You may have heard the ‘moon wobble’ will intensify coastal floods. Well, here’s what that means for Australia


Shutterstock

Mark Gibbs, Australian Institute of Marine ScienceExtreme floods this month have been crippling cities worldwide. This week in China’s Henan province, a year’s worth of rain fell in just three days. Last week, catastrophic floods swept across western Germany and parts of Belgium. And at home, rain fell in Perth for 17 days straight, making it the city’s wettest July in 20 years.

But torrential rain isn’t the only cause of floods. Many coastal towns and cities in Australia would already be familiar with what are known as “nuisance” floods, which occur during some high tides.

A recent study from NASA and the University of Hawaii suggests even nuisance floods are set to get worse in the mid-2030s as the moon’s orbit begins another phase, combined with rising sea levels from climate change.

The study was conducted in the US. But what do its findings mean for the vast lengths of coastlines in Australia and the people who live there?

A triple whammy

We know average sea levels are rising from climate change, and we know small rises in average sea levels amplify flooding during storms. From the perspective of coastal communities, it’s not if a major flood will occur, it’s when the next one will arrive, and the next one after that.

But we know from historical and paleontological records of flooding events that in many, if not most, cases the coastal flooding we’ve directly experienced in our lifetimes are simply the entrée in terms of what will occur in future.

Flooding is especially severe when a storm coincides with a high tide. And this is where NASA and the University of Hawaii’s new research identified a further threat.

Researchers looked at the amplification phase of the natural 18.6-year cycle of the “wobble” in the moon’s orbit, first identified in 1728.

The orbit of the moon around the sun is not quite on a flat plane (planar); the actual orbit oscillates up and down a bit. Think of a spinning plate on a stick — the plate spins, but also wobbles up and down.




Read more:
Predators, prey and moonlight singing: how phases of the Moon affect native wildlife


When the moon is at particular parts of its wobbling orbit, it pulls on the water in the oceans a bit more. This means for some years during the 18.6-year cycle, some high tides are higher than they would have otherwise been.

This results in increases to daily tidal rises, and this, in turn, will exacerbate coastal flooding, whether it be nuisance flooding in vulnerable areas, or magnified flooding during a storm.

View of Earth from the Moon
The moon’s orbit isn’t on a flat plane. It oscillates up and down, like a plate would when it spins on a stick.
Shutterstock

A major wobble amplification phase will occur in the mid-2030s, when climate change will make the problem become severe in some cases.

The triple whammy of the wobble in the moon’s orbit, ongoing upwards creep in sea levels from ocean warming, and more intense storms associated with climate change, will bring the impacts of sea-level rise earlier than previously expected — in many locations around the world. This includes in Australia.

So what will happen in Australia?

The locations in Australia where tides have the largest range, and will be most impacted by the wobble, aren’t close to the major population centres. Australia’s largest tides are close to Broad Sound, near Hay Point in central Queensland, and Derby in the Kimberley region of Western Australia.

However, many Australian cities host suburbs that routinely flood during larger high tides. Near my home in Meanjin (Brisbane), the ocean regularly backs up through the storm water drainage system during large high tides. At times, even getting from the front door to the street can be challenging.

Derby, WA, has one of the biggest tidal ranges in Australia.
Shutterstock

Some bayside suburbs in Melbourne are also already exposed to nuisance flooding. But a number of others that are not presently exposed may also become more vulnerable from the combined influence of the moon wobble and climate change — even when the weather is calm. High tide during this lunar phase, occurring during a major rainfall event, will result in even greater risk.




Read more:
High-tide flood risk is accelerating, putting coastal economies at risk


In high-income nations like Australia, sea-level rise means increasing unaffordability of insurance for coastal homes, followed by an inability to seek insurance cover at all and, ultimately, reductions in asset values for those unable or unwilling to adapt.

The prognosis for lower-income coastal communities that aren’t able to adapt to sea-level rise is clear: increasingly frequent and intense flooding will make many aspects of daily life difficult to sustain. In particular, movement around the community will be challenging, homes will often be inundated, unhealthy and untenable, and the provision of basic services problematic.

What do we do about it?

While our hearts and minds continue to be occupied by the pandemic, threats from climate change to our ongoing standard of living, or even future viability on this planet, haven’t slowed. We can pretend to ignore what is happening and what is increasingly unstoppable, or we can proactively manage the increasing threat.

