It might be the world’s biggest ocean, but the mighty Pacific is in peril



Shutterstock

Jodie L. Rummer, James Cook University; Bridie JM Allan, University of Otago; Charitha Pattiaratchi, University of Western Australia; Ian A. Bouyoucos, James Cook University; Irfan Yulianto, IPB University, and Mirjam van der Mheen, University of Western Australia

The Pacific Ocean is the deepest, largest ocean on Earth, covering about a third of the globe’s surface. An ocean that vast may seem invincible. Yet across its reach – from Antarctica in the south to the Arctic in the north, and from Asia to Australia to the Americas – the Pacific Ocean’s delicate ecology is under threat.

In most cases, human activity is to blame. We have systematically pillaged the Pacific of fish. We have used it as a rubbish tip – garbage has been found even in the deepest point on Earth, in the Mariana Trench 11,000 metres below sea level.

And as we pump carbon dioxide into the atmosphere, the Pacific, like other oceans, is becoming more acidic. It means fish are losing their sense of sight and smell, and sea organisms are struggling to build their shells.

Oceans produce most of the oxygen we breathe. They regulate the weather, provide food, and give an income to millions of people. They are places of fun and recreation, solace and spiritual connection. So, healthy, vibrant oceans benefit us all. And by better understanding the threats to the precious Pacific, we can start the long road to protecting it.


This article is part of the Oceans 21 series

The series opens with five profiles delving into ancient Indian Ocean trade networks, Pacific plastic pollution, Arctic light and life, Atlantic fisheries and the Southern Ocean’s impact on global climate. It’s brought to you by The Conversation’s international network.


The ocean plastic scourge

The problem of ocean plastic was scientifically recognised in the 1960s after two scientists saw albatross carcasses littering the beaches of the northwest Hawaiian Islands in the northern Pacific. Almost three in four albatross chicks, who died before they could fledge, had plastic in their stomachs.

Now, plastic debris is found in all major marine habitats around the world, in sizes ranging from nanometers to meters. A small portion of this accumulates into giant floating “garbage patches”, and the Pacific Ocean is famously home to the largest of them all.

Most plastic debris from land is transported into the ocean through rivers. Just 20 rivers contribute two-thirds of the global plastic input into the sea, and ten of these discharge into the northern Pacific Ocean. Each year, for example, the Yangtze River in China – which flows through Shanghai – sends about 1.5 million metric tonnes of debris into the Pacific’s Yellow Sea.

A wildlife killer

Plastic debris in the oceans presents innumerable hazards for marine life. Animals can get tangled in debris such as discarded fishing nets, causing them to be injured or drown.

Some organisms, such as microscopic algae and invertebrates, can also hitch a ride on floating debris, travelling large distances across the oceans. This means they can be dispersed out of their natural range, and can colonise other regions as invasive species.




Read more:
For decades, scientists puzzled over the plastic ‘missing’ from our oceans – but now it’s been found


And of course, wildlife can be badly harmed by ingesting debris, such as microplastics less than five millimetres in size. This plastic can obstruct an animal’s mouth or accumulate in its stomach. Often, the animal dies a slow, painful death.

Seabirds, in particular, often mistake floating plastics for food. A 2019 study found there was a 20% chance seabirds would die after ingesting a single item, rising to 100% after consuming 93 items.

A turtle tangled in a fishing net
Discarded fishing nets, or ‘ghost nets’ can entangle animals like turtles.
Shutterstock

A scourge on small island nations

Plastic is extremely durable, and can float vast distances across the ocean. In 2011, 5 million tonnes of debris entered the Pacific during the Japan tsunami. Some crossed the entire ocean basin, ending up on North American coastlines.

And since floating plastics in the open ocean are transported mainly by ocean surface currents and winds, plastic debris accumulates on island coastlines along their path. Kamilo Beach, on the south-eastern tip of Hawaii’s Big Island, is considered one of the world’s worst for plastic pollution. Up to 20 tonnes of debris wash onto the beach each year.

Similarly, on uninhabited Henderson Island, part of the Pitcairn Island chain in the south Pacific, 18 tonnes of plastic have accumulated on a beach just 2.5km long. Several thousand pieces of plastic wash up each day.

Kamilo Beach is referred to as the world’s dirtiest.

Subtropical garbage patches

Plastic waste can have different fates in the ocean: some sink, some wash up on beaches and some float on the ocean surface, transported by currents, wind and waves.

Around 1% of plastic waste accumulates in five subtropical “garbage patches” in the open ocean. They’re formed as a result of ocean circulation, driven by the changing wind fields and the Earth’s rotation.

There are two subtropical garbage patches in the Pacific: one in the northern and one in the southern hemisphere.

The northern accumulation region is separated into an eastern patch between California and Hawaii, and a western patch, which extends eastwards from Japan.

Locations of the five subtropical garbage patches.
van der Mheen et al. (2019)

Our ocean garbage shame

First discovered by Captain Charles Moore in the early 2000s, the eastern patch is better known as the Great Pacific Garbage Patch because it’s the largest by both size (around 1.6 million square kilometers) and amount of plastic. By weight, this garbage patch can hold more than 100 kilograms per square kilometre.

The garbage patch in the southern Pacific is located off Valparaiso, Chile, extending to the west. It has lower concentrations compared to its giant counterpart in the northeast.

Discarded fishing nets make up around 45% of the total plastic weight in the Great Pacific Garbage Patch. Waste from the 2011 Japan tsunami is also a major contributor, making up an estimated 20% of the patch.




Read more:
Whales and dolphins found in the Great Pacific Garbage Patch for the first time


With time, larger plastic debris degrades into microplastics. Microplastics form only 8% of the total weight of plastic waste in the Great Pacific Garbage Patch, but make up 94% of the estimated 1.8 trillion pieces of plastic there. In high concentrations, they can make the water “cloudy”.

Each year, up to 15 million tonnes of plastic waste are estimated to make their way into the ocean from coastlines and rivers. This amount is expected to double by 2025 as plastic production continues to increase.

We must act urgently to stem the flow. This includes developing plans to collect and remove the plastics and, vitally, stop producing so much in the first place.

Divers releasing a whale shark from a fishing net.

Fisheries on the verge of collapse

As the largest and deepest sea on Earth, the Pacific supports some of the world’s biggest fisheries. For thousands of years, people have relied on these fisheries for their food and livelihoods.

But, around the world, including in the Pacific, fishing operations are depleting fish populations faster than they can recover. This overfishing is considered one of the most serious threats to the world’s oceans.

Humans take about 80 million tonnes of wildlife from the sea each year. In 2019, the world’s leading scientists said of all threats to marine biodiversity over the past 50 years, fishing has caused the most harm. They said 33% of fish species were overexploited, 60% were being fished to the maximum level, and just 7% were underfished.

The decline in fish populations is not just a problem for humans. Fish play an important role in marine ecosystems and are a crucial link in the ocean’s complex food webs.

A school of fish
Overfishing is stripping the Pacific Ocean of marine life.
Shutterstock

Not plenty of fish in the sea

Overfishing happens when humans extract fish resources beyond the maximum level, known as the “maximum sustainable yield”. Fishing beyond this causes global fish stocks to decline, disrupts food chains, degrades habitats, and creates food scarcity for humans.

The Pacific Ocean is home to huge tuna fisheries, which provide almost 65% of the global tuna catch each year. But the long-term survival of many tuna populations is at risk.

For example, a study released in 2013 found numbers of bluefin tuna – a prized fish used to make sushi – had declined by more than 96% in the Northern Pacific Ocean.

Developing countries, including Indonesia and China, are major overfishers, but so too are developing nations.




Read more:
When hurricanes temporarily halt fishing, marine food webs recover quickly


Along Canada’s west coast, Pacific salmon populations have declined rapidly since the early 1990s, partly due to overfishing. And Japan was recently heavily criticised for a proposal to increase quotas on Pacific bluefin tuna, a species reportedly at just 4.5% of its historic population size.

