Pristine paradise to rubbish dump: the same Pacific island, 23 years apart



File 20170714 14306 wmgjzv
The same beach on Henderson Island, in 1992 and 2015.

Jennifer Lavers, University of Tasmania and Alexander Bond, Royal Society for the Protection of Birds

A few weeks ago, the world woke to the story of Henderson Island, the “South Pacific island of rubbish”. Our research revealed it as a place littered with plastic garbage, washed there by ocean currents.

This was a story we had been waiting to tell for more than a year, keeping our discoveries under wraps while we worked our way through mountains of data and photographs.

Our May 2017 video story detailing the rubbish on Henderson Island.

Everyone wanted to know how the plastic got there, and fortunately that is a question that our understanding of ocean currents can help us answer. But the question we couldn’t answer was: when did it all start to go so wrong?

This is the million-dollar question for so many wild species and spaces – all too often we only notice a problem once it’s too big to deny, or perhaps even solve. So when did Henderson’s sad story start? The answer is: surprisingly recently.

An eloquent photo

During our research we had reached out to those who had previously worked on Henderson Island or in nearby areas, to gain a better understanding of what forces contributed to the enormous piles of rubbish that have floated to Henderson’s sandy beaches.

Then, after our research was published and the world was busy reading about 37 million plastic items washed up on a remote south Pacific island, we received an email from Professor Marshall Weisler from the University of Queensland, who had seen the news and got in touch.

In 1992, he had done archaeological surveys on Henderson Island. The photos he shared from that expedition provided a rare glimpse into the beginning of this chapter of Henderson Island’s story, before it became known as “garbage island”.

Henderson Island in happier times.
Marshall Weisler, Author provided
The same stretch of beach in 2015.
Jennifer Lavers, Author provided

There are only 23 years between these two photos, and the transformation is terrifying – from pristine South Pacific gem to the final resting place for enormous quantities of the world’s waste.

Remember, this is not waste that was dumped directly by human hands. It was washed here on ocean currents, meaning that this is not just about one beach – it shows how much the pollution problem has grown in the entire ocean system in little more than two decades.

To us, Henderson Island was a brutal wake-up call, and there are undoubtedly other garbage islands out there, inundated and overwhelmed by the waste generated in the name of progress. Although the amount of trash on Henderson is staggering – an average of 3,570 new pieces arrive each day on one beach alone – it represents a minute fraction of the rubbish produced around the globe.

Cleanup confounded

In the wake of the story, the other big question we received (and one we should have seen coming) was: can I help you clean up Henderson Island? The answer is no, for a very long list of reasons – some obvious, some not.

To quote a brilliant colleague, what matters is this: if all we ever do is clean up, that is all we will ever do. With thousands of new plastic items washing up on Henderson Island every day, the answer is clear.

The solution doesn’t require travel to a remote island, only the courage to look within. We need to change our behaviour, to turn off the tap and stem the tide of trash in the ocean. Our oceans, our islands, and our planet demand, and deserve it.

However difficult those changes may be, what choice do we have?

Prevention, not cure

While grappling with the scale of the plastics issue can at times be overwhelming, there are simple things you can do to make a difference. The solutions aren’t always perfect, but each success will keep you, your family, and your community motivated to reduce plastic use.

First, ask yourself this: when did it become acceptable for something created from non-renewable petrochemicals, extracted from the depths of the Earth and shipped around the globe, to be referred to as “single use” or “disposable”? Your relationship with plastic begins with the language you use.

But don’t stop there: here are a couple of facts illustrating how you can challenge yourself and make a difference.

Challenge: switch to bamboo toothbrushes, which cost just a few dollars each and are available from a range of online retailers or wholefood shops.

Challenge: switch to products that use crushed apricot kernels, coconut shell, coffee grounds, or sea salts as natural exfoliants.

The ConversationThese are only small changes, and you can undoubtedly think of many more. But we need to start turning the tide if we are to stop more pristine places being deluged with our garbage.