Some coastal communities, such as in Melbourne’s bayside suburbs, may experience flooding, even if they never have before.
Shutterstock

Thankfully, approaches to adapting the built and natural environment to sea-level rise are increasingly being applied around the world. Many major cities have already embarked on major coastal adaptation programs – think London, New York, Rotterdam, and our own Gold Coast.

However, the uptake continues to lag behind the threat. And one of the big challenges is to incentivise coastal adaptation without overly impacting private property rights.




Read more:
For flood-prone cities, seawalls raise as many questions as they answer


Perhaps the best approach to learning to live with water is led by the Netherlands. Rather than relocating entire communities or constructing large barriers like sea walls, this nation is finding ways to reduce the overall impact of flooding. This includes more resilient building design or reducing urban development in specific flood retention basins. This means flooding can occur without damaging infrastructure.

There are lessons here. Australia’s adaptation discussions have often focused on finding the least worst choice between constructing large seawalls or moving entire communities — neither of which are often palatable. This leads to inaction, as both options aren’t often politically acceptable.

The seas are inexorably creeping higher and higher. Once thought to be a problem for our grandchildren, it is becoming increasingly evident this is a challenge for the here and now. The recently released research confirms this conclusion.




Read more:
King tides and rising seas are predictable, and we’re not doing enough about it


The Conversation


Mark Gibbs, Principal Engineer: Reef Restoration, Australian Institute of Marine Science

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Under the moonlight: a little light and shade helps larval fish to grow at night



Jeffrey Shima, Author provided

Jeffrey Shima, Te Herenga Waka — Victoria University of Wellington; Craig W. Osenberg, University of Georgia; Stephen Swearer, The University of Melbourne, and Suzanne Alonzo, University of California, Santa Cruz

At night on any one of hundreds of coral reefs across the tropical Pacific, larval fish just below the sea surface are gambling on their chances of survival.

Our latest research shows the brightness of the Moon could play a major role in that struggle for survival by affecting the availability of prey and keeping predators away.

Understanding how that works could help in fisheries management, specifically the prediction of changes to harvested fish stocks that allow us to anticipate how many adult fish can be taken without destabilising the fishery.

Many fish populations experience boom-and-bust cycles largely because parents routinely produce millions of offspring that have very low, but fluctuating, survival rates.

The large number of larval fish that are produced means any environmental conditions — for example, increased nutrients — that improve survival odds even only marginally can lead to a big influx in the number of surviving offspring.

Several sixbar wrasse swim above a reef.
Adult sixbar wrasse in courtship.
Author?, Author provided

When the Sun goes down

In the past we failed to take into account the influences the night may have on fish development.

In our research we found the daily growth rates of the larvae of sixbar wrasse (Thalassoma hardwicke) around the island of Mo’orea, in French Polynesia, are strongly linked to phases of the Moon.




Read more:
The viral ‘Wellerman’ sea shanty is also a window into the remarkable cross-cultural whaling history of Aotearoa New Zealand


Their growth appears to be maximised when the first half of the night is dark and the second half of the night is bright.

Cloudy nights obscure the Moon, and thus allowed us to check our models by contrasting growth on cloudy versus clear nights, which confirmed the effect of moonlight on growth of these fish.

Phases of the Moon

We found that on the best nights of the lunar month for sixbars, around the last Quarter Moon when the Moon rises around midnight, larval fish grew about 0.012mm a day more than average.

But on the worst nights, around the first Quarter Moon when the Moon is overhead at sunset and sets around midnight, they grew about 0.014mm a day less than average.

From First Quarter to Full Moon then Last Quarter.
Phases of the Moon from the Southern Hemisphere.
Wikimedia, CC BY-SA

For a typical larval sixbar of 37.5 days old, that means its growth is 24% more on the best night than on the worst one. This is important, as growth is inextricably linked to survival and ultimately fisheries productivity.

We think the Moon affects larval growth in this way because of how it changes the movements of deeper-dwelling animals, those that migrate into shallow water each night to hunt for food under the cover of darkness.

Zooplankton — potential prey for larval sixbars — respond quickly to the arrival of darkness, and move into the surface water to supplement the diets of sixbars.

Micronekton, such as lanternfishes, which hunt larval fishes, may take much longer to reach surface waters and seek out their prey, due to their migration from much deeper depths.