Experts say overfishing is also a problem in Australia. For example, research in 2018 showed large fish species were rapidly declining around the nation due to excessive fishing pressure. In areas open to fishing, exploited populations fell by an average of 33% in the decade to 2015.

A plate of sushi
Stocks of fish used to make sushi have declined in number.
Shutterstock

So what’s driving overfishing?

There are many reasons why overfishing occurs and why it is goes unchecked. The evidence points to:




Read more:
The race to fish: how fishing subsidies are emptying our oceans


Let’s take Indonesia as an example. Indonesia lies between the Pacific and Indian oceans and is the world’s third-biggest producer of wild-capture fish after China and Peru. Some 60% of the catch is made by small-scale fishers. Many hail from poor coastal communities.

Overfishing was first reported in Indonesia in the 1970s. It prompted a presidential decree in 1980, banning trawling off the islands of Java and Sumatra. But overfishing continued into the 1990s, and it persists today. Target species include reef fishes, lobster, prawn, crab, and squid.

Indonesia’s experience shows how there is no easy fix to the overfishing problem. In 2017, the Indonesian government issued a decree that was supposed to keep fishing to a sustainable level – 12.5 million tonnes per year. Yet, in may places, the practice continued – largely because the rules were not clear and local enforcement was inadequate.

Implementation was complicated by the fact that almost all Indonesia’s smaller fishing boats come under the control of provincial governments. This reveals the need for better cooperation between levels of government in cracking down on overfishing.

Man checks fishing haul
Globally, compliance and enforcement of fishing limits is often poor.
Shutterstock

What else can we do?

To prevent overfishing, governments should address the issue of poverty and poor education in small fishing communities. This may involve finding them a new source of income. For example in the town of Oslob in the Philippines, former fishermen and women have turned to tourism – feeding whale sharks tiny amounts of krill to draw them closer to shore so tourists can snorkel or dive with them.

Tackling overfishing in the Pacific will also require cooperation among nations to monitor fishing practices and enforce the rules.

And the world’s network of marine protected areas should be expanded and strengthened to conserve marine life. Currently, less than 3% of the world’s oceans are highly protected “no take” zones. In Australia, many marine reserves are small and located in areas of little value to commercial fishers.

The collapse of fisheries around the world shows just how vulnerable our marine life is. It’s clear that humans are exploiting the oceans beyond sustainable levels. Billions of people rely on seafood for protein and for their livelihoods. But by allowing overfishing to continue, we harm not just the oceans, but ourselves.

fish in a net
Providing fishers with an alternative income can help prevent overfishing.
Shutterstock



Read more:
Poor Filipino fishermen are making millions protecting whale sharks


The threat of acidic oceans

The tropical and subtropical waters of the Pacific Ocean are home to more than 75% of the world’s coral reefs. These include the Great Barrier Reef and more remote reefs in the Coral Triangle, such as those in Indonesia and Papua New Guinea.

Coral reefs are bearing the brunt of climate change. We hear a lot about how coral bleaching is damaging coral ecosystems. But another insidious process, ocean acidification, is also threatening reef survival.

Ocean acidification particularly affects shallow waters, and the subarctic Pacific region is particularly vulnerable.

Coral reefs cover less than 0.5% of Earth’s surface, but house an estimated 25% of all marine species. Due to ocean acidification and other threats, these incredibly diverse “underwater rainforests” are among the most threatened ecosystems on the planet.

A chemical reaction

Ocean acidification involves a decrease in the pH of seawater as it absorbs carbon dioxide (CO₂) from the atmosphere.

Each year, humans emit 35 billion tonnes of CO₂ through activities such as burning of fossil fuels and deforestation.

Oceans absorb up to 30% of atmospheric CO₂, setting off a chemical reaction in which concentrations of carbonate ions fall, and hydrogen ion concentrations increase. That change makes the seawater more acidic.

Since the Industrial Revolution, ocean pH has decreased by 0.1 units. This may not seem like much, but it actually means the oceans are now about 28% more acidic than since the mid-1800s. And the Intergovernmental Panel on Climate Change (IPCC) says the rate of acidification is accelerating.

An industrial city from the air
Each year, humans emit 35 billion tonnes of CO₂.
Shutterstock

Why is ocean acidification harmful?

Carbonate ions are the building blocks for coral structures and organisms that build shells. So a fall in the concentrations of carbonate ions can spell bad news for marine life.

In more acidic waters, molluscs have been shown to have trouble making and repairing their shells. They also exhibit impaired growth, metabolism, reproduction, immune function, and altered behaviours. For example, researchers exposed sea hares (a type of sea slug) in French Polynesia to simulated ocean acidification and found they had less foraging success and made poorer decisions.

Ocean acidification is also a problem for the fishes. Many studies have revealed elevated CO₂ can disrupt their sense of smell, vision and hearing. It can also impair survival traits, such as a fish’s ability to learn, avoid predators, and select suitable habitat.

Such impairment appears to be the result of changes in neurological, physiological, and molecular functions in fish brains.

A sea hare
Sea hares exposed to acidification made poorer decisions.
Shutterstock

Predicting the winners and losers

Of the seven oceans, the Pacific and Indian Oceans have been acidifying at the fastest rates since 1991. This suggests their marine life may also be more vulnerable.

However, ocean acidification does not affect all marine species in the same way, and the effects can vary over the organism’s lifetime. So, more research to predict the future winners and losers is crucial.

This can be done by identifying inherited traits that can increase an organism’s survival and reproductive success under more acidic conditions. Winner populations may start to adapt, while loser populations should be targets for conservation and management.




Read more:
Acid oceans are shrinking plankton, fuelling faster climate change


One such winner may be the epaulette shark, a shallow water reef species endemic to the Great Barrier Reef. Research suggests simulated ocean acidification conditions do not impact early growth, development, and survival of embryos and neonates, nor do they affect foraging behaviours or metabolic performance of adults.

But ocean acidification is also likely to create losers on the Great Barrier Reef. For example, researchers studying the orange clownfish – a species made famous by Disney’s animated Nemo character – found they suffered multiple sensory impairments under simulated ocean acidification conditions. These ranged from difficulties smelling and hearing their way home, to distinguishing friend from foe.

A clownfish
Clownfish struggled to tell friend from foe when exposed to ocean acidification.
Shutterstock

It’s not too late

More than half a billion people depend on coral reefs for food, income, and protection from storms and coastal erosion. Reefs provide jobs – such as in tourism and fishing – and places for recreation. Globally, coral reefs represent an industry worth US$11.9 trillion per year. And importantly, they’re a place of deep cultural and spiritual connection for Indigenous people around the world.

Ocean acidification is not the only threat to coral reefs. Under climate change, the rate of ocean warming has doubled since the 1990s. The Great Barrier Reef, for example, has warmed by 0.8℃ since the Industrial Revolution. Over the past five years this has caused devastating back-to-back coral bleaching events. The effects of warmer seas are magnified by ocean acidification.




Read more:
Coronavirus is a ‘sliding doors’ moment. What we do now could change Earth’s trajectory


Cutting greenhouse gas emissions must become a global mission. COVID-19 has slowed our movements across the planet, showing it’s possible to radically slash our production of CO₂. If the world meets the most ambitious goals of the Paris Agreement and keeps global temperature increases below 1.5℃, the Pacific will experience far less severe decreases in oceanic pH.

We will, however, have to curb emissions by a lot more – 45% over the next decade – to keep global warming below 1.5℃. This would give some hope that coral reefs in the Pacific, and worldwide, are not completely lost.

Clearly, the decisions we make today will affect what our oceans look like tomorrow.The Conversation

The Pacific Ocean off the Taiwan coast
Our decisions today will determine the fate of tomorrow’s oceans.
Shutterstock

Jodie L. Rummer, Associate Professor & Principal Research Fellow, James Cook University; Bridie JM Allan, Lecturer/researcher, University of Otago; Charitha Pattiaratchi, Professor of Coastal Oceanography, University of Western Australia; Ian A. Bouyoucos, Postdoctoral fellow, James Cook University; Irfan Yulianto, Lecturer of Fisheries Resources Utilization, IPB University, and Mirjam van der Mheen, Fellow, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Pacific killer whales are dying — new research shows why



A female killer whale leaps from the water in Puget Sound near Seattle.
(AP Photo/Elaine Thompson)

Stephen Raverty, University of British Columbia and Joseph K. Gaydos, University of California, Davis

Killer whales are icons of the northeastern Pacific Ocean. They are intimately associated with the region’s natural history and First Nations communities. They are apex predators, with females living as long as 100 years old, and recognized a sentinels of ecosystem health — and some populations are currently threatened with extinction.

