Our acid oceans will dissolve coral reef sands within decades

File 20180222 132650 xoo39k.jpg?ixlib=rb 1.1
Researchers studied reef sands at Heron Island, Hawaii, Bermuda and Tetiaroa. In this photo, white areas show the predominance of sand on reefs.
Southern Cross University

Bradley Eyre, Southern Cross University

Carbonate sands on coral reefs will start dissolving within about 30 years, on average, as oceans become more acidic, new research published today in Science shows.

Carbonate sands, which accumulate over thousands of years from the breakdown of coral and other reef organisms, are the building material for the frameworks of coral reefs and shallow reef environments like lagoons, reef flats and coral sand cays.

But these sands are sensitive to the chemical make-up of sea water. As oceans absorb carbon dioxide, they acidify – and at a certain point, carbonate sands simply start to dissolve.

The world’s oceans have absorbed around one-third of human-emitted carbon dioxide.

Carbonate sand is vulnerable

For a coral reef to grow or be maintained, the rate of carbonate production (plus any external sediment supply) must be greater than the loss through physical, chemical and biological erosion, transport and dissolution.

It is well known that ocean acidification reduces the amount of carbonate material produced by corals. Our work shows that reefs face a double-whammy: the amount of carbonate material produced will decrease, and the newly produced and stored carbonate sands will also dissolve.

Researchers used benthic chambers (pictured) to test how different levels of seawater acidity affect reef sediments.
Steve Dalton/Southern Cross University

We measured the impact of acidity on carbonate sands by placing underwater chambers over coral reefs sands at Heron Island, Hawaii, Bermuda and Tetiaroa in the Pacific and Atlantic Oceans. Some of the chambers were then acidified to represent future ocean conditions.

The rate at which the sands dissolve was strongly related to the acidity of the overlying seawater, and was ten times more sensitive than coral growth to ocean acidification. In other words, ocean acidification will impact the dissolution of coral reef sands more than the growth of corals.

This probably reflects the corals’ ability to modify their environment and partially adjust to ocean acidification, whereas the dissolution of sands is a geochemical process that cannot adapt.

Sands on all four reefs showed the same response to future ocean acidification, but the impact of ocean acidification on each reef is different due to different starting conditions. Carbonate sands in Hawaii are already dissolving due to ocean acidification, because this coral reef site is already disturbed by pollution from nutrients and organic matter from the land. The input of nutrients stimulates algal growth on the reef.

In contrast, carbonate sands in Tetiaroa are not dissolving under current ocean acidification because this site is almost pristine.

What will this mean for coral reefs?

Our modelling at 22 locations shows that net sand dissolution will vary for each reef. However, by the end of the century all but two reefs across the three ocean basins would on average experience net dissolution of the sands.

A transition to net sand dissolution will result in loss of material for building shallow reef habitats such as reef flats and lagoons and associated coral cays. What we don’t know is whether an entire reef will slowly erode or simply collapse, once the sediments become net dissolving, as the corals will still grow and create reef framework. Although they will most likely just slowly erode.

It may be possible to reduce the impact of ocean acidification on the dissolution of reef sands, by managing the impact of organic matter like algae at local and regional scales. This may provide some hope for some already disturbed reefs, but much more research on this topic is required.

The ConversationUltimately, the only way we can stop the oceans acidifying and the dissolving of coral reefs is concerted action to lower CO₂ emissions.

Bradley Eyre, Professor of Biogeochemistry, Director of the Centre for Coastal Biogeochemistry, Southern Cross University

This article was originally published on The Conversation. Read the original article.


Your drive to the shops makes life pretty noisy for whales

File 20180221 161926 7puvco.jpg?ixlib=rb 1.1
Living alongside humans gets noisier all the time.
Katrina Burgers/Shutterstock.com

Andrew J. Wright, Fisheries and Oceans Canada

As unlikely as it may seem, your drive to the supermarket is responsible for a lot of noise pollution in our oceans – and a lot of stress to marine life as a result.

Of course, it’s not the specific sound of your car trundling along the street that the fish and whales hear. But many of the products that feature in your weekly shop – from the goods you buy, to the petrol you burn, to your car’s component parts – contribute to marine noise pollution.