Four graphs showing different phases of the Moon and the amount of predator/prey during each phase.
Four graphs showing the larval fish (in yellow) and the amount of predator (red shading area) and prey (brown shading area) rising to the surface during each phase of he Moon.
Proceedings of the Royal Society B, Author provided

As a consequence, prey availability for sixbars in surface waters may be hindered by early nocturnal brightness while the arrival of predators may be impeded by late nocturnal brightness.

Thus, larval fish grow best when their predators are absent but their prey are abundant — around the last Quarter Moon.

In contrast, around the first Quarter Moon, prey are suppressed but predators are not, leading to the slowest growth.

During the New Moon, when the surface waters remain dark throughout the night, influxes of both prey and predators may be high, with the latter preventing the larval fish from enjoying the increased numbers of prey.

On the other hand, during the Full Moon, when surface waters are well-lit, the movement of prey and predators may be suppressed, reducing the risk to the fish but also eliminating their food.

Impact on fishing

More research is needed to quantify these lunar effects on other marine populations. But our findings to date are good news for those working to strengthen fisheries management, given that phases of the Moon are predictable and cloud cover that can modify moonlight is being measured by satellites.

A diver underwater keeping watch on one of the sixbar wrasse fish.
Observing the sixbar wrasse spawning.
Author?, Author provided

This makes the incorporation of moonlight into existing fisheries management models relatively simple.

We think this will have implications around the world, not just in the tropics. This is because the nightly upward movements of deep-water animals is ubiquitous — it is the largest mass migration of biomass on the planet, and it happens everywhere.

The suppressive effect of moonlight on this movement of potential predators and prey is also a global phenomenon.

We evaluated effects of the Moon on growth of larval temperate fish in an earlier study and found a similar effect (moonlight enhanced growth).




Read more:
Coral reefs: climate change and pesticides could conspire to crash fish populations


The effect is stronger and more nuanced in our latest study, most likely because the waters in the tropics are comparatively clear.

Our findings also hint that other factors which affect night-time illumination of the sea may disrupt marine ecosystems. This includes the reflection of artificial lights from coastal cities, suspended sediments in the water column, and changes in cloud cover due to climate change.

In the future, we may be able to harness this extra information to help forecast fish population change to better guide the management and conservation of fisheries around the world.The Conversation

Jeffrey Shima, Professor of Ecology, Te Herenga Waka — Victoria University of Wellington; Craig W. Osenberg, Professor of Ecology, University of Georgia; Stephen Swearer, Professor of Marine biology, The University of Melbourne, and Suzanne Alonzo, Professor of Ecology & Evolutionary Biology, University of California, Santa Cruz

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Predators, prey and moonlight singing: how phases of the Moon affect native wildlife



Wes Mountain/The Conversation, CC BY-ND

Euan Ritchie, Deakin University; Courtney Marneweck, Clemson University , and Grant Linley, Charles Sturt University

Humans have long been inspired and transfixed by the Moon, and as we’re discovering, moonlight can also change the behaviour of Australian wildlife.

A collection of recently published research has illuminated how certain behaviours of animals – including potoroos, wallabies and quolls – change with variation in ambient light, phases of the Moon and cloud cover.




Read more:
How big is the Moon? Let me compare …


One study found small mammals were more active on cloudy nights. Another found variation in moonlight led to differing amounts of species captured in non-lethal traps. And a study on willie wagtails found males just love singing on a full moon.

These findings are interesting from a natural history perspective. But they’ll also help ecologists and conservation scientists better locate and study nocturnal animals, and learn how artificial light pollution is likely changing where animals can live and how they behave.

Moonlit predator-prey games of hide and seek

Most of Australia’s mammals are nocturnal, and some smaller species are thought to use the cover of darkness to avoid the attention of hungry predators. However, there’s much we don’t know about such relationships, especially because it can be difficult to study these interactions in the wild.

Eastern barred bandicoots became more active on darker nights.
Simon Gorta

In the relatively diverse mammal community at Mt Rothwell, Victoria, we examined how variation in ambient light affected species’ activity, and how this might influence species interactions. Mt Rothwell is a fenced conservation reserve free of feral cats and foxes, and with minimal light pollution.

Over two years, we surveyed the responses of predator and prey species to different light levels from full, half and new moon phases.




Read more:
One little bandicoot can dig up an elephant’s worth of soil a year – and our ecosystem loves it


Potential prey species in our study included eastern barred and southern brown bandicoots, long-nosed potoroos, brushtailed rock-wallabies, and brushtail and common ringtail possums. Eastern and spotted-tailed quolls are their potential predators.