There are three major types of killer whales in the region: the “resident” populations that feed mainly on salmon, the “transients” that prey on other marine mammals like seals and sea lions, and the “offshores” that transit along the continental shelf, eating fish and sharks.

In the 1990s, an abrupt decline in the fish-eating southern resident population dropped to 75 whales from 98, prompting both Canada and the United States to list them as endangered.

A dead killer whale lies on her side in shallow water.
Emaciated female killer whale from Hawaii.
(NOAA/NMFS/PIRO), CC BY

Since then, southern resident killer whales, whose range extends from the waters off the southeast Alaska and the coast of British Columbia to California, have not recovered — only 74 remain today. Because killer whale strandings are rare, scientists have been uncertain about the causes of killer whale mortality and how additional deaths might be prevented in the future.

As a pathologist and wildlife veterinarian, and with the help of countless biologists and veterinarians, we have carried out in-depth investigations into why killer whales in this region strand and died. If we don’t know what is causing killer whale deaths, we are not able to prevent the ones that are human-caused.

We can do better

Human activities have been implicated in the decline and lack of recovery of the southern resident killer whale population, including ship noise and strikes, contaminants, reduced prey abundance and past capture of these animals for aquariums.

Only three per cent and 20 per cent of the northern and southern resident killer whales, respectively, that died between 1925 and 2011 were even found and available for a post-mortem exam. And in most cases, only cursory or incomplete post-mortem exams can be done, generating a limited amount of information.

To figure out why these killer whales are dying — and what it means for the health of individual animals and the population as a whole — we reviewed the post-mortem records of 53 animals that became stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013. We identified the cause of death in 22 animals, and gained important insight from nine other animals where the cause of death could not be determined.

Human-caused injuries were found in nearly every age group of whales, including adults, sub-adults and calves. Some had ingested fishing hooks, but evidence of blunt-force trauma, consistent with ship and propeller strikes, was more common.

A dead killer whale lies on a beach
The 18-year-old male southern resident killer whale, J34, stranded near Sechelt, B.C., on Dec. 21, 2016. Post-mortem examination suggested he died from trauma consistent with vessel strike.
(Paul Cottrell/Fisheries and Oceans Canada), Author provided

This is the first study to document the lesions and forensic evidence of lethal trauma from ship and propeller strikes.

In recent years governments have focused on limiting vessel noise and disturbance. This study reinforces the need for this, showing that in addition to noise and disturbance, vessel strikes are an important cause of death in killer whales.

Direct human impact

We also developed a body condition index to evaluate the animals’ nutritional health — were they eating enough salmon, for example — to see what role food might play in the sickness and death of stranded animals. Observations of free-ranging killer whales from boats and by unmanned aerial drones have documented sub-optimal body condition or generalized emaciation in many southern resident killer whales.

In this study, we found that longer and therefore older animals tend to have thicker blubber. Our study also found that those animals that died from blunt-force trauma had a better body condition — they were in good health before death. Those that died from infections or nutritional causes were more likely to be in worse body condition.

This new body condition index can help scientists better understand the health of killer whales, and gives us a tool to evaluate their health regardless of their age, reproductive status and health condition.

Our team, working with numerous collaborators including the National Marine Mammal Foundation, is building a health database of the killer whales living in the northeastern Pacific Ocean so that their health can be tracked over time. This centralized database will let stranding response programs, regional and national government agencies and First Nations communities collaborate with field biologists, research scientists and veterinarians.

Ultimately, the information about the health of these killer whales must be conveyed to the public and policy-makers to ensure that the appropriate legislation is enacted to reverse the downward trend in the health and survival of these killer whales. We should now be able to assess future efforts and gain a better understanding of the impact of ongoing human activities, such as fishing, boating and shipping.The Conversation

Stephen Raverty, Adjunct professor, Veterinary Pathology, University of British Columbia and Joseph K. Gaydos, Wildlife Veterinarian and Science Director, The SeaDoc Society, University of California, Davis

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Japan plans to dump a million tonnes of radioactive water into the Pacific. But Australia has nuclear waste problems, too


Tilman Ruff, University of Melbourne and Margaret Beavis

The Japanese government recently announced plans to release into the sea more than 1 million tonnes of radioactive water from the severely damaged Fukushima Daiichi nuclear plant.

The move has sparked global outrage, including from UN Special Rapporteur Baskut Tuncak who recently wrote,

I urge the Japanese government to think twice about its legacy: as a true champion of human rights and the environment, or not.

Alongside our Nobel Peace Prize-winning work promoting nuclear disarmament, we have worked for decades to minimise the health harms of nuclear technology, including site visits to Fukushima since 2011. We’ve concluded Japan’s plan is unsafe, and not based on evidence.

Japan isn’t the only country with a nuclear waste problem. The Australian government wants to send nuclear waste to a site in regional South Australia — a risky plan that has been widely criticised.

Contaminated water in leaking tanks

In 2011, a massive earthquake and tsunami resulted in the meltdown of four large nuclear reactors, and extensive damage to the reactor containment structures and the buildings which house them.

Water must be poured on top of the damaged reactors to keep them cool, but in the process, it becomes highly contaminated. Every day, 170 tonnes of highly contaminated water are added to storage on site.

As of last month, this totalled 1.23 million tonnes. Currently, this water is stored in more than 1,000 tanks, many hastily and poorly constructed, with a history of leaks.

How does radiation harm marine life?

If radioactive material leaks into the sea, ocean currents can disperse it widely. The radioactivity from Fukushima has already caused widespread contamination of fish caught off the coast, and was even detected in tuna caught off California.




Read more:
Four things you didn’t know about nuclear waste


Ionising radiation harms all organisms, causing genetic damage, developmental abnormalities, tumours and reduced fertility and fitness. For tens of kilometres along the coast from the damaged nuclear plant, the diversity and number of organisms have been depleted.

Of particular concern are long-lived radioisotopes (unstable chemical elements) and those which concentrate up the food chain, such as cesium-137 and strontium-90. This can lead to fish being thousands of times more radioactive than the water they swim in.

Failing attempts to de-contaminate the water

In recent years, a water purification system — known as advanced liquid processing — has been used to treat the contaminated water accumulating in Fukushima to try to reduce the 62 most important contaminating radioisotopes.

But it hasn’t been very effective. To date, 72% of the treated water exceeds the regulatory standards. Some treated water has been shown to be almost 20,000 times higher than what’s allowed.




Read more:
The cherry trees of Fukushima


One important radioisotope not removed in this process is tritium — a radioactive form of hydrogen with a half-life of 12.3 years. This means it takes 12.3 years for half of the radioisotope to decay.

Tritium is a carcinogenic byproduct of nuclear reactors and reprocessing plants, and is routinely released both into the water and air.

The Japanese government and the reactor operator plan to meet regulatory limits for tritium by diluting contaminated water. But this does not reduce the overall amount of radioactivity released into the environment.

How should the water be stored?

The Japanese Citizens Commission for Nuclear Energy is an independent organisation of engineers and researchers. It says once water is treated to reduce all significant isotopes other than tritium, it should be stored in 10,000-tonne tanks on land.

If the water was stored for 120 years, tritium levels would decay to less than 1,000th of the starting amount, and levels of other radioisotopes would also reduce. This is a relatively short and manageable period of time, in terms of nuclear waste.

Then, the water could be safely released into the ocean.

Nuclear waste storage in Australia

Australians currently face our own nuclear waste problems, stemming from our nuclear reactors and rapidly expanding nuclear medicine export business, which produces radioisotopes for medical diagnosis, some treatments, scientific and industrial purposes.