Read more:
Noise from offshore oil and gas surveys can affect whales up to 3km away

The fuel

Let’s start with the oil. Before we can drill the oil or turn it into fuel to drive our cars, oil companies have to discover it.

Companies look for oil using high-pressure airguns. These machines are towed across the surface of the ocean, firing off sounds to determine the make-up of sediment layers in the seafloor. These are some of the loudest human-created sounds – researchers working in the middle of the Atlantic Ocean have been able to record the sounds produced from coastal oil surveys.

Rex Virtual Drilling.
Chooywa/wikimedia, CC BY-SA

These sounds are problematic for marine life. Whales and other animals that rely heavily on sound for communicating and finding food are most affected. Hearing is to these animals much the same as vision is to humans. Unusually loud sounds can disturb whales’ behaviour and, if they are close enough, can damage their hearing. There is even some suggestion that the airguns can cause whale strandings, although this is not yet completely certain.

Currently, one-third of all oil comes from offshore sources and this proportion is expected to increase. This can only mean more bad news for our marine life.

The car

What about the metal box that consumes all the oil? Parts for the car are sourced from all over the world and have to be shipped across our oceans. In turn, the raw materials needed to make these parts are usually shipped in from yet more places. The commercial shipping needed for all this represents another problematic source of ocean noise.

The relative density of commercial shipping routes in our oceans.
B.S. Halpern/Wikimedia Commons, CC BY-SA

The contributions of individual ships may seem trivial in comparison to the loud noise from airguns. However, the world merchant fleet includes around 52,000 ships. Collectively, these increase the ambient noise levels in our oceans. In fact, the amount of low-frequency sound in some parts of our oceans has doubled each decade over the past 60 years.

Humans perceive only some of this sound, because of the very low pitches involved. But these sounds are well within the frequency range used by baleen whales. Recent work suggests that this constrains the communication ranges in whales, causing chronic stress and potentially interrupting mating behaviour.

Parts of the ocean are filling up with man-made noise, and that presents many dangers to marine life.
B. Southall/NMFS and NOAA

The groceries

Oh, and most of your groceries are shipped around the world at some point too, as are many other consumer items – including the battery in your hybrid car, if you have one. Around 90% of world trade is carried by commercial ships at some stage. Not all of this ends up in your shopping bag, but a large proportion enters the consumer market at some point.

Certain grocery items, such as fish, originate from the oceans themselves. Like cargo ships, fishing vessels produce noise from their engines and propellers, but they also have noisy fish-finding sonars and winches as well.

Read more:
10 tips for eating locally and cutting the energy used to produce your food

The solutions

The good news is that noise pollution, unlike chemical pollution, dissipates quickly. This means that the future for underwater noise remains bright. If you want to give the whales a break, just drive a little less, or support higher efficiency standards for vehicles. This will not only reduce oil consumption, but also the wear and tear on your car, meaning that fewer replacement parts will need to be shipped in.

Time for a rethink?
Joe Goldberg/flickr, CC BY-SA

You can also buy locally produced items and support the local economy too. That way everyone wins.

The ConversationNo matter how connected we think everything is, the situation is generally even more complicated than we can imagine. So next time you walk to the shops and buy an apple grown in your state, you should allow yourself a moment to feel good about yourself, safe in the knowledge that you have helped to make the oceans a tiny bit quieter.

Andrew J. Wright, Marine Mammal Researcher, Fisheries and Oceans Canada

This article was originally published on The Conversation. Read the original article.

Citizen scientist scuba divers shed light on the impact of warming oceans on marine life

File 20171019 1045 3eh0e1.jpg?ixlib=rb 1.1
A volunteer diver surveys marine life at Lord Howe Island.
Rick Stuart-Smith/Reef Life Survey, Author provided

Madeleine De Gabriele, The Conversation

Rising ocean temperatures may result in worldwide change for shallow reef ecosystems, according to research published yesterday in Science Advances.

The study, based on thousands of surveys carried out by volunteer scuba divers, gives new insights into the relationship of fish numbers to water temperatures – suggesting that warmer oceans may drive fish to significantly expand their habitat, displacing other sea creatures.

Citizen science

The study draws from Reef Life Survey, a 10-year citizen science project that trains volunteer scuba divers to survey marine plants and animals. Over the past ten years, more than 200 divers have surveyed 2,406 ocean sites in 44 countries, creating a uniquely comprehensive data set on ocean life.

