Many of our plants and animals have adapted to fires, but now the fires are changing



Eucalypt seeds don’t fall far from the tree, meaning repopulating large areas of forest will be difficult.
from http://www.shutterstock.com

Cris Brack, Australian National University

Australia is a land that has known fire. Our diverse plant and animal species have become accustomed to life with fire, and in fact some require it to procreate.

But in recent decades the pattern of fires – also known as the fire regime – is changing. Individual fires are increasingly hotter, more frequent, happening earlier in the season and covering larger areas with a uniform intensity. And these changes to the fire regime are occurring too fast for our native flora and fauna to adapt and survive.




Read more:
Some say we’ve seen bushfires worse than this before. But they’re ignoring a few key facts


Our fire-adapted plants are suffering

Many of Australia’s iconic eucalypts are “shade intolerant” species that adapted to exist within a relatively harsh fire regime. These species thrive just after a major fire has cleared away the overstory and prepared an ash bed for their seeds to germinate.

Some of our most majestic trees, like the alpine ash, can only regenerate from seed. Those seeds germinate only on bare earth, where the leaf litter and shrubs have been burnt away.

But if fire is so frequent the trees haven’t matured enough to produce seed, or so intense it destroys the seeds present in the canopy and the ground, then even these fire-adapted species can fail.

The current fires are re-burning some forests that were burnt only a decade ago. Those regenerating trees are too young to survive, but also too young to have started developing seed.

With the disappearance of these tree species, other plants will fill the gap. Acacias (wattles) are potential successors as they mature much earlier than alpine ash. Our tall, majestic forests could easily turn into shrubby bushland with more frequent fires.

Wattles mature early and could take over Eucalypts.
from http://www.shutterstock.com

Even within a burnt area, there are usually some unburnt patches, which are highly valuable for many types of plants and animals. These patches include gullies and depressions, but sometimes are just lucky coincidences of the terrain and weather. The patches act as reserves of “seed trees” to provide regeneration opportunities.

Recent fires, burning in hotter and drier conditions, are tending to be severe over large areas with fewer unburnt patches. Without these patches, there are no trees in the fire zone to spread seeds for regeneration.

Eucalypt seed is small and without wings or other mechanisms to help the wind disperse it. Birds don’t generally disperse these seeds either. Eucalypt seed thus only falls within 100 – 200 metres of the parent tree. It may take many decades for trees to recolonise a large burnt area.

That means wind-blown or bird-dispersed seeds from other species may fully colonise the burnt area well before the Eucalypts. Unfortunately many of these windblown seeds will be weed species, such as African Love Grass, which may then cover the bare earth and exclude successful Eucalypt regeneration while potentially making fires even hotter and more frequent.

Animals have fewer places to hide

Young animals are significantly more vulnerable to disturbances such as fire than mature individuals. So the best time to give birth is a season when fire is rare.

Spring in the southern zones of Australia has, in the past, been wetter and largely free from highly destructive fires. Both flora and fauna species thus time their reproduction for this period. But as fire seasons lengthen and begin earlier in the year, vulnerable nestlings and babies die where they shelter or starve as the fires burn the fruits and seeds they eat.

Australian fauna have developed behaviours that help them survive fire, including moving towards gullies and depressions, climbing higher, or occupying hollows and burrows (even if not their own) when they sense fire.

Many native animals have learnt to sense fire and take cover, but with greater areas burning, there are fewer places to hide.
from http://www.shutterstock.com

But even these behaviours will fail if those refuges are uncharacteristically burning under hotter and drier conditions. Rainforest, marshes and the banks of watercourses were once safe refuges against fire, but we have seen these all burn in recent fires.




Read more:
Animal response to a bushfire is astounding. These are the tricks they use to survive


What can be done?

All aspects of fire regimes in Australia are clearly changing as a result of our heating and drying climate. But humans can have a deliberate effect, and have done so in the past.

Indigenous burning created a patchwork of burnt areas and impacted on the magnitude and frequency of fires over the landscape. These regular burns kept the understory under control, while the moderate intensity and patchiness allowed larger trees to survive.




