Research suggests Tony Abbott’s climate views are welcome in the Hunter Valley



File 20171012 9821 lmo0kz.jpg?ixlib=rb 1.1

AAP

Vanessa Bowden, University of Newcastle

Former Prime Minister Tony Abbott this week drew renewed attention to himself with a speech to the Global Warming Policy Foundation, a London-based climate sceptic group, in which he voiced a range of doubts about climate science and policy, and claimed that climate change is “probably doing good”.

The comments might come as no surprise to those familiar with his views. But what’s arguably more surprising is the prevalence of similar opinions among some Australian business leaders.

My research, published this week in the journal Environmental Sociology, features interviews with business leaders in the Hunter Valley of New South Wales – a major coal-producing hub.

It reveals that Abbott’s doubts about the veracity of climate science and its forecast impacts, and his scathing dismissal of those concerned about climate change, have a long history of support among the Hunter Valley’s business leaders.


Read more: A brief history of fossil-fuelled climate denial

Carried out in the lead-up to the implementation of the Gillard Labor government’s price on carbon in 2011, my research sought to understand business leaders’ attitudes to government policies and to climate change more broadly.

I approached 50 chief executives of organisations operating in the Hunter Region, of whom 31 agreed to participate (or had a senior staff member take up the opportunity).

They were asked questions about their views on climate change, how and whether their organisation was responding to the issue, and what they thought about the various political parties’ policies in response to it.

Perhaps not surprisingly, participants’ overwhelming concern was that the economy might decline as a result of climate policies such as pricing carbon.

While some were concerned about climate change, there was almost unanimous opposition to carbon pricing. Given the politics of the time, this too is unremarkable, particularly in light of the success Abbott enjoyed at the 2013 election after pledging to scrap the policy.

What was surprising, however, was the pervasive scepticism among participants about the science of climate change. This is especially the case given that many people now view the debate over whether climate change is happening – and whether it is caused by human activity – as being over.

Moreover, many participants believed that climate scientists were motivated by financial rewards in arguing that climate change is a serious concern.

These beliefs were voiced not only by those in industries like coal, aluminium, and shipping – but echoed by participants from other industries, revealing a deep scepticism of both the discipline and the science of climate change itself.

It is noteworthy that the research was focused on the Hunter Valley and Newcastle, home to the world’s biggest coal port.

Participants also held intensely antagonistic views in relation to the environment movement and the Australian Greens, believing their views were quasi-religious and that they too were self-interested and unrealistic in wanting to tackle climate change.

Striking views

In some ways the extremity of these comments was striking. Although prominent in writings by conservative columnists at the time, the broader debate was much more focused on jobs and the economy.

A small minority of participants did support some type of mechanism to limit greenhouse emissions, and were concerned about the environment.

But more broadly, my research showed that the Hunter Region’s business leaders – whether or not they were directly involved in coal – had taken on board many of the arguments promulgated by the industry in its ultimately successful campaign against carbon pricing in Australia.


Read more: Hashtags v bashtags: a brief history of mining advertisements and their backlashes


These dynamics may have changed a little in recent times, with companies such as AGL and BHP shifting away from coal.

The overall dynamics of the climate politics, however – as revealed in the current stalemate over responding to the Finkel Review – remains out of step with what the climate science is telling us. As, of course, do Abbott’s comments.

The ConversationAbbott’s London speech was interpreted as incendiary, and earned him a sharp rebuke from government colleagues. But when we look at the places where his message might be received more favourably, it becomes apparent there are still pockets of the country where he might expect to find a plentiful and powerful audience.

Vanessa Bowden, Associate Lecture in Social Enquiry, University of Newcastle

This article was originally published on The Conversation. Read the original article.

Advertisements

Australia: NSW – Solid Fuel Fires Banned Until Further Notice


The link below is to a media release concerning the banning of solid fuel fires in State Forests throughout NSW due to bushfire concerns.

For more visit:
http://www.forestrycorporation.com.au/about/releases/solid-fuel-fires-banned-in-state-forests

.

Australia: Sydney – Green and Golden Bell Frog


The link below is to a media release concerning the Green and Golden Bell Frog, an endangered frog species in New South Wales, Australia.