Jennifer Lavers, Research Scientist, Institute for Marine and Antarctic Studies, University of Tasmania and Alexander Bond, Senior Conservation Scientist, Royal Society for the Protection of Birds

This article was originally published on The Conversation. Read the original article.

How our research is helping clean up coal-mining pollution in a World Heritage-listed river



Image 20170329 1674 1tkl166
The Wollangambe River’s canyons are loved by adventurers.
Ben Green

Ian Wright, Western Sydney University

The Wollangambe River in New South Wales is a unique gift of nature, flowing through the stunning Wollemi National Park, wilderness areas and the World Heritage-listed Blue Mountains. It’s an adventure tourism hotspot, with thousands of people clambering through the river’s majestic canyons each year.

So it was with a sense of irony that bushwalkers noticed unnatural flow and discolouration in the river and suspected it was pollution. In 2012 they contacted Western Sydney University, which has since conducted ongoing investigations.

The pollution was traced back to the Clarence Colliery, owned by Centennial Coal. Our recent research confirms that this is one of the worst cases of coal mine pollution in Australia, and indeed the world.

For four years I and other researchers have been investigating the pollution and its impacts on the river. The NSW Environment Protection Authority (EPA) has verified our findings. In exciting news, the mine was in March issued a revised environmental licence, which we believe is the most stringent ever issued to an Australian coal mine.

This is appropriate given the conservation significance of the river and the current scale of the pollution. We are now hopeful that the pollution of the Wollangambe River may soon be stopped.

Water pollution damages the river and its ecology

The Clarence Colliery is an underground mine constructed in 1980. It is just a few kilometres from the boundary of the Blue Mountains National Park.

Clarence Colliery and Wollangambe River.
Ian Wright

Our research revealed that waste discharges from the mine cause a plume of water pollution at least 22km long, deep within the conservation area. The mine constantly discharges groundwater, which accumulates in underground mines. The water is contaminated through the mining process. The mine wastes contributed more than 90% of the flow in the upper reaches of the river.

The EPA regulates all aspects of the mining operation relating to pollution. This includes permission to discharge waste water to the Wollangambe River, provided that it is of a specified water quality.

Our research found that the wastes totally modified the water chemistry of the river. Salinity increased by more than ten times below the mine. Nickel and zinc were detected at levels that are dangerous to aquatic species.

We surveyed aquatic invertebrates, mostly insects, along the river and confirmed that the mine waste was devastating the river’s ecology. The abundance of invertebrates dropped by 90% and the number of species was 65% lower below the mine waste outfall than upstream and in tributary streams. Major ecological impacts were still detected 22km downstream.

We shared our early research findings with the NSW EPA in 2014. The authority called for public submissions and launched an investigation using government scientists from the NSW Office of Environment and Heritage. Their study confirmed our findings.

Progress was interrupted when tonnes of sediment from the mine were dislodged in 2015 after heavy rainfall and the miner and the EPA focused on cleaning the sediment from the river. This incident has resulted in the EPA launching a prosecution in the NSW Land and Environment Court.

We recently compared the nature and scale of pollution from this mine with other coal mine pollution studies. The comparison confirms that this is one of the most damaging cases of coal mine water pollution in Australia, or internationally.

Even 22km below the waste outfall, the Wollangambe is still heavily polluted and its ecosystems are still degraded. One of the unique factors is that this mine is located in an otherwise near-pristine area of very high conservation value.

New licence to cut pollution

The new EPA licence was issued March 1, 2017. It imposes very tight limits on an extensive suite of pollutant concentrations that the mine is permitted to discharge to the Wollangambe River.

The licence covers two of the most dangerous pollutants in the river: nickel and zinc. Nickel was not included in the former licence.

The new licence now includes a sampling point on the river where it flows into the World Heritage area, about 1km downstream from the mine. The licence specifies vastly lower concentrations of pollutants at this new sampling point.

For example, the permitted concentration of zinc has been reduced from 1,500 micrograms per litre in the waste discharge, in the old licence, to 8 micrograms per litre.

It can be demoralising to witness growing pollution that is damaging the ecosystems with which we share our planet. This case study promises something different.