Read more:
There’s no evidence ‘greenies’ block bushfire hazard reduction but here’s a controlled burn idea worth trying


There have been repeated calls of late to reintroduce Indigenous burning practices in Australia. But this would be difficult over vast areas. It requires knowledgeable individuals to regularly walk through each forest to understand the forest dynamics at a very fine scale.

More importantly, our landscapes are now filled with dry fuel, and shrubs that act as “ladders” – quickly sending any fire into tree canopies to cause very destructive crown fires. Given these high fuel conditions along with their potentially dangerous distribution, there may be relatively few safe areas to reintroduce Indigenous burning.

The changed fire conditions still require active management of forests, with trained professionals on the ground. Refuges could be developed throughout forests to provide places where animals can shelter and from which trees can recolonise. Such refuges could be reintroduced by reducing forest biomass (or fuel) using small fires where feasible or by mechanical means.

A Kangaroo Island landscape devastated by fire.
David Mariuz/AAP

Biomass collected by machines could be used to produce biochar or other useful products. Biochar could even be used to improve the soil damaged by the fires and excess ash.

Midstory species could be cut down to prevent the development of fire ladders to tree crowns. Even the overstory could be thinned to minimise the potential for crown fires. Seed could also be collected from thinned trees to provide an off-site bank as ecological insurance.

Such active management will not be cheap. But using machinery rather than fire could control biomass quantity and distribution in a much more precise way: leaving some biomass on the ground as habitat for insects and reptiles, and removing other patches to create safer refuges from the fires that will continue to come.The Conversation

Cris Brack, Associate Professor, Fenner School of Environment and Society, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Yes, native plants can flourish after bushfire. But there’s only so much hardship they can tak



Bulbine lilies flowering and eucalypts resprouting after fire in the Victorian high country.
Heidi Zimmer

Lucy Commander, University of Western Australia and Heidi Zimmer, Southern Cross University

In a fire-blackened landscape, signs of life are everywhere. A riot of red and green leaves erupt from an otherwise dead-looking tree trunk, and the beginnings of wildflowers and grasses peek from the crunchy charcoal below.

Much Australian flora has evolved to cope with fire, recovering by re-sprouting or setting seed. However, some plants are sensitive to fire, especially when fires are frequent or intense, and these species need our help to recover.




Read more:
Some say we’ve seen bushfires worse than this before. But they’re ignoring a few key facts


After announcing a A$50 million wildlife and habitat recovery package, the Morrison government recently met with Australia’s leading wildlife experts to steer recovery efforts.

Encouraging native flora to bounce back from these unprecedented fires requires targeted funding and actions to conserve and restore plants and ecological communities, including seed banking.

How do plants naturally recover from fire?

Many plants from fire-prone ecosystems have evolved strategies to survive, and even thrive, with fire. Some resprout after fire, with green shoots bursting from blackened stems. For others, fire stimulates flowering.

Some species are able to resprout from blackened stems following a fire.
Lucy Commander, Author provided

Fire can also trigger seed germination of hundreds of species, as seeds respond to fire “cues” like heat and smoke.

Seeds may wait in woody fruits stored on the plant. The fruits’ hard capsules shield the seeds from the fire, but the heat opens the capsules, releasing seeds into the soil below.

We can capitalise on this natural recovery by not disturbing the soil where the seeds are scattered, not clearing “dead” plants which may resprout and provide shelter for remaining wildlife, including perches for birds who may bring in seeds.

We should also stop vegetation clearing, especially unburnt vegetation home to threatened species and communities.

Some species, like this Banksia, have woody fruits that protect the seeds, then open after fire to release them.
Lucy Commander, Author provided

When do we need to intervene?

While Australian plants and ecosystems have evolved to embrace bushfires, there’s only so much drought and fire they can take.

Many plants and ecosystems, including alpine and rainforest species, are not resilient to fire, especially if drought persists or they have been burnt too frequently. Too frequent fires deplete the seed bank and put recovery at risk.

Fires which are intense and severe will outright kill other plants, or the plants will be very slow to recover – taking years or decades to reach maturity again. We need comprehensive monitoring to detect which species are not returning, with systematic field surveys starting immediately, and continuing after the first rains to identify which species emerge from the soil.