Just as we predicted, we found that while there does appear to be relationships between cloud cover, Moon phase and mammal activity, these interactions depend on the sizes and types of mammals involved.

Spotted tail quoll
The spotted-tailed quoll, a meat-eating marsupial, hunts smaller prey at night.
Shutterstock

Both predators and prey generally increased their activity in darker conditions.
Smaller, prey species increased their activity when cloud cover was higher, and predators increased their activity during the half and new moon phases.

This suggests their deadly game of hide and seek might intensify on darker nights. And prey might have to trade off foraging time to reduce their chances of becoming the evening meal.

What happens in the wild?

It’s important to acknowledge that studies in sanctuaries such as Mt Rothwell might not always reflect well what goes on in the wild, including in areas where introduced predators, such as feral cats and red foxes, are found.

Another recent study, this time of small mammals in the wilds of Victoria’s Mallee region, sheds further light on the situation. The authors tested if variation in weather and Moon phase affected the numbers of five small mammal species – Bolam’s mouse, common dunnart, house mouse, southern ningaui, and western pygmy possum – captured in pitfall traps.

Ningauis are less likely to be caught in ecological surveys with increasing moonlight.
Kristian Bell

Pitfall traps are long fences small animals can’t climb over or through, so follow along the side until they fall into a bucket dug in the ground. Ecologists typically use these traps to capture and measure animals and then return them to the wild, unharmed.




Read more:
Eastern quolls edge closer to extinction – but it’s not too late to save them


At more than 260 sites and over more than 50,000 trap nights, they found wind speed, temperature and moonlight influenced which species were caught and in what numbers.

For example, captures of a small native rodent, Bolam’s mouse, and carnivorous marsupial, southern ningaui, decreased with more moonlight, whereas captures of pygmy possums were higher with more moonlight.

Variation in the moon phase and associated light can change how active mammals are.
Aaron Greenville

Moonlight songbird serenades

Research from last month has shown even species normally active by day may change their behaviour and activity by night.

It’s not uncommon to hear bird song by night, including the quintessentially Aussie warbling of magpies. Using bioacoustic recorders and song detection software, these researchers show the willie wagtail – another of Australia’s most recogisable and loved birds – is also a nighttime singer, particularly during the breeding season.

While both male and female wagtails sing by day, it is the males that are most vocal by night. And it seems the males aren’t afraid of a little stage-lighting either, singing more with increasing moonlight, with performances peaking during full moons.

While characteristically playful by day, male willie wagtails can really turn on a vocal performance by night.
Jim Bendon/Flickr

This work provides insight into the importance and potential role of nocturnal song for birds, such as mate attraction or territory defence, and helps us to better understand these behaviours more generally.

Moonlight affects wildlife conservation

These studies, and others, can help inform wildlife conservation, as practically speaking, ecological surveys must consider the relative brightness of nights during which work occurred.

Depending on when and where we venture out to collect information about species, and what methods we use (camera traps, spotlighting, and non-lethal trapping) we might have higher or lower chances of detecting certain species. And this might affect our insights into species and ecosystems, and how we manage them.

Artificial lighting can change the behaviour of wildlife.
Kenny Louie

As dark skies become rarer in many places around the world, it also begs a big question. To what extent is all the artificial light pollution in our cities and peri-urban areas affecting wildlife and ecosystems?




Read more:
Turn off the porch light: 6 easy ways to stop light pollution from harming our wildlife


Pipistrelle bats, for example, will be roughly half as active around well-lit bridges than unlit bridges. They’ll also keep further away from well-lit bridges, and fly faster when near them.

This means artificial light might reduce the amount and connectivity of habitat available to some bat species in urban areas. This, in turn could affect their populations.

Research is underway around the world, examining the conservation significance of such issues in more detail, but it’s another timely reminder of the profound ways in which we influence the environments we share with other species.


We would like to acknowledge Yvette Pauligk, who contributed to our published work at Mt Rothwell, and that the traditional custodians of this land are the Wathaurong people of the Kulin nation.The Conversation

Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Courtney Marneweck, Postdoctoral Researcher in Carnivore Ecology, Clemson University , and Grant Linley, PhD Candidate, Charles Sturt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How big is the Moon? Let me compare …



The size of the Moon can be deceptive when viewed from Earth.
Flickr/Ovi Gherman, CC BY-NC-ND

Jonti Horner, University of Southern Queensland

Even though we can see the Moon shining brightly in the night sky – and sometimes in daylight – it’s hard to put into perspective just how large, and just how distant, our nearest neighbour actually is.