Read more:
Australia should explore nuclear waste before we try domestic nuclear power


This is what happens at our national nuclear facility at Lucas Heights in Sydney. The vast majority of Australia’s nuclear waste is stored on-site in a dedicated facility, managed by those with the best expertise, and monitored 24/7 by the Australian Federal Police.

But the Australian government plans to change this. It wants to transport and temporarily store nuclear waste at a facility at Kimba, in regional South Australia, for an indeterminate period. We believe the Kimba plan involves unnecessary multiple handling, and shifts the nuclear waste problem onto future generations.

The proposed storage facilities in Kimba are less safe than disposal, and this plan is well below world’s best practice.

The infrastructure, staff and expertise to manage and monitor radioactive materials in Lucas Heights were developed over decades, with all the resources and emergency services of Australia’s largest city. These capacities cannot be quickly or easily replicated in the remote rural location of Kimba. What’s more, transporting the waste raises the risk of theft and accident.

And in recent months, the CEO of regulator ARPANSA told a senate inquiry there is capacity to store nuclear waste at Lucas Heights for several more decades. This means there’s ample time to properly plan final disposal of the waste.

The legislation before the Senate will deny interested parties the right to judicial review. The plan also disregards unanimous opposition by Barngarla Traditional Owners.




Read more:
Uranium mines harm Indigenous people – so why have we approved a new one?


The Conversation contacted Resources Minister Keith Pitt who insisted the Kimba site will consolidate waste from more than 100 places into a “safe, purpose-built, state-of-the-art facility”. He said a separate, permanent disposal facility will be established for intermediate level waste in a few decades’ time.

Pitt said the government continues to seek involvement of Traditional Owners. He also said the Kimba community voted in favour of the plan. However, the voting process was criticised on a number of grounds, including that it excluded landowners living relatively close to the site, and entirely excluded Barngarla people.

Kicking the can down the road

Both Australia and Japan should look to nations such as Finland, which deals with nuclear waste more responsibly and has studied potential sites for decades. It plans to spend 3.5 billion euros (A$5.8 billion) on a deep geological disposal site.




Read more:
Risks, ethics and consent: Australia shouldn’t become the world’s nuclear wasteland


Intermediate level nuclear waste like that planned to be moved to Kimba contains extremely hazardous materials that must be strictly isolated from people and the environment for at least 10,000 years.

We should take the time needed for an open, inclusive and evidence-based planning process, rather than a quick fix that avoidably contaminates our shared environment and creates more problems than it solves.

It only kicks the can down the road for future generations, and does not constitute responsible radioactive waste management.


The following are additional comments provided by Resources Minister Keith Pitt in response to issues raised in this article (comments added after publication):

(The Kimba plan) will consolidate waste into a single, safe, purpose-built, state-of-the-art facility. It is international best practice and good common sense to do this.

Key indicators which showed the broad community support in Kimba included 62 per cent support in the local community ballot, and 100 per cent support from direct neighbours to the proposed site.

In assessing community support, the government also considered submissions received from across the country and the results of Barngarla Determination Aboriginal Corporation’s own vote.

The vast majority of Australia’s radioactive waste stream is associated with nuclear medicine production that, on average, two in three Australians will benefit from during their lifetime.

The facility will create a new, safe industry for the Kimba community, including 45 jobs in security, operations, administration and environmental monitoring.The Conversation

Tilman Ruff, Associate Professor, Education and Learning Unit, Nossal Institute for Global Health, School of Population and Global Health, University of Melbourne and Margaret Beavis, Tutor Principles of Clinical Practice Melbourne Medical School

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Pacific Islands must stop relying on foreign aid to adapt to climate change, because the money won’t last



Patrick Nunn, Author provided

Patrick D. Nunn, University of the Sunshine Coast and Roselyn Kumar, University of the Sunshine Coast

The storm of climate change is approaching the Pacific Islands. Its likely impact has been hugely amplified by decades of global inertia and the islands’ growing dependency on developed countries.

The background to this situation is straightforward. For a long time, richer developed countries have been underwriting the costs of climate change in poorer developing countries, leaving them reliant on Western solutions to their climate-related issues.




Read more:
Their fate isn’t sealed: Pacific nations can survive climate change – if locals take the lead


But as rising sea water continues to encroach on these low-lying Pacific islands, inundating infrastructure and even cemeteries, it’s clear almost every externally sponsored attempt at climate adaptation has failed here.

And as the costs of adaptation in richer countries escalate, this funding support to developing countries will likely taper out in future.

We’ve researched climate change adaptation in the Pacific for more than 50 years. We argue this trend is not merely unsustainable, but also dangerous. Pacific Island nations must start drawing from traditional knowledge to adapt to climate change, rather than continue to rely on foreign funds.

The ruins of a sea wall on a coastline.
High waves destroyed this sea wall on Majuro Atoll (Marshall Islands).
Patrick Nunn, Author provided

Western solutions don’t always work

On a global scale, climate adaptation strategies have largely been either ineffective or unsustainable.

This is especially the case in non-Western contexts, where Western science continues to be privileged. In the Pacific Islands, this is often because these Western strategies invariably subordinate, even ignore, funding recipients’ culturally grounded worldviews.

A good example is the desire of foreign donors to build hard structures, such as sea walls, to protect eroding coasts. This is the preferred strategy in richer nations.

However it does not embrace nature-based solutions such as replanting coastal mangroves, which can be more readily sustained in poorer contexts.

A likely scenario

The availability of external financial assistance means developing countries have become more dependent on their richer counterparts for climate change adaptation.

For example, between 2016 and 2019, Australia provided A$300 million to help Pacific Island nations adapt to climate change, committing to a further $500 million to 2025. This left little need or incentive for these countries to fund their own adaptation needs.




Read more:
Pacific Island nations will no longer stand for Australia’s inaction on climate change


But imagine this climate change scenario. Ten years from now, unprecedented rainfall is dumped on Australia’s east coast over a prolonged period. Several cities become flooded and remain so for weeks.

In the aftermath, the Australian government scrambles to make recently flooded areas liveable once more. They build a series of massive coastal dikes – structures to prevent the rising sea from flooding populated areas.

The cost is exorbitant and unanticipated – like COVID-19 – so the government will look for ways to shuffle money around. This may well include reducing financial aid for climate change adaptation in poorer countries.

Plunging international aid

Economic modelling shows nations will incur massive costs this century to adapt to climate change within their own borders. So it’s almost inevitable wealthier countries will rethink the extent of their assistance to the developing world.

A chart showing the projected adaptation aid to the Pacific Islands.
Recent and projected Australian GDP and adaptation aid to Pacific Island.
countries.

Patrick Nunn, Author provided

In fact, even before the pandemic, Australia’s foreign aid budget was projected to decrease in real terms by nearly 12% from 2020 to 2023.

These factors do not bode well for developing countries, which will be facing higher climate adaptation costs and dwindling foreign aid assistance.




Read more:
Australia is spending less on diplomacy than ever before – and its influence is suffering as a result


Building autonomy with ‘cashless adaptation’

Leaders of developing countries should anticipate this situation now, and reverse their growing dependence on outside assistance.

For example, rural communities in regions like the Pacific Islands could revive their use of “cashless adaptation”. This means developing ways of adapting livelihoods to climate change that cost nothing.

These methods include the intentional planting of surplus crops, the use of traditional methods of food preservation and water storage, the use of free locally-available materials and labour for constructing sea defences. And it perhaps even includes the recognition that living along coastal fringes exposes you unnecessarily to weather-related change.

Prior to globalisation, this is how it was for decades, even centuries, in places like the rural Pacific islands. Then, adaptation to a changing environment was sustained by cooperation with one another and the use of freely available materials, not with cash.

Researchers have also argued for such “looking forward to the past” strategies regarding Hawaii’s climate adaptation.

And research from last year in Fiji showed more rural communities still have and use a stock of traditional methods for anticipating and withstanding disasters, such as flood and drought.