For more visit:
http://www.environment.nsw.gov.au/media/OEHMedia17071801.htm

How our research is helping clean up coal-mining pollution in a World Heritage-listed river



Image 20170329 1674 1tkl166
The Wollangambe River’s canyons are loved by adventurers.
Ben Green

Ian Wright, Western Sydney University

The Wollangambe River in New South Wales is a unique gift of nature, flowing through the stunning Wollemi National Park, wilderness areas and the World Heritage-listed Blue Mountains. It’s an adventure tourism hotspot, with thousands of people clambering through the river’s majestic canyons each year.

So it was with a sense of irony that bushwalkers noticed unnatural flow and discolouration in the river and suspected it was pollution. In 2012 they contacted Western Sydney University, which has since conducted ongoing investigations.

The pollution was traced back to the Clarence Colliery, owned by Centennial Coal. Our recent research confirms that this is one of the worst cases of coal mine pollution in Australia, and indeed the world.

For four years I and other researchers have been investigating the pollution and its impacts on the river. The NSW Environment Protection Authority (EPA) has verified our findings. In exciting news, the mine was in March issued a revised environmental licence, which we believe is the most stringent ever issued to an Australian coal mine.

This is appropriate given the conservation significance of the river and the current scale of the pollution. We are now hopeful that the pollution of the Wollangambe River may soon be stopped.

Water pollution damages the river and its ecology

The Clarence Colliery is an underground mine constructed in 1980. It is just a few kilometres from the boundary of the Blue Mountains National Park.

Clarence Colliery and Wollangambe River.
Ian Wright

Our research revealed that waste discharges from the mine cause a plume of water pollution at least 22km long, deep within the conservation area. The mine constantly discharges groundwater, which accumulates in underground mines. The water is contaminated through the mining process. The mine wastes contributed more than 90% of the flow in the upper reaches of the river.

The EPA regulates all aspects of the mining operation relating to pollution. This includes permission to discharge waste water to the Wollangambe River, provided that it is of a specified water quality.

Our research found that the wastes totally modified the water chemistry of the river. Salinity increased by more than ten times below the mine. Nickel and zinc were detected at levels that are dangerous to aquatic species.

We surveyed aquatic invertebrates, mostly insects, along the river and confirmed that the mine waste was devastating the river’s ecology. The abundance of invertebrates dropped by 90% and the number of species was 65% lower below the mine waste outfall than upstream and in tributary streams. Major ecological impacts were still detected 22km downstream.

We shared our early research findings with the NSW EPA in 2014. The authority called for public submissions and launched an investigation using government scientists from the NSW Office of Environment and Heritage. Their study confirmed our findings.

Progress was interrupted when tonnes of sediment from the mine were dislodged in 2015 after heavy rainfall and the miner and the EPA focused on cleaning the sediment from the river. This incident has resulted in the EPA launching a prosecution in the NSW Land and Environment Court.

We recently compared the nature and scale of pollution from this mine with other coal mine pollution studies. The comparison confirms that this is one of the most damaging cases of coal mine water pollution in Australia, or internationally.

Even 22km below the waste outfall, the Wollangambe is still heavily polluted and its ecosystems are still degraded. One of the unique factors is that this mine is located in an otherwise near-pristine area of very high conservation value.

New licence to cut pollution

The new EPA licence was issued March 1, 2017. It imposes very tight limits on an extensive suite of pollutant concentrations that the mine is permitted to discharge to the Wollangambe River.

The licence covers two of the most dangerous pollutants in the river: nickel and zinc. Nickel was not included in the former licence.

The new licence now includes a sampling point on the river where it flows into the World Heritage area, about 1km downstream from the mine. The licence specifies vastly lower concentrations of pollutants at this new sampling point.

For example, the permitted concentration of zinc has been reduced from 1,500 micrograms per litre in the waste discharge, in the old licence, to 8 micrograms per litre.

It can be demoralising to witness growing pollution that is damaging the ecosystems with which we share our planet. This case study promises something different.

The actions of the EPA in issuing a new licence to the mine provide hope that the river might have a happy ending to this sad case study. The new licence comes into effect on June 5, 2017.

The ConversationOur current data suggest that water quality in the river is already improving. We dream that improved water quality, following this licence, will trigger a profoundly important ecological recovery. Now we just have to wait and see whether the mine can improve its waste treatment to meet the new standards.

