

This diagram illustrates a patch of suction stress along the axis of the underlying upwelling mantle flow beneath the Taupo volcanic zone.
Simon Lamb, CC BY-ND

Melting the mantle

When tectonic plates drift apart on the sea floor, the underlying mantle rises up to fill the gap. This upwelling triggers melting, and the reason for this is that hot, but solid, mantle rocks undergo a reduction in pressure as they move upwards and closer to the Earth’s surface. This drop in pressure, rather than a change in temperature, begins the melting of the mantle.

But there is another property of this upwelling mantle flow, because it also creates a suction force that pulls down the overlying crust. This force comes about because as part of the flow, the rocks have to effectively “turn a corner” near the surface from a predominantly vertical flow to a predominantly horizontal one.

It turns out that the strength of this force depends on how stiff or sticky the mantle rocks are, measured in terms of viscosity (it is difficult to drive the flow of highly viscous or sticky fluids, but easy in runny ones).

Experimental studies have shown that the viscosity of rocks deep in the Earth is very sensitive to how much molten material they contain, and we propose that changes in the amount of melt provide a powerful mechanism to change the viscosity of the upwelling mantle. If mantle rocks don’t contain much melt, they will be much stickier, causing the overlying crust to be pulled down rapidly. If the rocks have just melted, then this makes the flow of the rocks runnier, allowing the overlying crust to spring back up again.

We also know that the movements that we observe at the surface with GPS must be relatively short lived, geologically speaking, lasting for no more than a few hundred or few thousand years. Otherwise they would result in profound changes to the landscape and we have no evidence for that.

Using GPS, we can not only measure the strength of the suction force, but we can “see” where, for how long, and by how much the underlying mantle is melting. This melt will eventually rise up through the crust to feed the overlying volcanoes.

This research helps us to understand how volcanic systems work on a variety of time scales, from human to geological. In fact, it may be that the GPS measurements made over just the last two decades have captured a change in the amount of mantle melt at depth, which could herald the onset of increased volcanic activity and associated risk in the future. But we don’t have measurements over a long enough time period yet to make any confident predictions.

The ConversationThe key point here is, nevertheless, that we have entered a new era whereby satellite measurements can be used to probe activity 20 kilometres beneath the Earth’s surface.

Simon Lamb, Associate Professor in Geophysics, Victoria University of Wellington and Timothy Stern, Professor of Geophysics, Victoria University of Wellington

This article was originally published on The Conversation. Read the original article.

Volcanoes under the ice: melting Antarctic ice could fight climate change

File 20170615 24988 wlh6r4
Furious winds keep the McMurdo Dry Valleys in Anarctica free of snow and ice. Calcites found in the valleys have revealed the secrets of ancient subglacial volcanoes.
Stuart Rankin/Flickr, CC BY-NC

Silvia Frisia, University of Newcastle

Iron is not commonly famous for its role as a micronutrient for tiny organisms dwelling in the cold waters of polar oceans. But iron feeds plankton, which in turn hold carbon dioxide in their bodies. When they die, the creatures sink to the bottom of the sea, safely storing that carbon.

How exactly the iron gets to the Southern Ocean is hotly debated, but we do know that during the last ice age huge amounts of carbon were stored at the bottom of the Southern Ocean. Understanding how carbon comes to be stored in the depth of the oceans could help abate CO2 in the atmosphere, and Antarctica has a powerful role.

Icebergs and atmospheric dust are believed to have been the major sources of this micronutrient in the past. However, in research published in Nature Communications, my colleagues and I examined calcite crusts from Antarctica, and found that volcanoes under its glaciers were vital in delivering iron to the ocean during the last ice age.

Today, glacial meltwaters from Greenland and the Antarctic peninsula supply iron both in solution and as tiny particles (less than 0.0001mm in diameter), which are readily consumed by plankton. Where glaciers meet bedrock, minute organisms can live in pockets of relatively warm water. They are able to extract “food” from the rock, and in doing so release iron, which then can be carried by underwater rivers to the sea.

Volcanic eruptions under the ice can create underwater subglacial lakes, which, at times, discharge downstream large masses of water that travel to the ice margin and beyond, carrying with them iron in particle and in solution.

The role of melting ice in climate change is as yet poorly understood. It’s particularly pertinent as scientists predict the imminent collapse of part of the Larsen C ice shelf.

Researchers are also investigating how to reproduce natural iron fertilisation in the Southern Ocean and induce algal blooms. By interrogating the volcanic archive, we learn more about the effect that iron fertilisation from meltwater has on global temperatures.

A polished wafer of the subglacial calcites. The translucent, crystalline layers formed while in pockets of water, providing nourishment to microbes. The opaque calcite with rock fragments documents a period when waters discharged from a subglacial lake formed by a volcanic eruption, carrying away both iron in solution and particles of iron.