So just how big is the Moon?

The Moon passing in front of Earth, captured by the Earth Polychromatic Imaging Camera (EPIC), more than a million kilometres away from our planet.

That answer isn’t quite as straightforward as you might think. Like Earth, the Moon isn’t a perfect sphere. Instead, it’s slightly squashed (what we call an oblate sphereoid). This means the Moon’s diameter from pole to pole is less than the diameter measured at the equator.




Read more:
Why the Moon is such a cratered place


But the difference is small, just four kilometres. The equatorial diameter of the Moon is about 3,476km, while the polar diameter is 3,472km.

To see how big that is we need to compare it to something of a similar size, such as Australia.

From coast to coast

The distance from Perth to Brisbane, as the crow flies, is 3,606km. If you put Australia and the Moon side by side, they look to be roughly the same size.

The Moon vs Australia.
NASA/Google Earth

But that’s just one way of looking at things. Although the Moon is about as wide as Australia, it is actually much bigger when you think in terms of surface area. It turns out the surface of the Moon is much larger than that of Australia.

The land area of Australia is some 7.69 million square kilometers. By contrast, the surface area of the Moon is 37.94 million square kilometres, close to five times the area of Australia.

The Moon rising above Uluru: You’d need five Australias to cover the land mass of the Moon.
Flickr/jurek d Jerzy Durczak, CC BY-NC

How far is the Moon?

Asking how far away is the Moon is another of those questions whose answer is more complicated than you might expect.

The Moon moves in an elliptical orbit around the Earth, which means its distance from our planet is constantly changing. That distance can vary by up to 50,000km during a single orbit, which is why the size of the Moon in our sky varies slightly from week to week.

Notice the difference in size? The Moon viewed from Earth at perigee (closest approach at 356,700km on October 26 2007) and apogee (farthest approach at 406,300km on April 3 2007).
Wikimedia/Tomruen, CC BY-SA

The Moon’s orbit is also influenced by every other object in the Solar System. Even when all of that is taken into account, the distance answer is still always changing, because the Moon is gradually receding from the Earth as a result of the tidal interaction between the two.

That last point is something we’ve been able to better study as a result of the Apollo missions. The astronauts who visited the Moon placed an array of mirror reflectors on its surface. Those reflectors are the continual target of lasers from the Earth.

By timing how long it takes for that laser light to travel to the Moon and back, scientists are able to measure the distance to the Moon with incredible precision, and to track the Moon’s recession from Earth. The result? The Moon is receding at a speed of 38mm per year – or just under 4 metres per century.

Drive me to the Moon

Having said all that, the average distance between the Moon and Earth is 384,402km. So let’s put that into context.

If I were to drive from Brisbane to Perth, following the fastest route suggested by Google, I would cover 4,310km on my road trip. That journey, driving across the breadth of our country, would take around 46 hours.

The full Moon rising over the Perth Hills, in Western Australia, in 2016.
Paean Ng/Flickr, CC BY-NC-ND

If I wanted to clock up enough kilometres to say that I’d covered the distance between the Earth and the Moon, I’d have to make that trip more than 89 times. It would take five-and-a-half months of driving, non-stop, assuming I didn’t run into any traffic jams on the way.

Fortunately, the Apollo 11 astronauts weren’t restricted to Australian speed limits. The command module Columbia took just three days and four hours to reach lunar orbit following its launch on July 16 1969.

An eclipse coincidence

The equatorial diameter of the Sun is almost 1.4 million kilometres, which is almost exactly 400 times the diameter of the Moon.

That ratio leads to one of astronomy’s most spectacular quirks – because the distance between the Earth and the Sun (149.6 million kilometres) is almost (but not quite) 400 times the distance between the Earth and the Moon.




Read more:
Explainer: what is a solar eclipse?


The result? The Moon and the Sun appear almost exactly the same size in Earth’s sky. As a result, when the Moon and the Sun line up perfectly, as seen from Earth, something wonderful happens – a total eclipse of the Sun.

The total solar eclipse seen from north Queensland in November 2012.

Sadly, such spectacular eclipses will eventually come to an end on Earth. Thanks to the Moon’s recession, it will one day be too distant to perfectly obscure the Sun. But that day will be a long time coming, with most estimates suggesting it will occur in something like 600 million years’ time.