Read more:
Five years on from the earthquake in Bhaktapur, Nepal, heritage-led recovery is uniting community


We can take this argument further. Perhaps it’s time for Pacific Island nations to rediscover traditional medicines, at least for primary health care, to supplement western medicine.

Greater production and consumption of locally grown foods, over imported foods, is also an important and valuable transformation.

The future of the developing world

A hut with a large pointed roof, built with local materials.
Dirak faluw (‘men’s house’) at Wanyaan Village on Yap (Micronesia) was.
constructed by community labour using local-available materials.

Roselyn Kumar, Author provided

The need for nations to adapt to unanticipated phenomena like climate change and COVID-19 encourages de-globalisation – including that countries depend less on cross-border aid and economic activity. So it seems inevitable that under current global circumstances, smaller economies will be forced to become more efficient and self-reliant.

Restoring traditional adaptation strategies would not only drive effective and sustainable climate change adaptation, but also would restore residents’ beliefs in their own time-honoured ways of coping with environmental shocks.

This not only means finding ways to reduce costs through cashless adaptation, but also to explore radical ways of reducing dependency and increasing autonomy. An appeal to past practice, and traditional ways of coping, is well worth considering.The Conversation

Patrick D. Nunn, Professor of Geography, School of Social Sciences, University of the Sunshine Coast and Roselyn Kumar, , University of the Sunshine Coast

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Whales and dolphins found in the Great Pacific Garbage Patch for the first time



Adult and infant sperm whales have been spotted in the Great Pacific Garbage Patch.
Inf-Lite Teacher/Flickr, CC BY-SA

Chandra Salgado Kent, Edith Cowan University

Scientific research doesn’t usually mean being strapped in a harness by the open paratroop doors of a Vietnam-war-era Hercules plane. But that’s the situation I found myself in several years ago, the result of which has just been published in the journal Marine Biodiversity.

As part of the Ocean Cleanup’s Aerial Expedition, I was coordinating a visual survey team assessing the largest accumulation of ocean plastic in the world: the Great Pacific Garbage Patch.




Read more:
The ocean’s plastic problem is closer to home than scientists first thought


When the aircraft’s doors opened in front of me over the Pacific Ocean for the first time, my heart jumped into my throat. Not because I was looking 400m straight down to the wild sea below as it passed at 260km per hour, but because of what I saw.

This was one of the most remote regions of the Pacific Ocean, and the amount of floating plastic nets, ropes, containers and who-knows-what below was mind-boggling.

However, it wasn’t just debris down there. For the first time, we found proof of whales and dolphins in the Great Pacific Garbage Patch, which means it’s highly likely they are eating or getting tangled in the huge amount of plastic in the area.

The Great Pacific Garbage Patch

The Great Pacific Garbage Patch is said to be the largest accumulation of ocean plastic in the world. It is located between Hawaii and California, where huge ocean currents meet to form the North Pacific subtropical gyre. An estimated 80,000 tonnes of plastic are floating in the Great Pacific Garbage Patch.




Read more:
The major source of ocean plastic pollution you’ve probably never heard of


Our overall project was overseen and led by The Ocean Cleanup’s founder Boyan Slat and then-chief scientist Julia Reisser. We conducted two visual survey flights, each taking an entire day to travel from San Francisco’s Moffett Airfield, survey for around two hours, and travel home. Along with our visual observations, the aircraft was fitted with a range of sensors, including a short-wave infrared imager, a Lidar system (which uses the pulse from lasers to map objects on land or at sea), and a high-resolution camera.

Both visual and technical surveys found whales and dolphins, including sperm and beaked whales and their young calves. This is the first direct evidence of whales and dolphins in the heart of the Great Pacific Garbage Patch.

Mating green turtles in a sea of plastics.
photo by Chandra P. Salgado Kent, Author provided

Plastics in the ocean are a growing problem for marine life. Many species can mistake plastics for food, consume them accidentally along with their prey or simply eat fish that have themselves eaten plastic.

Both beaked and sperm whales have been recently found with heavy plastic loads in their stomachs. In the Philippines, a dying beaked whale was found with 40kg of plastic in its stomach, and in Indonesia, a dead sperm whale washed ashore with 115 drinking cups, 25 plastic bags, plastic bottles, two flip-flops, and more than 1,000 pieces of string in its stomach.

The danger of ghost nets

The most common debris we were able to identify by eye was discarded or lost fishing nets, often called “ghost nets”. Ghost nets can drift in the ocean for years, trapping animals and causing injuries, starvation and death.

Crew sorts plastic debris collected from the Great Pacific Garbage Patch on a voyage in July 2019.
EPA/THE OCEAN CLEANUP

Whales and dolphins are often found snared in debris. Earlier this year, a young sperm whale almost died after spending three years tangled in a rope from a fishing net.

During our observation we saw young calves with their mothers. Calves are especially vulnerable to becoming trapped. With the wide range of ocean plastics in the garbage patch, it is highly likely animals in the area ingest and become tangled in it.

It’s believed the amount of plastics in the ocean could triple over the next decade. It is clear the problem of plastic pollution has no political or geographic boundaries.




Read more:
There are some single-use plastics we truly need. The rest we can live without


While plastics enter the sea from populated areas, global currents transport them across oceans. Plastics can kill animals, promote disease, and harm the environment, our food sources and people.

The most devastating effects fall on communities in poverty. New research shows the Great Pacific Garbage Patch is rapidly growing, posing a greater threat to wildlife. It reinforces the global movement to reduce, recycle and remove plastics from the environment.

But to really tackle this problem we need creative solutions at every level of society, from communities to industries to governments and international organisations.

To take one possibility, what if we invested in fast-growing, sustainably cultivated bamboo to replace millions of single-use plastics? It could be produced by the very countries most affected by this crisis: poorer and developing nations.




Read more:
Designing new ways to make use of ocean plastic


It is only one of many opportunities to dramatically reduce plastic waste, improve the health of our environments and people, and to help communities most susceptible to plastic pollution.The Conversation

Chandra Salgado Kent, Associate Professor, School of Science, Edith Cowan University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tens of thousands of tuna-attracting devices are drifting around the Pacific



Fish are attracted to floating objects, especially with dangling ropes or nets.
WorldFish/Flickr, CC BY-NC-SA

Joe Scutt Phillips, Secretariat of the Pacific Community; Alex Sen Gupta, UNSW; Graham Pilling, Secretariat of the Pacific Community, and Lauriane Escalle, Secretariat of the Pacific Community

Tropical tuna are one of the few wild animals we still hunt in large numbers, but finding them in the vast Pacific ocean can be tremendously difficult. However, fishers have long known that tuna are attracted to, and will aggregate around, floating objects such as logs.

In the past, people used bamboo rafts to attract tuna, fishing them while they were gathered underneath. Today, the modern equivalent – called fish aggregating devices, or FADs – usually contain high-tech equipment that tell fishers where they are and how many fish have accumulated nearby.




Read more:
Sustainable shopping: how to buy tuna without biting a chunk out of the oceans


It’s estimated that between 30,000 and 65,000 man-made FADs are deployed annually and drift through the Western and Central Pacific Ocean to be fished on by industrial fishers. Pacific island countries are reporting a growing number of FADs washing up on their beaches, damaging coral reefs and potentially altering the distribution of tuna.

Our research in two papers, one of which was published today in Scientific Reports, looks for the first time at where ocean currents take these FADs and where they wash up on coastlines in the Pacific.

A yellowfin tuna caught by purse seine fishers. This individual is one of the largest that can be caught using FADs.
Lauriane Escalle

Attracting fish and funds

We do not fully understand why some fish and other marine creatures aggregate around floating objects, but they are a source of attraction for many species. FADs are commonly made of a raft with 30-80m of old ropes or nets hanging below. Modern FADs are attached to high-tech buoys with solar-powered electronics.

The buoys record a FAD’s position as it drifts slowly across the Pacific, scanning the water below to measure tuna numbers with echo-sounders and transmitting this valuable information to fishing vessels by satellite.