The actions of the EPA in issuing a new licence to the mine provide hope that the river might have a happy ending to this sad case study. The new licence comes into effect on June 5, 2017.

The ConversationOur current data suggest that water quality in the river is already improving. We dream that improved water quality, following this licence, will trigger a profoundly important ecological recovery. Now we just have to wait and see whether the mine can improve its waste treatment to meet the new standards.

Ian Wright, Senior Lecturer in Environmental Science, Western Sydney University

This article was originally published on The Conversation. Read the original article.

This South Pacific island of rubbish shows why we need to quit our plastic habit


Jennifer Lavers, University of Tasmania

A remote South Pacific island has the highest density of plastic debris reported anywhere on the planet, our new study has found. The Conversation

Our study, published in the journal Proceedings of the National Academy of Sciences, estimated that more than 17 tonnes of plastic debris has washed up on Henderson Island, with more than 3,570 new pieces of litter arriving every day on one beach alone.

Our study probably actually underestimates the extent of plastic pollution on Henderson Island, as we were only able to sample pieces bigger than two millimetres down to a depth of 10 centimetres. We also could not sample along cliffs.
Jennifer Lavers, Author provided

It is estimated that there are nearly 38 million pieces of plastic on the island, which is near the centre of the South Pacific Gyre ocean current.

Henderson Island, marked here by the red pin, is in the UK’s Pitcairn Islands territory and is more than 5,000 kilometres from the nearest major population centre. That shows plastic pollution ends up everywhere, even in the most remote parts of the world.
Google Maps

A 2014 paper published in the journal PLOS One used data from surface water all over the world. The researchers estimated that there are 5.25 trillion pieces of plastic in the top 10 centimetres of the world’s oceans.

Plastics pose a major threat to seabirds and other animals, and most don’t ever break down – they just break up. Every piece of petrochemical-derived plastic ever made still exists on the planet.

Jennifer Lavers, Research Scientist, Institute for Marine and Antarctic Studies, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Indonesia vows to tackle marine pollution


Thomas Wright, The University of Queensland

It is wet season in Bali, Indonesia, a popular tourist destination for Australian, Russian, German, Chinese and Japanese visitors. The Conversation

As the rain pounds down on banana leaves and rice fields, the rivers fill up and irrigation systems overflow. With it, the water masses bring trash in bulk: anything from food wrappers and plastic bags to bottles and other domestic waste.

To tackle the issue of marine pollution, several organisations got together in Nusa Dua – a popular tourist destination – and other locations across Bali to stage the largest beach clean-up the island has seen.

Around 12,000 volunteers collected 40 tons of garbage at 55 locations, according to the One Island, One Voice campaign page.

While the beach clean-up was a hugely successful awareness campaign and a great promotion which highlights the efforts done around the island, it is only a drop in the ocean of global marine pollution.

Plastic pollution in Indonesia

In recent years, Bali has seen growing environmental problems such as pollution and freshwater scarcity. Popular tourist destination Kuta beach is regularly covered in waste. Most of this is plastic that washes ashore during the rainy season.

The island’s garbage dumps are reportedly overflowing,. This makes solid waste management a pressing issue. Substantial groundwater resources are predicted to run dry by 2020, threatening freshwater resources.

On top of that, Indonesia is the world’s second-biggest marine polluter after China, discarding 3.22 million metric tons of waste annually. This accounts for 10% of the world’s marine pollution.

The effects marine pollution has on ecosystems and humans are beginning to be well documented. Marine scientists have found harmful consequences of marine pollution to sea life, ecosystems and humans.

Plastic can kill ocean mammals, turtles and other species that consume it. It can also poison food and water resources, as harmful chemicals leach out of the plastic.

It poses threats to human health as well. Plastics leach cancerous toxins. After being consumed by marine species, they enter the food chain, eventually ending up in fish we eat.

Marine plastic pollution is a global problem and Indonesia’s beaches present pressing examples to study the socio-economic effects this has on coastal communities.