The moonwalkers

While we’ve dispatched out robot envoys to the icy depths of the Solar System, the Moon remains the only other world on which humanity has walked.

Astronaut Buzz Aldrin was the second man to walk on the Moon and one of the few moonwalkers still alive today.
NASA

Fifty years after that first adventure, the number of people to have walked on the Moon who are still alive is in sharp decline. Twelve people have had that experience but, as of today, just four remain.




Read more:
Five ethical questions for how we choose to use the Moon


Vast as the Moon is, those 12 moonwalkers barely scratched the surface. Hopefully, in the coming years, we will return, to inspire a whole new generation and to continue humanity’s in-person exploration of our nearest celestial neighbour.The Conversation

The Moon over the Sydney Opera House.
Flickr/Paul Carmon, CC BY-NC-ND

Jonti Horner, Professor (Astrophysics), University of Southern Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why the Moon is such a cratered place


Look at the circular patterns on the Moon’s surface, as seen from Earth.
Flickr/Bob Familiar, CC BY

Katarina Miljkovic, Curtin University

Look up on a clear night and you can see some circular formations on the face of our lunar neighbour. These are impact craters, circular depressions found on planetary surfaces.

About a century ago, they were suspected to exist on Earth but the cosmic origin was often met with suspicion and most geologists believed that craters were of volcanic origin.

Around 1960, the American astrogeologist Gene Shoemaker, one of the founders of planetary science, studied the dynamics of crater formation on Earth and planetary surfaces. He investigated why they – including our Moon – are so cratered.




Read more:
Five ethical questions for how we choose to use the Moon


Images from Apollo

By 1970, there were more than 50 craters discovered on Earth but that work was still considered controversial, until pictures of the lunar surface brought by the Apollo missions confirmed that impact cratering is a common geological process outside Earth.

The crater Daedalus on the far side of the Moon as seen from the Apollo 11 spacecraft in lunar orbit. Daedalus has a diameter of about 80km.
NASA

Unlike Earth’s surface, the lunar surface is covered with craters. This is because Earth is a dynamic planet, and tectonics, volcanism, seismicity, wind and oceans all play against the preservation of impact craters on Earth.

It does not mean Earth – even Australia – has not been battered. We should have been hit by more rocks from space than the Moon has, simply because our planet is larger.

In contrast to Earth, our Moon has been inactive over long geological timescales and has no atmosphere, which has allowed the persistent impact cratering to remain over eons. The lunar cratering record spans its entire bombardment history – from the Moon’s very origins to today.

The big ones

The largest and oldest impact crater in the Solar system is believed to be on the Moon, and it is called the South Pole-Aitken basin, but we cannot see it from Earth because it is on the far side of the Moon. The Moon is tidally locked to Earth’s rotation and the same side always faces toward us.

The South Pole-Aitken Basin shown here in the elevation data (not natural colours) with the low center in dark blue and purple and mountains on its edge, remnants of outer rings, in red and yellow.
NASA/GSFC/University of Arizona

But this crater, more than 2,000km across, is thought to predate any other large impact bombardment that occurred during lunar evolution. Impact simulations suggested it was formed by a 150-250km asteroid hurtling into the Moon at 15-20km per second!

From Earth, the human eye can observe areas of different shades of grey on the surface of the Moon facing us. The dark areas are called maria, and can be up to more than 1,000km across.

They are volcanic deposits that flooded depressions created by the formation of the large impact basins on the Moon. These volcanic eruptions were active for millions of years after these impacts occurred.

My favourite is the Orientale impact basin, the youngest of the large impact craters on the Moon, but still estimated to have formed “only” about 3.7 billion years ago.

Orientale basin is about 930km wide and has three distinct rings, which form a bullseye-like pattern. This view is a mosaic of images from NASA’s Lunar Reconnaissance Orbiter.
NASA/GSFC/Arizona State University

No other large impact event has occurred on the Moon since then. This is a good sign, because it implies there were no very large impacts occurring on Earth either after this time in evolutionary history. (The asteroid that wiped out the dinosaurs on Earth 66 million years ago was only about 10-15km in size and left a crater larger than 150km in size, which was substantial enough to cause a mass extinction.)

As seen from Earth

With a small telescope, or fancy binoculars, you can check out some of the best-preserved complex craters on the Moon, such as the Tycho or Copernicus craters.