Tuna hauled aboard the fishing vessel Dolores. The tuna trade in the Pacific Ocean is worth more than US$6 billion a year.
Siosifa Fukofuka (SPC), Author provided

Throughout their lifetimes FADs may be exchanged between vessels, recovered and redeployed, or fished and simply left to drift with their buoy to further aggregate tuna. Fishers may then abandon them and remotely deactivate the buoys’ satellite transmission when the FAD leaves the fishing area.

The Western and Pacific Ocean provides around 55% of the worlds’ 5 million tonne catch of tropical tuna, and is the main source of skipjack, yellowfin and bigeye tuna worth some US$6 billion annually.

Pacific Islanders with a FAD buoy that washed up on their reef.
Joe Scutt Phillips, Author provided

Fishing licence fees can provide up to 98% of government revenue for some Pacific Island countries and territories. These countries balance the need to sustainably manage and harvest one of the only renewable resources they have, while often having a limited capacity to fish at an industrial scale themselves.

FADs help stabilise catch rates and make fishing fleets more profitable, which in turn generate revenue for these nations.

However, they are not without problems. Catches around FADs tend to include more bycatch species, such as sharks and turtles, as well as smaller immature tuna.

The abandonment or loss of FADs adds to the growing mass of marine debris floating in the ocean, and they increasingly damage coral as they are dragged and get caught on reefs.

Perhaps most importantly, we don’t know how the distribution of FADs affects fishing effort in the region. Given that each fleet and fishing company has their own strategy for using FADs, understanding how the total number of FADs drifting in one area increases the catch of tuna is crucial for sustainably managing these valuable species.

Where do FADs end up?

Our research, published in Environmental Research Communications and Scientific Reports, used a regional FAD tracking program and fishing data submitted by Pacific countries, in combination with numerical ocean models and simulations of virtual FADs, to work out how FADs travel on ocean currents during and after their use.

In general, FADs are first deployed by fishers in the eastern and central Pacific. They then drift west with the prevailing currents into the core industrial tropical tuna fishing zones along the equator.

We found equatorial countries such as Kiribati have a high number of FADs moving through their waters, with a significant amount washing up on their shores. Our research showed these high numbers are primarily due to the locations in which FADs are deployed by fishing companies.

In contrast, Tuvalu, which is situated on the edge of the equatorial current divergence zone, also sees a high density of FADs and beaching. But this appears to be an area that generally aggregates FADs regardless of where they are deployed.

Unsurprisingly, many FADs end up beaching in countries at the western edge of the core fishing grounds, having drifted from different areas of the Pacific as far away as Ecuador. This concentration in the west means reefs along the edge of the Solomon Islands and Papua New Guinea are particularly vulnerable, with currents apparently forcing FADs towards these coasts more than other countries in the region.

FAD found beached in Touho (New Caledonia) in 2019.
A. Durbano, Association Hô-üt’, Author provided

Overall, our studies estimate that between 1,500 and 2,200 FADs drifting through the Western and Central Pacific Ocean wash up on beaches each year. This is likely to be an underestimate, as the tracking devices on many FADs are remotely deactivated as they leave fishing zones.

Using computer simulations, we also found that a significant number of FADs are deployed in the eastern Pacific Ocean, left to drift so they have time to aggregate tuna, and subsequently fished on in the Western and Central Pacific Ocean. This complicates matters as the eastern Pacific is managed by an entirely different fishery Commission with its own set of fisheries management strategies and programmes.

Growing human populations and climate change are increasing pressure on small island nations. FAD fishing is very important to their economic and food security, allowing access to the wealth of the ocean’s abundance.




Read more:
How blockchain is strengthening tuna traceability to combat illegal fishing


We need to safeguard these resources, with effective management around the number and location of FAD deployments, more research on their impact on tuna and bycatch populations, the use of biodegradable FADs, or effective recovery programs to remove old FADs from the ocean at the end of their slow journeys across the Pacific.The Conversation

Joe Scutt Phillips, Senior Fisheries Scientists (Tuna Behavioural Ecology), Secretariat of the Pacific Community; Alex Sen Gupta, Senior Lecturer, School of Biological, Earth and Environmental Sciences, UNSW; Graham Pilling, Principal Fisheries Scientist, Secretariat of the Pacific Community, and Lauriane Escalle, Fisheries Scientist, Secretariat of the Pacific Community

This article is republished from The Conversation under a Creative Commons license. Read the original article.

There’s no ‘garbage patch’ in the Southern Indian Ocean, so where does all the rubbish go?


File 20190401 177175 1wvztzj.jpg?ixlib=rb 1.1
Plastic waste on a remote beach in Sri Lanka.
Author provided

Mirjam van der Mheen, University of Western Australia; Charitha Pattiaratchi, University of Western Australia, and Erik van Sebille, Utrecht University

Great areas of our rubbish are known to form in parts of the Pacific and Atlantic oceans. But no such “garbage patch” has been found in the Southern Indian Ocean.

Our research – published recently in Journal of Geophysical Research: Oceans – looked at why that’s the case, and what happens to the rubbish that gets dumped in this particular area.

Every year, up to 15 million tonnes of plastic waste is estimated to make its way into the ocean through coastlines (about 12.5 million tonnes) and rivers (about 2.5 million tonnes). This amount is expected to double by 2025.




Read more:
A current affair: the movement of ocean waters around Australia


Some of this waste sinks in the ocean, some is washed up on beaches, and some floats on the ocean surface, transported by currents.

The garbage patches

As plastic materials are extremely durable, floating plastic waste can travel great distances in the ocean. Some floating plastics collect in the centre of subtropical circulating currents known as gyres, between 20 to 40 degrees north and south, to create these garbage patches.

The Great Pacific Garbage Patch.
National Oceanic and Atmospheric Administration

Here, the ocean currents converge at the centre of the gyre and sink. But the floating plastic material remains at the surface, allowing it to concentrate in these regions.

The best known of these garbage patches is the Great Pacific Garbage Patch, which contains about 80,000 tonnes of plastic waste. As the National Oceanic and Atmospheric Administration points out, the “patches” are not actually clumped collections of easy-to-see debris, but concentrations of litter (mostly small pieces of floating plastic).

Similar, but smaller, patches exist in the North and South Atlantic Oceans and the South Pacific Ocean. In total, it is estimated that only 1% of all plastic waste that enters the ocean is trapped in the garbage patches. It is still a mystery what happens to the remaining 99% of plastic waste that has entered the ocean.

Rubbish in the Indian Ocean

Even less is known about what happens to plastic in the Indian Ocean, although it receives the largest input of plastic material globally.

For example, it has been estimated that up to 90% of the global riverine input of plastic waste originates from Asia. The input of plastics to the Southern Indian Ocean is mainly through Indonesia. The Australian contribution is small.

The major sources of riverine input of plastic material into the Indian Ocean.
The Ocean Cleanup, CC BY-NC-ND

The Indian Ocean has many unique characteristics compared with the other ocean basins. The most striking factor is the presence of the Asian continental landmass, which results in the absence of a northern ocean basin and generates monsoon winds.

As a result of the former, there is no gyre in the Northern Indian Ocean, and so there is no garbage patch. The latter results in reversing ocean surface currents.

The Indian and Pacific Oceans are connected through the Indonesian Archipelago, which allows for warmer, less salty water to be transported from the Pacific to the Indian via a phenomenon called the Indonesian Throughflow (see graphic, below).

Schematic currents and location of a leaky garbage patch in the southern Indian Ocean: Indonesian Throughflow (ITF), Leeuwin Current (LC), South Indian Counter Current (SICC), Agulhas Current (AC).
Author provided

This connection also results in the formation of the Leeuwin Current, a poleward (towards the South Pole) current that flows alongside Australia’s west coast.

As a result, the Southern Indian Ocean has poleward currents on both eastern and western margins of the ocean basin.

Also, the South Indian Counter Current flows eastwards across the entire width of the Southern Indian Ocean, through the centre of the subtropical gyre, from the southern tip of Madagascar to Australia.

The African continent ends at around 35 degrees south, which provides a connection between the southern Indian and Atlantic Oceans.