Some ecosystems are adapted to fire, with trees resprouting and seeds germinating from the soil seed bank. Even so, fencing and weed control may be required.
Lucy Commander, Author provided

Invasive plants such as blackberry or veldt grass can also impede recovery after a fire by out-competing the natives. Feral herbivores – such as rabbits, goats and horses – can overgraze the native regrowth. So controlling the weeds and feral grazers with, for instance, temporary fencing and tree guards, is a priority post-fire.

And when ecosystems aren’t able to repair themselves, it’s up to us to intervene. For instance, land managers, supported by volunteer community groups, could sow seeds or plant seedlings in fire-affected areas. This act of restoring ecosystems can be an important healing process for those affected by the fires.

Do we have enough seeds?

But for that to happen, we need enough seeds to supply restoration efforts. With millions of hectares already burnt, few areas may be left for seed collection.

This means unburnt areas are at risk of over-collection from commercial and volunteer seed collectors. Stopping this from happening is possible, however. The agencies giving out permits for seed collection must record where seeds are being sourced and how much is collected. This ensures areas aren’t stripped of seeds, rendering them less resilient.




Read more:
The sweet relief of rain after bushfires threatens disaster for our rivers


Another, more controversial issue, is whether seeds should be collected locally (perhaps within 20km or within the catchment), or from somewhere much further away and more suited to a potential future climate.

And what should we do if we lose a population of a threatened plant species? Establishing a new population or replacing a lost one using translocation is one option. Similar to capture-and-release or zoo breeding programs for reintroduction of threatened animals, translocation refers to deliberately moving plants or seeds to a new location.

How can we better prepare for next time?

With potentially more unprecedented bushfire seasons in our future, it’s important land managers are prepared.

They need data on the distribution of species and the fire frequency, severity and season they can tolerate. A nationwide database could identify which species and ecosystems are most at risk, and could be incorporated into fire and restoration planning – including seed collecting – to ensure plant material is available if species fail to recover.




Read more:
‘Plant blindness’ is obscuring the extinction crisis for non-animal species


Botanic gardens have a special role to play as many already have conservation seed banks of threatened species, and their living collections provide additional genetic material. Across Australia there is already a network of seed banks collaborating through the Australian Seed Bank Partnership that collect, store and undertake research to better support plant conservation.

A restoration seed bank in Utah, USA. These banks hold huge amounts of seeds, but the Australian equivalents operate on a smaller scale.
Lucy Commander

However, restoration seed banks operate on a much larger scale than botanic gardens, and it’s important both approaches are conducted collaboratively. We need more ongoing investment in seed banks, particularly for threatened species and ecosystems least likely to recover from repeat fires like rainforests. Investment in skilled staff to run them is also critical, as well as national guidelines for seed use and training programs for staff and volunteers.

The recent bushfires will push many plant species to their limits. If we want to keep these species around – and the animals depend on them for food and habitat – we need to monitor their recovery and intervene where necessary.The Conversation

Lucy Commander, Adjunct Lecturer, University of Western Australia and Heidi Zimmer, Research associate, Southern Cross University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Plants are going extinct up to 350 times faster than the historical norm



Plant extinctions have skyrocketed, driven in large part by land clearing and climate change.
Graphic Node/Unsplash, CC BY-SA

Jaco Le Roux, Macquarie University; Florencia Yanelli, Stellenbosch University; Heidi Hirsch, Stellenbosch University; José María Iriondo Alegría, Universidad Rey Juan Carlos; Marcel Rejmánek, University of California, Davis, and Maria Loreto Castillo, Stellenbosch University

Earth is seeing an unprecedented loss of species, which some ecologists are calling a sixth mass extinction. In May, a United Nations report warned that 1 million species are threatened by extinction. More recently, 571 plant species were declared extinct.

But extinctions have occurred for as long as life has existed on Earth. The important question is, has the rate of extinction increased? Our research, published today in Current Biology, found some plants have been going extinct up to 350 times faster than the historical average – with devastating consequences for unique species.