Reef Life Survey takes volunteers on surveying expeditions at hard-to-reach coral reefs around the world.
Rick Stuart-Smith/Reef Life Survey, Author provided

Lead author Professor Graham Edgar, who founded Reef Life Survey, said the unprecedented scope of their survey allowed them to investigate global patterns in marine life. The abundance of life in warm regions (such as tropical rainforests and coral reefs) has long intrigued naturalists. At least 30 theories have been put forward, but most studies have been based on relatively limited surveys restricted to a single continent or group of species.

By tapping into the recreational scuba diving community, Reef Life Survey has vastly increased the amount of information researchers have to work with. Professor Edgar and his colleagues provide one-on-one training to volunteers, teaching them how to carry out comprehensive scans of plants and animals in specific areas.

Dr Adriana Vergés, a researcher at the University of New South Wales specialising in the impact of climate change on ocean ecosystems, said that the Reef Life Survey has already substantially improved our understanding of the marine environment.

“For example, Reef Life Survey data has greatly contributed to our understanding of the factors that determine the effectiveness of effectiveness of marine-protected areas worldwide. The team have made all their data publicly available and more and more research is increasingly making use of it to answer research questions,” she said.

Some of the divers have been working with Reef Life Survey for a decade, although others participate when they can. One volunteer, according to Professor Edgar, was so inspired by the project that he began a doctorate in marine biology (he graduated this year).

There’s a strong link between fish numbers and water warmth, which means warming oceans are likely to change global fish distribution.
Rick Stuart-Smith/Reef Life Survey, Author provided

Warming oceans means fish on the move

One of the important insights delivered by the Reef Life Survey datatbase is the relationship between water temperature and the ratio of fish to invertebrates in an ecosystem. Essentially, the warmer the water, the more fish. Conversely, colder waters contain more invertebrates like lobster, crabs and shrimp.

Professor Stewart Frusher, director of the Centre for Marine Socioecology at the University of Tasmania (and a former colleague of Professor Edgar) told The Conversation that he believes we will see wide-scale changes in fish distribution as climate change warms the oceans.

“Species are moving into either deeper water or towards the poles. We also know that not all species are moving at the same rate, and thus new mixtures of ecosystems will occur, with the fast-moving species of one ecosystem mixing with the slower moving of another,” he said.

As species migrate or expand into newly warmed waters, according to Professor Frusher, they will compete with and prey on the species already living in that area. And while it’s uncertain exactly how disruptive this will be, we do know that small ecosystem changes can rapidly lead to larger-scale impacts.

In order to predict and manage these global changes, scientists need reliable and detailed world-wide data. Professor Frusher said that, with research funding declining, scientists do not have the resources to monitor at the scales required.

The Conversation“Well-developed citizen science programs fill an important niche for improving our understanding of how the earth is responding to change,” he said.

Madeleine De Gabriele, Deputy Editor: Energy + Environment, The Conversation

This article was originally published on The Conversation. Read the original article.

What whales and dolphins can tell us about the health of our oceans

File 20170921 8179 260m8r.jpg?ixlib=rb 1.1
Dolphins contribute important knowledge about ocean health.

Stephanie Plön, Nelson Mandela University

From the poles to the equator, marine mammals such as seals, dolphins and whales, play an important role in global ecosystems as apex predators, ecosystem engineers and even organic ocean fertilisers. The ocean off the coast of South Africa is home to a high diversity of these mammals and is recognised as a global marine biodiversity hotspot.

Marine mammals are often referred to as “sentinels” of ocean health. Numerous studies have explored the effects of both noise and chemical pollution, habitat degradation, changes in climate and food webs on these marine apex predators. Yet the interplay of these factors isn’t well understood.

Our research on the unfortunate dolphins incidentally caught in shark nets off South Africa’s KwaZulu-Natal coast has helped fill in some of the gaps. By assessing the health of these dolphins we have provided valuable baseline information on conditions affecting coastal dolphin populations in South Africa. This is the first systematic health assessment in incidentally caught dolphins in the Southern Hemisphere.

But to gain a fuller picture of the health of marine mammals in these waters I am now combining this contemporary field research with historical data, like the collection at the Port Elizabeth Museum Bayworld.