Most vulnerable to marine pollution left out of global discussions

Last month, The Economist held the fourth Oceans Summit in Bali.

The summit was attended by state leaders such as Indonesian Vice President Jusuf Kalla, representatives of major global economic organisations such as Citigroup managing director Michael Eckhart, and celebrity and entrepreneur Adrian Grenier.

Speakers and panels discussed a number of topics, including the “blue economy” and how companies and governments can participate in this marine-based sustainable industry.

During the summit, the Indonesian government announced it will pledge US$1 billion to curb ocean waste by 70% by 2025. It’s an ambitious objective, which shows dedication and commitment to a plastic-free future.

But not all voices are heard in this global debate. Many Bali-based environmental organisations engaged in education programs were not represented at the summit. Those economically most vulnerable to pollution – such as beach vendors, fishermen and others employed in the marine tourism trade – appear to be left out of the conversation.

Marine pollution and tourism

The Indonesian government plans to boost tourism and increase national visitors from 9.7 million in 2015 to 20 million by 2020. Such increases in visitor numbers and population will raise consumption and waste production, further pressuring the island’s infrastructure and ecosystems.

With tourism as the island’s largest economic sector, many Balinese people depend on foreign visitors to earn an income. Some tourism operators are concerned that if the plastic problem increases it will damage this industry. They fear tourists will stop coming to Bali if it is too polluted.

Marine communities may also suffer negative socio-economic consequences, as fishermen can lose their livelihood and tourism operators lose their customers.

While some tourism operators understand that clean beaches are key in attracting international tourists, the expected growth is likely to further stress Bali’s environment.

What is being done?

Efforts by activists, community groups and NGOs to clean beaches play a key role in protecting Bali’s environment. But they are only a temporary fix and don’t tackle the causes of this global problem.

Such groups are leading the fight against over-development and pollution through protests, clean-up events and educational programs.

Campaigners from Bali-based environmental youth group “Bye Bye Plastic Bags” advocate for an island-wide ban on plastic bags. They also spoke at the Ocean Summit.

And while they convinced Bali’s governor to commit to make the island plastic-bag-free by 2018, continued development of legislation, regulation and industry guidelines is needed to save Indonesia’s waterways from drowning in waste.

Thomas Wright, PhD Candidate in Anthropology, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Nitrogen pollution: the forgotten element of climate change


Ee Ling Ng, University of Melbourne; Deli Chen, University of Melbourne, and Robert Edis

While carbon pollution gets all the headlines for its role in climate change, nitrogen pollution is arguably a more challenging problem. Somehow we need to grow more food to feed an expanding population while minimising the problems associated with nitrogen fertiliser use.

In Europe alone, the environmental and human health costs of nitrogen pollution are estimated to be €70-320 billion per year.

Nitrogen emissions such as ammonia, nitrogen oxide and nitrous oxides contribute to particulate matter and acid rain. These cause respiratory problems and cancers for people and damage to forests and buildings.

Nitrogenous gases also play an important role in global climate change. Nitrous oxide is a particularly potent greenhouse gas as it is over 300 times more effective at trapping heat in the atmosphere than carbon dioxide.

Nitrogen from fertiliser, effluent from livestock and human sewage boost the growth of algae and cause water pollution. The estimated A$8.2 billion damage bill to the Great Barrier Reef is a reminder that our choices on land have big impacts on land, water and the air downstream.

Lost nitrogen harms farmers too, as it represents reduced potential crop growth or wasted fertiliser. This impact is most acute for smallholder farmers in developing countries, for whom nitrogen fertiliser is often the biggest cost of farming. The reduced production from the lost nitrogen can represent as much as 25% of the household income.

The solution to the nitrogen challenge will need to come from a combination of technological innovation, policy and consumer action.

The essential ingredient

Nitrogen is an essential building block for amino acids, proteins and DNA. Plant growth depends on it; animals and people get it from eating plants or other animals.

Nitrogen gas (N₂) makes up 78% of the air, but it cannot be used by plants. Fertilisers are usually made from ammonia, a form of nitrogen that the plants prefer.