Read more:
Earth’s sixth mass extinction has begun, new study confirms


Measuring the rate of extinction

“How many species are going extinct” is not an easy question to answer. To start, accurate data on contemporary extinctions are lacking from most parts of the world. And species are not evenly distributed – for example, Madagascar is home to around 12,000 plant species, of which 80% are endemic (found nowhere else). England, meanwhile, is home to only 1,859 species, of which 75 (just 4%) are endemic.

Areas like Madagascar, which have exceptional rates of biodiversity at severe risk from human destruction, are called “hotspots”. Based purely on numbers, biodiversity hotspots are expected to lose more species to extinction than coldspots such as England.

But that doesn’t mean coldspots aren’t worth conserving – they tend to contain completely unique plants.

We are part of an international team that recently examined 291 modern plant extinctions between biodiversity hot- and coldspots. We looked at the underlying causes of extinction, when they happened, and how unique the species were. Armed with this information, we asked how extinctions differ between biodiversity hot- and coldspots.

Unsurprisingly, we found hotspots to lose more species, faster, than coldspots. Agriculture and urbanisation were important drivers of plant extinctions in both hot- and coldspots, confirming the general belief that habitat destruction is the primary cause of most extinctions. Overall, herbaceous perennials such as grasses are particularly vulnerable to extinction.

However, coldspots stand to lose more uniqueness than hotspots. For example, seven coldspot extinctions led to the disappearance of seven genera, and in one instance, even a whole plant family. So clearly, coldspots also represent important reservoirs of unique biodiversity that need conservation.

We also show that recent extinction rates, at their peak, were 350 times higher than historical background extinction rates. Scientists have previously speculated that modern plant extinctions will surpass background rates by several thousand times over the next 80 years.

So why are our estimates of plant extinction so low?

First, a lack of comprehensive data restricts inferences that can be made about modern extinctions. Second, plants are unique in – some of them live for an extraordinarily long time, and many can persist in low densities due to unique adaptations, such as being able to reproduce in the absence of partners.

Let’s consider a hypothetical situation where we only have five living individuals of Grandidier’s baobab (Adansonia grandidieri) left in the wild. These iconic trees of Madagascar are one of only nine living species of their genus and can live for hundreds of years. Therefore, a few individual trees may be able to “hang in there” (a situation commonly referred to as “extinction debt”) but will inevitably become extinct in the future.

Finally, declaring a plant extinct is challenging, simply because they’re often very difficult to spot, and we can’t be sure we’ve found the last living individuals. Indeed, a recent report found 431 plant species previously thought to be extinct have been rediscovered. So, real plant extinction rates and future extinctions are likely to far exceed current estimates.

There is no doubt that biodiversity loss, together with climate change, are some of the biggest challenges faced by humanity. Along with human-driven habitat destruction, the effects of climate change are expected to be particularly severe on plant biodiversity. Current estimates of plant extinctions are, without a doubt, gross underestimates.




Read more:
Despite thoughts of death, atheists’ convictions grow stronger


However, the signs are crystal clear. If we were to condense the Earth’s 4.5-billion-year-old history into one calendar year, then life evolved somewhere in June, dinosaurs appeared somewhere around Christmas, and the Anthropocene starts within the last millisecond of New Year’s Eve. Modern plant extinction rates that exceed historical rates by hundreds of times over such a brief period will spell disaster for our planet’s future.The Conversation

Jaco Le Roux, Associate Professor, Macquarie University; Florencia Yanelli, Researcher, Stellenbosch University; Heidi Hirsch, Postdoctoral research fellow, Stellenbosch University; José María Iriondo Alegría, Catedrático de universidad en el área de Botánica, Universidad Rey Juan Carlos; Marcel Rejmánek, Emeritus professor, University of California, Davis, and Maria Loreto Castillo, PhD Candidate, Stellenbosch University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: why plants don’t simply grow faster with more carbon dioxide in air



Fast-growing plantation trees store less carbon per surface area than old, undisturbed forests that may show little growth.
from http://www.shutterstock.com, CC BY-ND

Sebastian Leuzinger, Auckland University of Technology


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz

Carbon dioxide is a fertiliser for plants, so if its concentration increases in the atmosphere then plants will grow better. So what is the problem? – a question from Doug in Lower Hutt

Rising atmospheric carbon dioxide (CO₂) is warming our climate, but it also affects plants directly.