The combination of data on diet, reproduction, population structure and health helps us gain a better understanding of the pressures and changes these apex predator populations face. And it helps us understand it in relation to global change, including both climate change and pressures brought about by human behaviour.

My research sheds light on multiple factors: pollutant levels, parasites, and availability of prey, all have an impact on individuals as well as populations.

Understanding the health of these animals also gives us insight into the state of the world’s oceans. This is relevant because oceans affect the entire ecosystem including food security, climate and people’s health. This degree of connectedness is highlighted by recent discoveries about how whales act as ecosystem engineers.

The accumulation of this knowledge is important because the planet’s oceans aren’t being protected. Recent popular documentaries such as “Sonic Sea” and “Plastic Ocean” have highlighted their exploitation and pollution.

What’s missing

Without baseline knowledge it’s challenging to establish the potential effects that new anthropogenic developments (those caused by human behaviour) have on local whale and dolphin populations.

For example, we know that whales are sensitive to shipping noise, so what potential impact could a new deep water port have on mothers and their calves? Could it drive them away from these nursery areas, or could it lead to an increased risk of whales and ships colliding? To answer this and monitor the change that a new port brings with it, we are investigating the soundscape of two bays in the Eastern Cape (one with a new port, one without) in parallel with baleen whale mother-calf behaviour.

Another example is understanding how changes in the Sardine run over the past 15 years have affected the diets of these mammals. The Sardine run is an annual phenomenon when large shoals of Sardine migrate northwards along the coast into KwaZulu-Natal waters to spawn. Using long-term data and samples from the Port Elizabeth Museum research collection, we have been able to establish that over the the past 20 or so years the main predator in the Sardine run – the long-beaked common dolphin – has shifted its diet to mackerel. Although such changes in diet can have potential impacts on the health of the dolphins, parallel investigations on the trophic level these animals feed at (using isotope data from teeth) and the body condition of the dolphins (using long-term data on blubber thickness), indicated no adverse effects to the dolphins.

Our analysis highlights how marine mammals may be used as indicators of environmental change and why research is important.

Finding answers to intricate questions on environmental change is not always easy. But a better understanding and knowledge of the environment these animals live in has to be incorporated into studies contributing to their conservation and management. Such studies are becoming increasingly relevant as they highlight the fast degradation of the marine environment.

For example, a recent study identified antibiotic resistant bacteria in both sea water samples and exhaled breath samples from killer whales. This suggests that the marine environment has been contaminated with human waste which in turn has significant medical implications for humans.

Gaining such information is particularly important given the rapid changes taking place in the oceans, such as those on South Africa’s southern and eastern coastline. This includes increasing coastal development, new deep water ports being built or expanded, and parts of the deep sea being explored for oil and gas.

To assess these changes and what they mean for the environment, baseline studies need to be carried out so that potential effects can be assessed. Whales and dolphins are increasingly being recognised as indicators of ocean health in this endeavour.

And a continuation of the research we did on dolphins caught in nets will help document the cyclic changes that can be seen as normal variation in a population. This could prove important for assessing future catastrophic events, such as the Deep Horizon oil spill.

What next

The oceans absorb over 25% of the world’s carbon pollution as well as heat generated by global warming. They also produce at least 50% of the planet’s oxygen, and are home to 80% of all life on earth. Yet only 5% of this vital component of our planet has been explored.

The ConversationResearch on whales and dolphins contributes important knowledge about ocean health. Historical data increasingly provides a guideline to teasing out natural variations in populations and assessing the contribution that multiple factors have on these animals. In time, this will ensure that policy makers are being given sound scientific information. It will also provide us with a good barometer of the overall health of our oceans.

Stephanie Plön, Researcher, Earth Stewardship Science Research Institute, Nelson Mandela University

This article was originally published on The Conversation. Read the original article.

It’s time to speak up about noise pollution in the oceans

It’s time to speak up about noise pollution in the oceans

Christine Erbe, Curtin University

Ask most people about pollution, and they will think of rubbish, plastic, oil, smog, and chemicals. After some thought, most folks might also suggest noise pollution.

We’re all familiar with noise around us, and we know it can become a problem – especially if you live near an airport, train station, highway, construction site, or DIY-enthusiast neighbour.