Ian Wright, Senior Lecturer in Environmental Science, Western Sydney University

This article was originally published on The Conversation. Read the original article.

The Sydney Barrier Reef: engineering a natural defence against future storms


Rob Roggema, University of Technology Sydney

The risk of more severe storms and cyclones in the highly urbanised coastal areas of Newcastle, Sydney and Wollongong might not be acute, but it is a real future threat with the further warming of the southern Pacific Ocean. One day a major storm – whether an East Coast Low or even a cyclone – could hit Sydney. The Conversation

With higher ocean temperatures killing and bleaching coral along the Great Barrier Reef to the north, we could also imagine where the right temperatures for a coral reef would be in a warmer climate. Most probably, this would be closer to the limits of the low latitudes, hence in front of the Sydney metro area.

We should then consider whether it is possible to help engineer a natural defence against storms, a barrier reef, should warming oceans make conditions suitable here.

Ocean warming trend is clear

The oceans are clearly warming at an alarming rate, with the unprecedented extent and intensity of coral bleaching events a marker of rising temperatures. After the 2016-2017 summer, coral bleaching affected two-thirds of the Great Barrier Reef.

On the other side of the Pacific, sea surface temperatures off Peru’s northern coast have risen 5-6℃ degrees above normal. Beneath the ocean surface, the warming trend is consistent too.

The East Australian Current keeps the waters around Lord Howe Island warm enough to sustain Australia’s southernmost coral reef. The waters off Sydney are just a degree or two cooler.

With the East Australian Current now extending further south, the warming of these south-eastern coastal waters might be enough in a couple of decades for Nemo to swim in reality under Sydney Harbour Bridge.

This shift in ocean temperatures is expected to drive strong storms and inland floods, according to meteorologists.

On top of this, when we plot a series of maps since 1997 of cyclone tracks across the Pacific, it shows a slight shift to more southern routes. These cyclones occur only in the Tasman Sea and way out from the coast, but, still, there is a tendency to move further south. The northern part of New Zealand recently experienced the impacts this could have.

Think big to prepare for a big storm

If we would like to prevent what Sandy did to New York, we need to think big.

If we don’t want a storm surge entering Parramatta River, flooding the low-lying areas along the peninsulas, if we don’t want flash-flooding events as result of river discharges, if we don’t want our beaches to be washed away, if we want to keep our property along the water, and if we want to save lives, we’d better prepare to counter these potential events through anticipating their occurrence.

The coast is the first point where a storm impacts the city. Building higher and stronger dams have proven to be counterproductive. Once the dam breaks or overflows the damage is huge. Instead we should use the self-regenerating defensive powers nature offers us.

Thinking big, we could design a “Sydney Barrier Reef”, which allows nature to regenerate and create a strong and valuable coast.

The first 30-40 kilometres of the Pacific plateau is shallow enough to establish an artificial reef. The foundations of this new Sydney Barrier Reef could consist of a series of concrete, iron or wooden structures, placed on the continental shelf, just beneath the water surface. Intelligently composed to allow the ocean to bring plants, fish and sand to attach to those structures, it would then start to grow as the base for new coral.

This idea has not been tested for the Sydney continental flat yet. But in other parts of the world experiments with artificial reefs seem promising. At various sites, ships, metro carriages and trains seem to be working as the basis for marine life to create a new underworld habitat

The Sydney Barrier Reef will have the following advantages:

  1. Over decades a natural reef will grow. Coral will develop and a new ecosystem will emerge.

  2. This reef will protect the coast and create new sandbanks, shallow areas and eventually barrier islands, as the Great Barrier Reef has done.

  3. It will increase the beach area, because the conditions behind the reef will allow sediments to settle.

  4. It creates new surfing conditions as a result of the sandbanks.

  5. It will protect Sydney from the most severe storm surges as it breaks the surge.

  6. It will present a new tourist attraction of international allure.

Let’s create a pilot project as a test. Let’s start to design and model the pilot to investigate what happens in this particular location. Let’s simulate the increase of temperature over time and model the impact of a cyclone.

Let’s create, so when Sandy hits Sydney, we will be better protected.

Rob Roggema, Professor of Sustainable Urban Environments, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.