A tree planted in the 1850s will have seen its diet (in terms of atmospheric carbon dioxide) double from its early days to the middle of our century. More CO₂ generally leads to higher rates of photosynthesis and less water consumption in plants. So, at first sight, it seems that CO₂ can only be beneficial for our plants.

But things are a lot more complex than that. Higher levels of photosynthesis don’t necessarily lead to more biomass production, let alone to more carbon dioxide sequestration. At night, plants release CO₂ just like animals or humans, and if those respiration rates increase simultaneously, the turnover of carbon increases, but the carbon stock doesn’t. You can think of this like a bank account – if you earn more but also spend more, you’re not becoming any richer.

Even if plants grow more and faster, some studies show there is a risk for them to have shorter lifespans. This again can have negative effects on the carbon locked away in biomass and soils. In fact, fast-growing trees (e.g. plantation forests) store a lot less carbon per surface area than old, undisturbed forests that show very little growth. Another example shows that plants in the deep shade may profit from higher levels of CO₂, leading to more vigorous growth of vines, faster turnover, and, again, less carbon stored per surface area.




Read more:
Want to beat climate change? Protect our natural forests


Water savings

The effect of CO₂ on the amount of water plants use may be more important than the primary effect on photosynthesis. Plants tend to close their leaf pores slightly under elevated levels of CO₂, leading to water savings. In certain (dry) areas, this may indeed lead to more plant growth.

But again, things are much more complex and we don’t always see positive responses. Research we published in Nature Plants this year on grasslands around the globe showed that while dry sites can profit from more CO₂, there are complex interactions with rainfall. Depending on when the rain falls, some sites show zero or even negative effects in terms of biomass production.

Currently, a net amount of three gigatons of carbon are thought to be removed from the atmosphere by plants every year. This stands against over 11 gigatons of human-induced release of CO₂. It is also unclear what fraction of the three gigatons plants are taking up due to rising levels of CO₂.

In summary, rising CO₂ is certainly not bad for plants, and if we restored forested land at a global scale, we could help capture additional atmospheric carbon dioxide. But such simulations are optimistic and rely on conversion of much needed agricultural land to forests. Reductions in our emissions are unavoidable, and we have very strong evidence that plants alone will not be able to solve our CO₂ problem.




Read more:
Exaggerating how much CO₂ can be absorbed by tree planting risks deterring crucial climate action


The Conversation


Sebastian Leuzinger, Associate Professor, Auckland University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Undocumented plant extinctions are a big problem in Australia – here’s why they go unnoticed



Matchstick banksia (Banksia cuneate). There are only about 500 of these plants left in the wild at 11 different sites, with much of its habitat having been historically cleared for agriculture.
Andrew Crawford/Threatened Species Hub

David Coates, University of Western Australia

A recent survey on the world’s plants found a shocking number have gone extinct – 571 since 1750. And this is likely to be a stark underestimate. Not all plants have been discovered, so it’s likely other plants have gone extinct before researchers know they’re at risk, or even know they exist.

In Australia, the situation is just as dire. The Threatened Species Recovery Hub recently conducted two evaluations that aren’t yet published of extinct plants in Australia. They found 38 have been lost over the last 170 years, such as the Daintree River banana (Musa fitzalanii) and the fringed spider-orchid (Caladenia thysanochila).




Read more:
‘Plant blindness’ is obscuring the extinction crisis for non-animal species


But uncertainty about the number of plant extinctions, in addition to the 38 confirmed, is an ongoing concern.

Both studies pointed out the actual number of extinctions is likely to be far more than those recognised in formal lists produced by the Commonwealth and state and territory agencies.

For example, there is still a high rate of discovery of new plant species in Australia. More than 1,600 plants were discovered between 2009 and 2015, and an estimated 10% are still yet to be discovered.