But most people don’t think that noise is a problem under water. If you’ve read Jules Verne’s Twenty Thousand Leagues Under the Sea you might imagine that, maelstroms excepted, life is pretty quiet in the ocean. Far from it.

When we put a hydrophone (essentially a waterproof microphone) into the water, no matter where in the world’s oceans, it’s never quiet. We hear wind blowing overhead and rain dropping onto the ocean surface – even from hundreds of metres deep. In Australian waters we can also detect the far-off rumbles of earthquakes and the creaking of Antarctic ice thousands of kilometres away.

Wet and noisy

Water is much denser than air, so its molecules are packed tighter together. This means that sound (which relies on molecules vibrating and pushing against one another) propagates much further and faster under water than in air.

This also applies to human-produced sound. Under water we can hear boats and ships and even aeroplanes. Large vessels in deep water can be detected tens of kilometres away. We can be far offshore doing fieldwork, the only people around, with nothing in sight but water in any direction. Yet when we switch the engines off and put a hydrophone into the water, we hear ship noise. Sometimes, whole minutes later, the vessel we heard might appear on the horizon.

Seafarers have known about another source of sound for thousands of years: marine life. Many animals produce sound, from the tiniest shrimp to the biggest whales. Many fish even communicate acoustically under water – during the mating season, the boys start calling. Whales do it, too.

Light doesn’t reach far under water. Near the surface, in clear water, you might be able to peer a few metres, but in the inky depths you can’t see at all. So many marine animals have evolved to “see with sound”, using acoustics for navigation, for detecting predators and prey, and for communicating with other members of their species.

The thing is that man-made sound can interfere with these behaviours.

The effects of noise on marine animals are similar to those on us. If you’ve ever been left with ringing ears after a rock concert, you’ll know that loud noise can temporarily affect your hearing or even damage it permanently.

Noise interferes with communication, often masking it. Can you talk above the background noise in a busy pub? Long-term exposure to noise can cause stress and health issues — in humans and animals alike.

Excessive noise can change marine creatures’ habits, too. Like a person who decides to move house rather than live next door to a new airport, animals might choose to desert their habitat if things get too noisy. The question is whether they can find an equally acceptable habitat elsewhere.

Pile-driving is noisy work.
Christine Erbe, Author provided

There is a lot more research still to be done in this field. Can we predict what noises and vibrations might be released into the marine environment by new machinery or ships? How does sound propagate through different ocean environments? What are the long-term effects on marine animal populations?

One positive is that even though noise pollution travels very fast and very far through the ocean, the moment you switch off the source, the noise is gone. This is very much unlike plastic or chemical pollution, and gives us hope that noise pollution can be successfully managed.

We all need energy, some of which comes from oil and gas; most of our consumer goods are shipped across the seas on container vessels; and many of us enjoy eating seafood caught by noisy fishing boats, some of which even use dynamite to catch fish. We want to protect our borders, making naval operations a necessity. Then there’s the ever growing industry of marine tourism, much of it aboard ever-bigger cruise ships which need large ports in which to berth.

There are a lot of stakeholders in the marine environment, and all speak a different language, all make different claims, and all make noise. Knowing precisely how much noise they make, and how it affects marine life, will help to ensure our oceans and their resources last well into the future.

September 3-11 is SeaWeek 2016, the Australian Association for Environmental Education Marine Educators’ national public awareness campaign.

The Conversation

Christine Erbe, Director, Centre for Marine Science & Technology, Curtin University

This article was originally published on The Conversation. Read the original article.

Oil, gas and marine parks really can coexist in our oceans – here’s how

Cordelia Moore, Curtin University; Ben Radford, Australian Institute of Marine Science; Clay Bryce; Hugh Possingham, The University of Queensland; Oliver Berry, CSIRO, and Romola Stewart

When it comes to conserving the world’s oceans, bigger isn’t necessarily better. Globally, there has been an increasing trend towards placing very large marine reserves in remote regions. While these reserves help to meet some conservation targets, we don’t know if they are achieving their ultimate goal of protecting the diversity of life.

In 2002, the Convention on Biological Diversity called for at least 10% of each of the world’s land and marine habitats to be effectively conserved by 2010. Protected areas currently cover 14% of the land, but less than 3.4% of the marine environment.

Australia’s marine reserve system covers more than a third of our oceans. This system was based on the best available information and a commitment to minimising the effects of the new protected areas on existing users. However, since its release the system has been strongly criticised for doing little to protect biodiversity, and it is currently under review.