A century after the development of the Haber-Bosch process gave us a way to manufacture nitrogen fertiliser, our demand for it has yet to level off.

The use of nitrogen fertiliser has risen from 11 million tonnes in 1961 to 108 million tonnes in 2014. As carbon dioxide levels continue to rise in the atmosphere, some plants such as grains will also likely demand more nitrogen.

Wheat with and without nitrogen fertiliser.
Deli Chen/ The University of Melbourne

In fact, nitrogen from fertiliser now accounts for more than half the protein in the human diet. Yet some 50% of applied nitrogen is lost to the environment in water run-off from fields, animal waste and gas emissions from soil microbe metabolism.

These losses have been increasing over the decades as nitrogen fertiliser use increases. Reactive nitrogen causes wide-ranging damage, and will cause more damage if nitrogen losses are not reined in.

Faced with a growing population and changing climate, we need more than ever to optimise the use of nitrogen and minimise the losses.

From farm to fork

One way to understand our nitrogen use is to look at our nitrogen footprint – the amount of nitrogen pollution released to the environment from food, housing, transportation and goods and services.

Research by University of Melbourne PhD candidate Emma Liang shows Australia has a large nitrogen footprint. At 47kg of nitrogen per person each year, Australia is far ahead of the US, which came in with 28kg of nitrogen per person.

A high-animal-protein diet appears to be driving Australia’s big nitrogen footprint. The consumption of animal products accounts for 82% of the Australian food nitrogen footprint.

Animal products carry high nitrogen costs compared to vegetable products. Both products start with the same cost in nitrogen as a result of growing a crop, but significant further losses occur as the animal consumes food throughout its life cycle.

The N-Footprint project aims to help individuals and institutions calculate their nitrogen footprints. It shows how we can each have an impact on nitrogen pollution through our everyday choices.

We can choose to eat lower nitrogen footprint protein diets, such as vegetables, chicken and seafood instead of beef and lamb. We can choose to reduce food waste by buying smaller quantities (and more frequently if necessary) and composting food waste. The good news is, if we reduce our nitrogen footprint, we also reduce our carbon footprint.

Back to the farm

In the meantime, efforts to use nitrogen more efficiently on farms must continue. We are getting better at understanding nitrogen losses from soil through micrometerological techniques.

From sitting in the sun with plastic bucket chambers, glass vials and syringes, scientists now use tall towers and lasers to detect small changes in gas concentrations over large areas and send the results directly to our computers.

Eddy covariance tower.
Mei Bai/ The University of Melbourne

We now know nitrification (when ammonia is converted to nitrate) is an important contributor to nitrogen losses and therefore climate change and damage to ecosystems. It is a process researchers – and farmers – are targeting to reduce nitrogen losses.

Nitrification inhibitors are now used commercially to keep nitrogen in the ammonium form, which plants prefer, and to prevent the accumulation of nitrate, which is more easily lost to the environment.

As this technology advances, we are starting to answer the question of how these inhibitors affect the microbial communities that maintain the health of our soil and form the foundation of ecosystems.

For example, our research shows that 3,4-dimethylpyrazole phosphate (better known as DMPP) inhibits nitrification without affecting soil microbial community diversity.

There have also been exciting observations that the root systems of some tropical grasses inhibit nitrification. This opens up a management option to slow nitrification rates in the environment using genetic approaches.

Solving the challenge of nitrogen use will require research into more efficient ways for primary producers to use nitrogen, but it will also need government leadership and consumer choices to waste less or eat more plant protein. These tools will make the case for change clearer, and the task of feeding the world greener.


On December 4-8, leading international researchers are meeting in Melbourne for the 7th International Nitrogen Initiative Conference to discuss the best new solutions to problems in nitrogen use. For a more in-depth look at these issues, visit the INI2016 website or join a range of food and production experts at the Good Food for 9 Billion: Community Forum.

The Conversation

Ee Ling Ng, Research fellow, University of Melbourne; Deli Chen, Professor, University of Melbourne, and Robert Edis, Soil Scientist

This article was originally published on The Conversation. Read the original article.