The extinction of Australian plants is considered most likely to have occurred in areas where there has been major loss and degradation of native bushland. This includes significant areas in southern Australia that have been cleared for agriculture and intensive urbanisation around major cities.

Many of these extinct plants would have had very restricted geographic ranges. And botanical collections were limited across many parts of Australia before broad scale land clearing and habitat change.

Why extinction goes undocumented

There is already one well recognised Australian plant extinction, a shrub in Phillip Island (Streblorrhiza speciosa), which was never formally recognised on any Australian threatened species list.

Black magic grevillea (Grevilla calliantha) is known from only six populations within a range of 8 square kilometres. In the wild the species is threatened by frequent fire, habitat loss, invasive weeds, herbicide overspray, grazing animals and phytophthora dieback.
Dave Coates

Researchers also note there are Australian plants that are not listed as extinct, but have not been collected for 50 years or more.

While undocumented extinction is an increasing concern, the recent re-assessment of current lists of extinct plants has provided a more positive outcome.

The re-assessment found a number of plants previously considered to be extinct are not actually extinct. This includes plants that have been re-discovered since 1980, and where there has been confusion over plant names. Diel’s wattle (Acacia prismifolia), for instance, was recently rediscovered in Western Australia.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


A significant challenge for accurately assessing plant extinction relates to the difficulties in surveying and detecting them in the Australian landscapes.

Many have histories associated with fire or some other disturbance. For example, a number of plants spend a significant part of their time as long-lived seeds – sometimes for decades – in the soil with nothing visible above ground, and with plants only appearing for a few years after a fire.

But by far, the greatest reason for the lack of information is the shortage of field surveys of the rare plants, and the availability of botanists and qualified biologists to survey suitable habitat and accurately identify the plants.

Purple-wood wattle (Acacia carneorum) is slow growing and rarely produces viable seed. Threats are not well understood but grazing by livestock and rabbits is likely to impact on the species.
Andrew Denham

What we’ve learnt

The continuing decline of Australia’s threatened plants suggests more extinctions are likely. But there have been important achievements and lessons learnt in dealing with the main causes of loss of native vegetation.

Our understanding of plant extinction processes – such as habitat loss, habitat degradation, invasive weeds, urbanisation, disease and climate change – is improving. But there is still a significant way to go.




Read more:
How I discovered the Dalveen Blue Box, a rare eucalypt species with a sweet, fruity smell


One challenge in dealing with the causes of Australian plant extinction is how to manage introduced diseases.

Two plant diseases in particular are of major concern: Phytophthora dieback, a soil-borne water mould pathogen, and Myrtle rust, which is spread naturally by wind and water.

Both diseases are increasingly recognised as threats, not only because of the impact they are already having on diverse native plant communities and many rare species, but also because of the difficulties in effective control.

Two Australian rainforest tree species Rhodomyrtus psidioides and Rhodamnia rubescens were recently listed as threatened under the NSW legislation because of myrtle rust.

Native guava (Rhodomyrtus psidioides) A tree species around the margins of rainforest between the NSW and the QLD border. The species is has now been listed as Critically Endangered. Surveys of rainforest areas infected with Myrtle Rust found that 50 to 95% of native guava trees were killed by the disease within a few years.
Zaareo/Wikimedia

While extinction associated with disease is often rapid, some individual plants may survive for decades in highly degraded landscapes, such as long-lived woody shrubs and trees. These plants will ultimately go extinct, and this is often difficult to communicate to the public.

While individual species will continue to persist for many years in highly disturbed and fragmented landscapes, there is little or no reproduction. And with their populations restricted to extremely small patches of bush, they’re vulnerable to ongoing degradation.




Read more:
How many species on Earth? Why that’s a simple question but hard to answer


In many such cases there is an “extinction debt”, where it may take decades for extinction to occur, depending on the longevity of the plants involved.

But it’s not all doom and gloom. A recent study found of the 418 threatened Australian plants showing ongoing decline, 83% were assessed as having medium to high potential for bouncing back.

And with long-term investment and research there are good prospects of saving the majority of these plants.The Conversation

David Coates, Adjunct Professor and Research Associate, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.