Tycho Crater is one of the most prominent craters on the Moon.
NASA/Goddard/Arizona State University

They are called complex craters because they are not entirely bowl-shaped, but are a bit shallower and include a peak in the centre of the crater as a consequence of the material collapsing into the hole made during impact. Tycho and Copernicus are both 80-100km across but have spectacular central peaks and prominent “ejecta rays” – areas where material was ejected across the lunar surface after an impact.

The formation of these craters excavated underlying material that was brighter than the actual surface. This is because lunar surface is subjected to space weathering, which causes surface rocks to darken.

Still a target for impacts

The Apollo 12, 14, 15, and 16 missions placed several seismic stations on the Moon between 1969 and 1972, creating the first extraterrestrial seismic network (ALSEP). During one year of operations, more than 1,000 seismic events were recorded, of which 10% were associated with meteoroids impacts.

So the Moon is still being hit by objects, albeit mostly tiny ones. But as there is no atmosphere on the Moon, there is no gas to help burn up these rocks from space and stop them smashing into the Moon.




Read more:
Target Earth: how asteroids made an impact on Australia


The seismic network was functional until it was switched off in 1977, in preparation for new space missions. No one expected that the next fully operational extraterrestrial seismometer would not be placed on a planetary surface (Mars) until 40 years later.

Nowadays, from Earth, using a small telescope (and armed with a little patience), you can see so-called “impact flashes”, which are small meteorite impacts on the lunar surface that is facing us.

You need to be quick to see the flashes – watch for the green boxes.

Thanks to the atmosphere on Earth, similar-sized rocks from space cannot make an impact here because they tend to predominantly burn up, but on the Moon they crash into the soil and release its kinetic energy of the impact via bright thermal emission.The Conversation

Katarina Miljkovic, ARC DECRA fellow, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The next Full Moon brings a lunar eclipse, but is it a Super Blood Blue Moon as well? That depends…



File 20180124 33571 1fcfght.jpg?ixlib=rb 1.1
Changing colours of the Moon during a total lunar eclipse, Mt Buffalo National Park, June 16, 2011.
Phil Hart, Author provided

Tanya Hill, Museums Victoria

A total lunar eclipse will occur on Wednesday, January 31, and Australia is in the perfect position to see it. But it’s also being called many other lunar things, from a Blood Moon to a Blue Moon and a Super Moon.

So what is really going to happen on the night?

This is the first time in three years that we have the chance to see a total lunar eclipse from Australia, and the Moon will spend just over three hours passing through Earth’s shadow.




Read more:
Explainer: what is a lunar eclipse?


The great thing about lunar eclipses is that they are lovely to watch and no special equipment is needed to see the events unfold.

From light to dark

At first we’ll see the Full Moon begin to darken. For Wednesday’s lunar eclipse the shadow will approach from the bottom-right, leaving the top part of the Moon in sunlight.

It takes an hour before the Earth’s shadow crosses the Moon entirely and once the Moon is completely engulfed the period known as totality begins.

The steady progression of an eclipse as the Moon drifts into the Earth’s shadow, June 16, 2011.
Phil Hart, Author provided

Totality brings its own surprise. The Earth’s shadow is not completely black, but has a reddish hue. This has led many cultures, including some Indigenous Australian communities, to describe a lunar eclipse as a Blood Moon.

Sunlight still manages to reach the Moon but it must first pass through Earth’s atmosphere. This both reddens the light (by scattering away the shorter wavelengths or blue light) and also bends the path of the light, directing it into the shadow.

This week’s lunar eclipse is a fairly deep one and totality will last just over an hour. Thereafter, the Moon will begin to emerge from the shadows, and it will be another hour before we see the brilliance of the Full Moon once more.

How I can see it?

The eclipse can be seen by the entire night side of the globe and everyone will experience the event at precisely the same moment. What affects the eclipse timings are local time zones.

For Western Australia, the eclipse occurs in the early evening, within an hour after sunset. The Moon will be low to the eastern horizon at the start of the eclipse but will move higher in the sky and towards the northeast as the eclipse progresses.

For the rest of Australia, the eclipse occurs two to three hours after sunset. The eclipse will begin with the Moon in the northeast and climbing towards the north.

Check in with your local planetarium or amateur astronomy group, as many organisations are hosting eclipse events so that you can share the occasion with others.

But if the weather doesn’t cooperate in your local area, you can also follow the eclipse via live streaming by Slooh, the Virtual Telescope, or timeanddate.com.