How to follow that rubbish

In contrast to other ocean basins, the Indian Ocean is under-sampled, with only a few measurements of plastic material available. As technology to remotely track plastics does not yet exist, we need to use indirect ways to determine the fate of plastic in the Indian Ocean.

We used information from more than 22,000 satellite-tracked surface drifting buoys that have been released all over the world’s oceans since 1979. This allowed us to simulate pathways of plastic waste globally, with an emphasis on the Indian Ocean.

Global simulated concentration of floating waste after 50 years.
Mirjam van der Mheen, Author provided

We found that unique characteristics of the Southern Indian Ocean transport floating plastics towards the ocean’s western side, where it leaks past South Africa into the South Atlantic Ocean.

Because of the Asian monsoon system, the southeast trade winds in the Southern Indian Ocean are stronger than the trade winds in the Pacific and Atlantic Oceans. These strong winds push floating plastic material further to the west in the Southern Indian Ocean than they do in the other oceans.

So the rubbish goes where?

This allows the floating plastic to leak more readily from the Southern Indian Ocean into the South Atlantic Ocean. All these factors contribute to an ill-defined garbage patch in the Southern Indian Ocean.

Simulated concentration of floating waste over 50 years in the Indian Ocean.

In the Northern Indian Ocean our simulations showed there may be an accumulation of waste in the Bay of Bengal.




Read more:
‘Missing plastic’ in the oceans can be found below the surface


It is also likely that floating plastics will ultimately end up on beaches all around the Indian Ocean, transported by the reversing monsoon winds and currents. Which beaches will be most heavily affected is still unclear, and will probably depend on the monsoon season.

Our study shows that the atmospheric and oceanic attributes of the Indian Ocean are different to other ocean basins and that there may not be a concentrated garbage patch. Therefore the mystery of all the missing plastic is even greater in the Indian Ocean.The Conversation

Mirjam van der Mheen, PhD Candidate in Oceanography, University of Western Australia; Charitha Pattiaratchi, Professor of Coastal Oceanography, University of Western Australia, and Erik van Sebille, Associate Professor in Oceanography and Climate Change, Utrecht University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

For Pacific Island nations, rising sea levels are a bigger security concern than rising Chinese influence



File 20180830 195328 caziun.jpg?ixlib=rb 1.1
Malcolm Turnbull promised to ‘step up’ Australian engagement with the Pacific last year. Will it continue now that he’s gone?
Lukas Coch/AAP

Michael O’Keefe, La Trobe University

When the Pacific Islands Forum is held in Nauru from September 1, one of the main objectives will be signing a wide-ranging security agreement that covers everything from defence and law and order concerns to humanitarian assistance and disaster relief.

The key question heading into the forum is: can the agreement find a balance between the security priorities of Australia and New Zealand and the needs of the Pacific Island nations?

Even though new Prime Minister Scott Morrison is not attending the forum, sending Foreign Minister Marise Payne instead, the Biketawa Plus security agreement remains a key aim for Canberra.




Read more:
Why China’s ‘debt-book diplomacy’ in the Pacific shouldn’t ring alarm bells just yet


The original Biketawa Declaration was developed as a response to the 2000 coup in Fiji. It has served Australia and the region well, providing a framework for collective action when political tensions and crises occur. However, in the face of rapid change, it looks narrow and dated.

Why act now? The rationale is clear. Much has happened to alter the security landscape in the Pacific since 2000. But despite the commentary in Australia, security in the Pacific is not all about geopolitics. While Australia may be most worried about China’s rising influence in the region, it would be a mistake to think this is the primary preoccupation of Pacific leaders, too.

A focus on climate change as a security issue

One key reason for updating Biketawa is to realign Australia’s security interests with those of Pacific Island countries that have grown more aware of their shared interests and confident in expressing them in international relations. This growing confidence is clear in the lobbying of Pacific nations for climate change action at the United Nations and in Fiji’s role as president of the UN’s COP23 climate talks.

In the absence of direct military threats, the Pacific Island nations are most concerned about security of a different kind. Key issues for the region are sustainable growth along a “blue-green” model, climate change (especially the increasing frequency and intensity of natural disasters and rising sea levels), illegal fishing and over-fishing, non-communicable diseases (NCDs), transnational crime, money laundering and human trafficking.




Read more:
Pacific pariah: how Australia’s love of coal has left it out in the diplomatic cold


Some of these security issues can be addressed by redirecting more Australian military forces to the region. Indeed, “disaster diplomacy” has been an effective method of connecting Australia’s security interests with those of Pacific Island nations in the past.

However, other priorities for the Pacific seem to run counter to Australia’s current policies toward the region. For example, the Pacific’s sustainable “blue-green” development agenda seems incompatible with an export-oriented growth model that is often touted by Australia as an “aid for trade” solution to Pacific “problems”.

Climate change adaptation and mitigation must also be elevated to the top of the agenda in Australia’s relations with the region. It is the most pressing problem in the Pacific, but for political and economic reasons, it hasn’t resonated to the same extent with Canberra.

In fact, Australia has recently been identified as the worst-performing country in the world on climate action. This has not gone unnoticed in the Pacific. Fiji’s prime minister, in particular, has been clear in highlighting that Australia’s “selfish” stance on climate change undermines its credibility in the region.

These shifting priorities in the Pacific present a greater challenge for Australia, especially now that there are more players in the region, such as China, Russia and Indonesia. Australia may see these “outsiders” as potential threats, but Pacific nations are just as likely to view them as alternative development partners able to provide opportunities.

New Coalition team on the Pacific

Making matters even trickier is the leadership shake-up in Canberra. What’s perhaps most problematic is Julie Bishop’s departure as foreign minister. Bishop did more to engage with Pacific countries than any foreign minister in recent memory. The [2017 Foreign Policy White Paper], for example, prioritised increased Pacific engagement and led to the region receiving the lion’s share of Australia’s latest aid budget.

Payne will attend the Pacific Islands Forum on her first overseas visit as foreign minister. As the former defence minister, she lobbied for Australia to be seen as a “security partner of choice” in the Pacific. What remains to be seen is whether she can maintain the momentum on Biketawa Plus.




Read more:
Response to rumours of a Chinese military base in Vanuatu speaks volumes about Australian foreign policy


So the challenge for the new Coalition leadership is to find a way to push through a new Pacific security agreement that caters to both Australia’s security concerns about Chinese influence in the region and the Pacific Island countries’ focus on climate change and sustainable growth.

There are lessons that can be drawn from the decade-long negotiations between Australia, New Zealand and the Pacific Island nations over the Pacer Plus free-trade agreement, which was finally signed last year (without the region’s two largest economies, Papua New Guinea and Fiji). Australia must not underestimate the diplomatic skills of Pacific leaders or offer benefits that are perceived as being more attractive to it than the Pacific states.

Australia must also avoid allowing the leadership spill to impact its Pacific agenda at this sensitive time. Bishop’s focus on labour mobility between the Pacific islands and Australia has been most welcome, but there can be no authentic engagement with the region without addressing climate insecurity as well.The Conversation

Michael O’Keefe, Head of Department, Politics and Philosophy, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Five active volcanoes on my Asia Pacific ‘Ring of Fire’ watch-list right now


Heather Handley, Macquarie University

In Indonesia, more than 197 million people live within 100km of a volcano, including more than 8.6 million inside a 10km radius.

The country has a record of some of the most deadly volcanic eruptions in history, and right now there are ongoing eruptions at the Agung, Sinabung and Dukono volcanoes. But other volcanoes in the region are active too, including Kadovar in Papua New Guinea, Mayon in the Philippines, and Kusatsu-Shiranesan in Japan.

Although it all seems to be happening at once, it’s normal for the Asia-Pacific region to have frequent earthquake and volcanic activity.

But we still need to keep a close eye on things, and local volcanic authorities are monitoring activity to manage risks and evacuations adequately.




Read more:
Curious Kids: Do most volcanologists die from getting too close to volcanoes?