The Last Glacial Maximum

During the Last Glacial Maximum, a period 27,000 to 17,000 years ago when glaciers were at their greatest extent worldwide, the amount of CO2 in the atmosphere was lowered to 180 parts per million (ppm) relative to pre-industrial levels (280 ppm).

Today we are at 400 ppm and, if current warming trends continue, a point of no return will be reached. The global temperature system will return to the age of the dinosaurs, when there was little difference in temperature from the equator to the poles.

If we are interested in providing a habitable planet for our descendants, we need to mitigate the quantity of carbon in the atmosphere. Blooms of plankton in the Southern Ocean boosted by iron fertilisation were one important ingredient in lowering CO2 in the Last Glacial Maximum, and they could help us today.

The Last Glacial Maximum had winds that spread dust from deserts and icebergs carrying small particles into the Southern Ocean, providing the necessary iron for algal blooms. These extreme conditions don’t exist today.

Hidden volcanoes

Neither dust nor icebergs alone, however, explain bursts of productivity recorded in ocean sediments in the Last Glacial Maximum. There was another ingredient, only discovered in rare archives of subglacial processes that could be precisely dated to the Last Glacial Maximum.

Loss of ice in Antartica’s Dry Valleys uncovered rusty-red crusts of calcite plastered on glacially polished rocks. The calcites have tiny layers that can be precisely dated by radiometric techniques.

A piece of subglacial calcite coating pebbles. This suggests that the current transporting the pebbles was quite fast, like a mountain stream. The pebbles were deposited at the same time as the opaque layer in the calcite formed.

Each layer preserves in its chemistry and DNA a record of processes that contributed to delivering iron to the Southern Ocean. For example, fluorine-rich spherules indicate that underwater vents created by volcanic activity injected a rich mixture of minerals into the subglacial environment. This was confirmed by DNA data, revealing a thriving community of thermophiles – microorganisms that live in very hot water only.

Then, it became plausible to hypothesise that volcanic eruptions occurred subglacially and formed a subglacial lake, whose waters ran into an interconnected system of channels, ultimately reaching the ice margin. Meltwater drained iron from pockets created where ice met bedrock, which then reached the ocean – thus inducing algal blooms.

We dated this drainage activity to a period when dust flux does not match ocean productivity. Thus, our study indicates that volcanoes in Antarctica had a role in delivering iron to the Southern Ocean, and potentially contributed to lowering CO2 levels in the atmosphere.

The ConversationOur research helps explain how volcanoes act on climate change. But it also uncovers more about iron fertilisation as a possible way to mitigate global warming.

Silvia Frisia, Associate Professor, School of Environmental and Life Sciences , University of Newcastle

This article was originally published on The Conversation. Read the original article.

Tipping point: how we predict when Antarctica’s melting ice sheets will flood the seas

Felicity Graham, University of Tasmania; David Gwyther, University of Tasmania; Lenneke Jong, University of Tasmania, and Sue Cook, University of Tasmania

Antarctica is already feeling the heat of climate change, with rapid melting and retreat of glaciers over recent decades.

Ice mass loss from Antarctica and Greenland contributes about 20% to the current rate of global sea level rise. This ice loss is projected to increase over the coming century.

A recent article on The Conversation raised the concept of “climate tipping points”: thresholds in the climate system that, once breached, lead to substantial and irreversible change.

Such a climate tipping point may occur as a result of the increasingly rapid decline of the Antarctic ice sheets, leading to a rapid rise in sea levels. But what is this threshold? And when will we reach it?

What does the tipping point look like?

The Antarctic ice sheet is a large mass of ice, up to 4 km thick in some places, and is grounded on bedrock. Ice generally flows from the interior of the continent towards the margins, speeding up as it goes.

Where the ice sheet meets the ocean, large sections of connected ice – ice shelves – begin to float. These eventually melt from the base or calve off as icebergs. The whole sheet is replenished by accumulating snowfall.

Emperor penguins at sunrise.
David Gwyther

Floating ice shelves act like a cork in a wine bottle, slowing down the ice sheet as it flows towards the oceans. If ice shelves are removed from the system, the ice sheet will rapidly accelerate towards the ocean, bringing about further ice mass loss.

A tipping point occurs if too much of the ice shelf is lost. In some glaciers, this may spark irreversible retreat.

Where is the tipping point?

One way to identify a tipping point involves figuring out how much shelf ice Antarctica can lose, and from where, without changing the overall ice flow substantially.

A recent study found that 13.4% of Antarctic shelf ice – distributed regionally across the continent – does not play an active role in ice flow. But if this “safety band” were removed, it would result in significant acceleration of the ice sheet.