In a new study published in Scientific Reports, we looked at the current and proposed marine reserves off northwest Australia – an area that is also home to significant oil and gas resources. Our findings show how conservation objectives could be met more efficiently. Using technical advances, including the latest spatial modelling software, we were able to fill major gaps in biodiversity representation, with minimal losses to industry.

A delicate balance

Australia’s northwest supports important habitats such as mangrove forests, seagrass beds, coral reefs and sponge gardens. These environments support exceptionally diverse marine communities and provide important habitat for many vulnerable and threatened species, including dugongs, turtles and whale sharks.

This region also supports valuable industrial resources, including the majority of Australia’s conventional gas reserves.

A 2013 global analysis found that regions featuring both high numbers of species and large fossil fuel reserves have the greatest need for industry regulation, monitoring and conservation.

Proposed and existing state and Commonwealth marine reserves in northwest Australia shown in relation to petroleum leases.
Cordelia Moore

Conservation opportunitites

Not all protected areas contribute equally to conserving species and habitats. The level of protection can range from no-take zones (which usually don’t allow any human exploitation), to areas allowing different types and levels of activities such tourism, fishing and petroleum and mineral extraction.

A recent review of 87 marine reserves across the globe revealed that no-take areas, when well enforced, old, large and isolated, provided the greatest benefits for species and habitats. It is estimated that no-take areas cover less than 0.3% of the world’s oceans.

In Australia’s northwest, no-take zones cover 10.2% of the area, which is excellent by world standards in terms of size. However, an analysis of gaps in the network reveal opportunities to better meet the Convention on Biological Diversity’s recommended minimum target level of representation across all species and features of conservation interest.

We provided the most comprehensive description of the species present across the region enabling us to examine how well local species are represented within the current marine reserves. Of the 674 species examined, 98.2% had less than 10% of their habitat included within the no-take areas, while more than a third of these (227 species) had less than 2% of their habitat included.

Into the abyss

Few industries in this region operate in depths greater than 200 metres. Therefore, the habitats and biodiversity most at risk are those exposed to human activity on the continental shelf, at these shallower depths.

However, the research also found that three-quarters of the no-take marine reserves are sited over a deep abyssal plain and continental rise within the Argo-Rowley Terrace (3,000-6,000m deep). These habitats are unnecessarily over-represented (85% of the abyss is protected), as their remoteness and extreme depth make them logistically and financially unattractive for petroleum or mineral extraction anyway.

The majority of the no-take marine reserves lie over a deep abyssal plain.
Cordelia Moore

Proposed multiple-use zones in Commonwealth waters provide some much-needed extra representation of the continental shelf (0-200m depth). However, all mining activities and most commercial fishing activities are permissible pending approval. This means that the management of these multiple-use zones will require some serious consideration to ensure they are effective.

A win for conservation and industry

An imbalance in marine reserve representation can be driven by governments wanting to minimise socio-economic costs. But it doesn’t have to be one or the other.

Our research has shown that better zoning options can maximise the number of species while still keeping losses to industry very low. Our results show that the 10% biodiversity conservation targets could be met with estimated losses of only 4.9% of area valuable to the petroleum industry and 7.2% loss to the fishing industry (in terms of total catch in kg).

Examples of how the no-take reserves could be extended or redesigned to represent the region’s unique species and habitats.
Cordelia Moore

Management plans for the Commonwealth marine reserves are under review and changes that deliver win-win outcomes, like the ones we have found, should be considered.

We have shown how no-take areas in northwest Australia could either be extended or redesigned to ensure the region’s biodiversity is adequately represented. The cost-benefit analysis used is flexible and provides several alternative reserve designs. This allows for open and transparent discussions to ensure we find the best balance between conservation and industry.

The Conversation

Cordelia Moore, Research Associate, Curtin University; Ben Radford, Research scientist, Australian Institute of Marine Science; Clay Bryce, Senior Project Manager; Hugh Possingham, Director ARC Centre of Excellence for Environmental Decisions, The University of Queensland; Oliver Berry, Senior Research Scientist, CSIRO, and Romola Stewart, Adjunct Research Fellow, The University of Queensland

This article was originally published on The Conversation. Read the original article.