The Ring of Fire extends around the Pacific Rim in a horseshoe shape.
Earth Observatory of Singapore

These volcanoes are part of the Pacific “Ring of Fire”, a horseshoe-shaped belt of earthquakes and volcanoes that runs for some 40,000km, roughly around the edge of the Pacific Ocean. The Ring stretches from South America, up to North America and across the Bering straight, and down through Japan, the Philippines, Papua New Guinea, Vanuatu and New Zealand. It generates around 90% of the world’s earthquakes and contains 75% of its active volcanoes.

Here are the volcanoes on my Asia-Pacific watch list this week.

Agung, Bali, Indonesia

Mount Agung in Bali has been highly scrutinised for the past few months, largely because of Bali’s popularity as a tourist destination.

After a series of volcanic earthquakes (more than 1,000 per day at its peak), eruptions began on November 21, 2017.




Read more:
Mount Agung continues to rumble with warnings the volcano could still erupt


Since then we’ve seen frequent explosive eruptions emitting gas, steam and volcanic ash reaching thousands of metres above the volcano.

Drones used by the Indonesian Centre for Volcanology and Geological Hazard Mitigation (CVGHM) show an estimated 20 million cubic metres of new lava in the crater, filling roughly one-third of it.

//platform.twitter.com/widgets.js

In the evening of January 19 an explosion of fire (known as a “strombolian” eruption) ejected glowing rocks up to 1km from the crater. The alert level remains at the highest level, with an exclusion zone in place.

//platform.twitter.com/widgets.js

There have been very few issues for tourists visiting Bali so far, apart from a temporary closure of Denpasar airport in late November 2017. However, thousands of Agung’s local residents are still displaced from their homes, with many still stationed in evacuation centres. It remains uncertain when those living closest will be able to return home.

Many evacuated pregnant women have given birth to babies since leaving their homes in places such as the Bumi Sehat’s community health center and birthing clinic in Ubud, which relies on donations to keep running. As a mother of a one-year-old and a three-year-old, I can’t imagine having a newborn baby and not being in the comfort of my own home.




Read more:
Tourists are stuck at the airport, but erupting Mt Agung has a deeper significance for the Balinese


Sinabung, Sumatra, Indonesia

Sinabung volcano awoke in 2010 after a 400-year sleep, and is currently one of the most active volcanoes in Indonesia. It has been pretty much in constant eruption since September 2013, and there are still frequent volcanic earthquakes.

Eruptions have produced ash plumes reaching as high as 11km into the atmosphere, as well as ash fall and lava flows. There have also been volcanic mudflows (“lahars”) and fast-moving, hot flows of gas, ash and rock fragments (“pyroclastic flows”), which have killed 25 people.

//platform.twitter.com/widgets.js

The initial activity in 2010 saw around 30,000 people evacuated. In August last year the Indonesian National Disaster Management Authority (BNPB) reported that there were 7,214 people displaced, and a further 2,863 living in refugee camps. For the locals, life seemingly goes on in the midst of eruptions.

The alert level currently remains at 4 (on a scale of 1-4), with exclusion zones of 3-7km around the volcano.




Read more:
Why do people still live next to an active volcano?


Mayon, Luzon, Philippines

Mayon, around 330km southeast of Manila, is a picture-perfect volcano with its steep-sided conical cone, typical of stratovolcanoes. It is one of the most active volcanoes in the Philippines, with 24 confirmed eruptive periods in the past 100 years. Mayon’s most violent eruption in 1814 killed more than 1,200 people and destroyed several towns.

The recent eruption began on January 13, 2018, and is continuing, with several episodes of dramatic lava fountaining, one lasting 74 minutes.

Eruptions during January 23-29 generated 3-5km-high ash plumes and multiple pyroclastic flows, which travelled more than 5km down drainage channels. The alert is at level 4 (on a scale of 1 to 5) and an 8km danger zone is in place.

Lava flows have currently made their way up to 4.5km down river valleys from the summit crater.

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) estimated on January 27 that the total volume of material deposited from ash fall and pyroclastic flows amounted to 10.5 million cubic metres. Remobilisation of this loose volcanic material by rainfall to form volcanic mudflows is a major concern.

According to news articles, more than 75,000 people have been evacuated, along with the temporary closure of Legazpi airport around 15km away.

Kadovar, Papua New Guinea

Until January 2018, when it began erupting, I hadn’t heard of Kadovar. It’s a 2km-wide, 365m-high emergent summit of a stratovolcano off the coast of Papua New Guinea.

Kadovar island off the coast of PNG is currently an active volcano.
Samaritan Aviation

The volcano had no confirmed historic eruptions before 2018. However, it is possible that William Dampier, a 17th-century pirate and later maritime adventurer, witnessed an eruption at Kadovar during a voyage in search of Terra Australis.

Activity began on January 5, 2018, with rising plumes of ash and steam from the volcano. The island’s inhabitants, some literally living on the crater rim, began evacuating at that time. People were initially taken by boat to neighbouring Blup Blup island but then to the mainland along with other nearby islanders, due to the close proximity of the eruption and logistics of providing people with supplies.

The Rabaul Volcano Observatory reported that activity significantly escalated on January 12, with a large explosive eruption and volcanic rocks ejected to the south. Large amounts of sulfur dioxide have been detected since January 8, and continue to be released along with ash and steam plumes. A lava “dome” has been observed glowing at night.

The impact from the eruption is not just confined to those on Kadovar and nearby islands, with satellite imagery tracking an ash plume from Kadovar travelling over tens of kilometres.

Identified volcanic risks at Kadovar include further potential explosive activity, landslides, and resulting possible tsunamis.

Kusatsu-Shirane, Honshu Japan

On January 23, 2018, an eruption occurred at Kusatsu-Shirane volcano without any prior warning, catching Japan’s Meteorological Agency and volcanic experts, not to mention the skiers on the volcano, by surprise.

//platform.twitter.com/widgets.js

According to agency’s volcanology division, there had been no volcanic activity at the apparent site of the eruption (Kagamiike crater), for about 3,000 years.

The eruption ejected a black plume of ash and larger volcanic material that damaged a gondola and the roof of a mountain lodge.

The ejected volcanic rocks, which landed up to 1km away from the vent, injured several people. A member of the Ground Self-Defence Force who was skiing in a training exercise was killed.

The Japan Meteorological Agency has since analysed the deposits of the eruption and state that there was no new magma erupted on January 23.

Volcanic rocks were ejected from the Kusatsu-Shirane volcano.

Japan has more than 100 active volcanoes, with many monitored 24/7 by Japan’s Meteorological Agency.

Living near volcanoes

Indonesia, the Philippines and Japan have the greatest numbers of people living within 100km of their volcanoes. The populations of small volcanic island nations, such as Tonga and Samoa, almost all live within 100km.

The top 10 countries for population within 100 km of a volcano (left) and the top ten countries (area over 31,415 km²) for percentage of the total population (right).
Sarah Brown and co-authors.

Indonesia has the greatest total population located within 10km (more than 8.6 million), 30km (more than 68 million) and 100km (more than 179 million), and a record of some of the most deadly volcanic eruptions in history.

The eruption of Tambora in 1812-15, was the largest eruption in the last 10,000 years and killed around 100,000 Indonesians (due to the eruption and the ensuing famine). The infamous eruption of Krakatau (Krakatoa) killed an estimated 35,000 people, almost all due to volcanic-generated tsunamis. Volcanic mudflows (lahars) generated by the eruptions of 1586 and 1919 at Kelut (Kelud) in Java took the lives of 10,000 and 5,000 people, respectively.

The ConversationKeeping watch on the world’s volcanoes is a big job for the local volcanic agencies. This is particularly true when volcanoes erupt for the first time in history (Kadovar is a good example) or there were no warning signals before eruption, as at Kusatsu-Shirane.

Heather Handley, Associate Professor in Volcanology and Geochemistry, Macquarie University

This article was originally published on The Conversation. Read the original article.

Mexico: New Ocean Reserve


The link below is to an article reporting on the creation of a new vast ocean reserve by Mexico in the Pacific Ocean.

For more visit:
https://www.theguardian.com/environment/2017/nov/25/mexico-creates-vast-new-ocean-reserve-to-protect-galapagos-of-north-america