The Totten Glacier calving front.
Esmee van Wijk/CSIRO

Antarctic ice shelves have been thinning at an overall rate of about 300 cubic km per year between 2003 and 2012 and are projected to thin even further over the 21st century. This thinning will move Antarctic ice shelves towards a tipping point, where irreversible collapse of the ice shelf and increase in sea levels may follow.

How do we predict when will it happen?

Some areas of West Antarctica may be already close to the tipping point. For example, ice shelves along the coast of the Amundsen and Bellingshausen Seas are the most rapidly thinning and have the smallest “safety bands” of all Antarctic ice shelves.

To predict when the “safety band” of ice might be lost, we need to project changes into the future. This requires better understanding of processes that remove ice from the ice sheet, such as melting at the base of ice shelves and iceberg calving.

Melting beneath ice shelves is the main source of Antarctic ice loss. It is driven by contact between warmer sea waters and the underside of ice shelves.

To figure out how much ice will be lost in the future requires knowledge of how quickly the oceans are warming, where these warmer waters will flow, and the role of the atmosphere in modulating these interactions. That’s a complex task that requires computer modelling.

Predicting how quickly ice shelves break up and form icebergs is less well understood and is currently one of the biggest uncertainties in future Antarctic mass loss. Much of the ice lost when icebergs calve occurs in the sporadic release of extremely large icebergs, which can be tens or even hundreds of kilometres across.

It is difficult to predict precisely when and how often large icebergs will break off. Models that can reproduce this behaviour are still being developed.

Scientists are actively researching these areas by developing models of ice sheets and oceans, as well as studying the processes that drive mass loss from Antarctica. These investigations need to combine long-term observations with models: model simulations can then be evaluated and improved, making the science stronger.

The link between ice sheets, oceans, sea ice and atmosphere is one of the least understood, but most important factors in Antarctica’s tipping point. Understanding it better will help us project how much sea levels will rise, and ultimately how we can adapt.

The Conversation

Felicity Graham, Ice Sheet Modeller, Antarctic Gateway Partnership, University of Tasmania; David Gwyther, Antarctic Coastal Ocean Modeller, University of Tasmania; Lenneke Jong, Cryosphere System Modeller, Antarctic Gateway Partnership & Antarctic Climate and Ecosystems CRC, University of Tasmania, and Sue Cook, Ice Shelf Glaciologist, Antarctic Climate and Ecosystems CRC, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Melting Antarctic ice sheets and sea level rise: a warning from the future

Andrew Glikson, Australian National University

The remote location of the Antarctic and Greenland polar ice sheets may leave us with the impression that developments in these regions have little effect on the climate and life in the temperate zones of the Earth, where most of us live. We may therefore be forgiven for asking why should we care when these changes are projected to unfold over tens to hundreds of years.

However, the stability of the polar regions is critical for maintaining a planet with the conditions that allowed the emergence of humans, agriculture and civilisation, as well as many other species. The polar ice sheets serve as “thermostats” of global temperatures from which cold air and cold ocean currents emanate, moderating the effects of solar radiation. The ice sheets regulate sea levels, store volumes of ice whose melting would raise sea level by up to 61 metres.

Unfortunately, what’s happening with the polar ice sheets now ought to warn humanity of what is to come.

For example, a recent paper suggested that melting Antarctic ice sheets could lead to 0.6-3.0 m of sea level rise by the year 2300. This is based on modelling of greenhouse gas emissions out to 2300.

If greenhouse gas emissions continue unchecked, the world may warm by 8–10℃ by 2300. Such a temperature rise could raise sea levels by tens of meters over hundreds of years.

The recent paper only looked at sea level rise from melting Antarctic ice sheets and does not take into account sea level rise contributions from the Greenland ice sheet (currently about 280 billion tonnes per year), which would more than double the Antarctic contribution.

Antarctic warming: Red represents areas where temperatures have increased the most during the last 50 years, particularly in West Antarctica.

Peering into the past to see the future

Much of the discussion in the paper and related papers appears to assume linear global warming – that is, little change to the rate of warming over time.

Little mention is made of feedbacks which could increase the rate of warming. Such feedbacks could arise from reducing albedo, where solar radiation usually strongly reflected by ice is replaced by strong absorption by water.

Other feedback processes associated with warming include methane release from permafrost and bogs; loss of vegetation; and fires.

In a recent article, former NASA climate scientist James Hansen and a large group of climate scientists point to observations arising from detailed studies of the recent history of the atmosphere-ocean-ice sheet system.