A lunar eclipse over San Francisco Bay in 2014 (note the moons have been enlarged slightly for clarity).
John ‘K’/flickr, CC BY-NC-ND

Super Blood Blue Moon

It seems these days that it’s not enough to be treated to a beautiful natural phenomenon like a total lunar eclipse. Instead, I’ve been hearing a lot of hype surrounding this eclipse and the numerous names applied.




Read more:
Five reasons India, China and other nations plan to travel to the Moon


It’s true that lunar eclipses can only occur around the time of Full Moon. That’s when the Sun is on one side of the Earth, while the Moon is located on Earth’s opposite side.

Most of the time the Full Moon sits above or below Earth’s shadow and the Moon remains flooded with sunlight. But twice a year, the three bodies fall into line so that Earth casts its shadow on the Moon.

As well as being a Full Moon, eclipses can also be described as a Blood Moon because of the Moon’s reddish appearance, as mentioned previously.

But the descriptions of Super Moon and Blue Moon may not be quite what they seem.

Look to the sky … it’s a Super Moon!

I’ve written before about the Super Moon sensation and it’s a term that has only taken off in the past seven years.

Back in March 2011, NASA published an article describing a “super full moon”. The precise time of Full Moon that month occurred 59 minutes before perigee, that is, the Moon’s closest approach to Earth as it travels along its elliptical orbit.

As quoted in the article:

The full Moon of March 19th [2011] occurs less than one hour from perigee – a near-perfect coincidence that happens only every 18 years or so.

It must have seemed a worthwhile curiosity to report on at the time.

Seven years later and the Super Moon craze is now a bit out of hand, with some claiming three Super Moons a year depending on the chosen definition.

As a Super Moon this lunar eclipse is definitely on the outer limits, with the Full Moon occurring 27 hours after perigee and at a distance of more than 360,000km (calculated in the usual way from the centre of Earth to the centre of the Moon).

Considering that it’s also quite difficult to tell the difference in both size and brightness between a regular Full Moon and a Super Moon, this one is really pushing the limits of credibility.

Once in a Blue Moon

According to Philip Hiscock, a folklorist at the Memorial University, USA (now retired), the classic saying “once in a blue moon” is more than 400 years old. It originated as something so absurd it could never actually happen, similar to saying “when pigs fly”.

But it is possible on rare occasions for the Moon to turn blue.

Intense volcanic activity or smoky forest fires can fill Earth’s atmosphere with dust particles that are slightly larger than usual. As a result, red light is scattered away, giving everything a blue tinge, including the Moon (normally the atmosphere scatters blue light, hence why the sky is blue).

When Krakatoa erupted in 1883 the Moon turned blue for a couple of years.
flydime/Wikipedia

But when it comes to this lunar eclipse, it’s not the colour of the Moon but a quirk of our timekeeping that is in play.

What a difference a day makes

A Full Moon occurs every 29.5 days, but our months are longer (excluding February). This mismatch of timing means that every couple of years there comes a month with two Full Moons.

In recent times, a Blue Moon has referred to the second full moon of a calendar month. For most of the world, this lunar eclipse is occurring during a Blue Moon, except for Australia’s eastern states of New South Wales, Victoria, Tasmania and the Australian Capital Territory.

Those states follow daylight saving, which pushes the Full Moon into the following day and out of the month of January (the actual time of Full Moon is 12:26am AEDT, February 1). This leaves January with only one Full Moon for those states and territory.

A lunar eclipse begins in Virginia, USA, December 21, 2010.
Flickr/NASA/Bill Ingalls

But there’s more. This modern definition of Blue Moon arose only 30 years ago.




Read more:
Stars that vary in brightness shine in the oral traditions of Aboriginal Australians


The original definition is as follows: if four Full Moons occur between an equinox and a solstice (for example, in the three months between a spring equinox and a summer solstice) then the third Full Moon should be called a Blue Moon.

This ensured that the proper names of the Full Moons (common in North America, such as the Harvest Moon) were correct relative to the equinoxes and solstices.

The ConversationBut regardless of the exact flavour of this lunar eclipse, what’s certainly true is that we are part of a grand universe, and Wednesday night is the perfect reminder of that.

Tanya Hill, Honorary Fellow of the University of Melbourne and Senior Curator (Astronomy), Museums Victoria

This article was originally published on The Conversation. Read the original article.