It’s time to speak up about noise pollution in the oceans


It’s time to speak up about noise pollution in the oceans

Christine Erbe, Curtin University

Ask most people about pollution, and they will think of rubbish, plastic, oil, smog, and chemicals. After some thought, most folks might also suggest noise pollution.

We’re all familiar with noise around us, and we know it can become a problem – especially if you live near an airport, train station, highway, construction site, or DIY-enthusiast neighbour.

But most people don’t think that noise is a problem under water. If you’ve read Jules Verne’s Twenty Thousand Leagues Under the Sea you might imagine that, maelstroms excepted, life is pretty quiet in the ocean. Far from it.

When we put a hydrophone (essentially a waterproof microphone) into the water, no matter where in the world’s oceans, it’s never quiet. We hear wind blowing overhead and rain dropping onto the ocean surface – even from hundreds of metres deep. In Australian waters we can also detect the far-off rumbles of earthquakes and the creaking of Antarctic ice thousands of kilometres away.

Wet and noisy

Water is much denser than air, so its molecules are packed tighter together. This means that sound (which relies on molecules vibrating and pushing against one another) propagates much further and faster under water than in air.

This also applies to human-produced sound. Under water we can hear boats and ships and even aeroplanes. Large vessels in deep water can be detected tens of kilometres away. We can be far offshore doing fieldwork, the only people around, with nothing in sight but water in any direction. Yet when we switch the engines off and put a hydrophone into the water, we hear ship noise. Sometimes, whole minutes later, the vessel we heard might appear on the horizon.

Seafarers have known about another source of sound for thousands of years: marine life. Many animals produce sound, from the tiniest shrimp to the biggest whales. Many fish even communicate acoustically under water – during the mating season, the boys start calling. Whales do it, too.

Light doesn’t reach far under water. Near the surface, in clear water, you might be able to peer a few metres, but in the inky depths you can’t see at all. So many marine animals have evolved to “see with sound”, using acoustics for navigation, for detecting predators and prey, and for communicating with other members of their species.

The thing is that man-made sound can interfere with these behaviours.

The effects of noise on marine animals are similar to those on us. If you’ve ever been left with ringing ears after a rock concert, you’ll know that loud noise can temporarily affect your hearing or even damage it permanently.

Noise interferes with communication, often masking it. Can you talk above the background noise in a busy pub? Long-term exposure to noise can cause stress and health issues — in humans and animals alike.

Excessive noise can change marine creatures’ habits, too. Like a person who decides to move house rather than live next door to a new airport, animals might choose to desert their habitat if things get too noisy. The question is whether they can find an equally acceptable habitat elsewhere.

Pile-driving is noisy work.
Christine Erbe, Author provided

There is a lot more research still to be done in this field. Can we predict what noises and vibrations might be released into the marine environment by new machinery or ships? How does sound propagate through different ocean environments? What are the long-term effects on marine animal populations?

One positive is that even though noise pollution travels very fast and very far through the ocean, the moment you switch off the source, the noise is gone. This is very much unlike plastic or chemical pollution, and gives us hope that noise pollution can be successfully managed.

We all need energy, some of which comes from oil and gas; most of our consumer goods are shipped across the seas on container vessels; and many of us enjoy eating seafood caught by noisy fishing boats, some of which even use dynamite to catch fish. We want to protect our borders, making naval operations a necessity. Then there’s the ever growing industry of marine tourism, much of it aboard ever-bigger cruise ships which need large ports in which to berth.

There are a lot of stakeholders in the marine environment, and all speak a different language, all make different claims, and all make noise. Knowing precisely how much noise they make, and how it affects marine life, will help to ensure our oceans and their resources last well into the future.


September 3-11 is SeaWeek 2016, the Australian Association for Environmental Education Marine Educators’ national public awareness campaign.

The Conversation

Christine Erbe, Director, Centre for Marine Science & Technology, Curtin University

This article was originally published on The Conversation. Read the original article.