The climate records of the past — specifically, the Holocene (from about 10,000 years ago) and the Eemian interglacial period (about 115,000 to 130,000 years ago) — are closely relevant to future climate projections. These records include evidence for rapid disintegration of ice sheets in contact with the oceans as a result of feedback processes resulting in sea level rise to 5-9 m above current levels. All this during a period when mean global temperatures were near to only 1℃ above pre-industrial temperatures.

Sea levels reflect the overall global temperature and thus of global climate conditions. As shown by the position of the circles in the chart below, the ratio of sea level rise (SL) to temperature rise (TR) during the glacial-interglacial cycles was approximately between 10-15 metres per 1℃.

Plots of Temperature rise (relative to the pre-industrial age) vs relative sea level rise in (meters).

By contrast from around 1800 to the present sea level rose by an approximate ratio of 0.2-0.3 m per 1℃. This suggests significant further rise towards an equilibrium state between sea level and temperature. Thus, the points in the right-hand circle represent long-term temprature-sea level equilibria in the past while points in the left-hand circle represent where we’re at now, namely at an incipient stage moving toward future temprature-sea level equilibrium.

Why should long term climate change matter?

Due to the extreme rate of CO₂ and temperature rise during the 20th century relative to earlier events and the non-linearity of climate change trends the timing of sea level rise may be difficult to estimate.

Even on conservative estimates, current global warming is bound to have major consequences for human civilisation and for nature, as follows:

  • Further melting of the ice sheets will destroy the climate conditions which allowed agriculture and the rise of civilisation in the first place.

  • The lower parts of the world’s great rivers (Po, Rhine, Nile, Ganges, Indus, Mekong, Yellow, Mississippi, Amazon), where more than 3 billion people live and the bulk of agriculture and industry are located, sit no more than a few metres above sea level.

  • Further melting of the Antarctic and Greenland ice sheets can only result in sea level rises on the scale of tens of metres, changing the continent-ocean map of Earth.

Global temperatures have already risen 0.9℃ and continental temperatures 1.5℃ degrees above pre-industrial levels. If we account for the cooling effect of sulphur aerosols from industrial pollution, greenhouse gases have already contributed 2℃ of global warming. The current rate of global warming, faster than any observed in the geological record, is already having a major effect in many parts of the world in terms of droughts, fires, and storms.

According to James Hansen burning all the fossil fuels on Earth would result in warming of 20℃ over land areas and a staggering 30℃ at the poles, making “most of the planet uninhabitable by humans”.

In 2009 Joachim Hans Schellnhuber, Director of the Potsdam Climate Impacts Institute and Climate Advisor to the German Government, stated: “We’re simply talking about the very life support system of this planet”, constituting one of the most critical warnings science has ever issued to our species.

Mitigation plans proposed by governments would slow down the rate of carbon emissions but continuing emissions as well as feedbacks from ice melt, warming oceans, methane release and fires would continue to push temperatures upwards.

An effective technology required for global cooling efforts, if technically possible, would require investment on a scale not less than the trillions of dollars currently poured into armaments and war in the name of defence (more than $1.6 trillion in 2014).

Which planet do current decision makers think we are living on?

The Conversation

Andrew Glikson, Earth and paleo-climate scientist, Australian National University

This article was originally published on The Conversation. Read the original article.

How the melting Arctic could spread invasive species far and wide


After 300 years of fruitless (and sometimes deadly) attempts to find the fabled Northwest Passage, a sea route to connect the Atlantic and Pacific oceans via the Arctic, global warming’s shown up all those hard-man sailors by suddenly making the journey easy. In 2007, higher temperatures had melted enough of that pesky Arctic ice to open the passage up to non-icebreaking vessels for the very first time, and since then the ice has only continued to melt — meaning more and more shippers will be using this efficient trade route.

But what’s good news for shippers is not necessarily good news for the rest of us: More vessels taking the northern course is also projected to spread harmful invasive species.

The Northwest PassageNASAThe Northwest Passage

“What’s happening now is that ships move between oceans by going through the Panama or Suez [canals], but that means ships from higher latitudes have to divert south into…

View original post 262 more words

The West Antarctic glaciers are breaking up with us


It’s Monday, and you probably wanted to ease into the week with a post about cute animals or something. Instead, today scientists broke the news that the West Antarctic ice sheet is now in irreversible collapse, meaning a likely 10 to 15 foot global sea-level rise in coming centuries.

Before you get cranking on that ark (maybe you can have those cute animals after all!), let’s take a deep breath. There’s still uncertainty about how cataclysmic this particular cataclysm is. New York Times blogger Andy Revkin points out that “collapse” is a relative term in geological affairs. Both sets of researchers behind the two separate studies, upcoming in the journals Science and Geophysical Research Letters, agree that we could have a good century or two of continued incremental rise before the melt starts to really speed up. It might take anywhere between 200 and 1,000 years before the ice in…

View original post 484 more words