Delhi suffers second smog crisis in 12 months, as wake-up calls go unheeded


Vijay Koul, CSIRO

A year ago Delhi was choking, as smog in the Indian capital soared to 16 times the government’s safe limit for particulate pollution. Now the same thing has happened again.

Levels of the most dangerous particles, called PM2.5, have once again reached last November’s levels: more than 700 micrograms per cubic metre in some parts of the city. Experts say that prolonged exposure to this level of pollution is equivalent to smoking more than two packs of cigarettes a day.

Just 12 months after the record-breaking pollution that should have been a major wake-up call, Delhi is again plunged into darkness. It is a big embarrassment that authorities were not better prepared for this year’s smog season.


Read more: As another smog season looms, India must act soon to keep Delhi from gasping


In July, I released a detailed analysis of the factors that cause Delhi’s November smog.

Based on data from India’s Central Pollution Control Board and from NASA, I concluded that Delhi’s record-breaking pollution in November 2016 was largely due to slow wind speeds and prevailing northerly winds, as well as Diwali fireworks, and the widespread practice of burning crop residues. Others, including the Delhi government, reported similar findings.

But this knowledge has not stopped it happening again, much to the frustration of Delhi residents who now face a second consecutive pollution-plagued winter.

Of course, the authorities do not control the wind speed or direction. But they can and should take steps to curb the other crucial factors.

Burning issue

In Haryana and Punjab states to the north of Delhi, farmers routinely burn their croplands after the summer harvest, ridding their fields of stubble, weed and pests and readying them for winter planting.

This agricultural event coincides with Diwali, India’s festival of lights, which features three or four nights of fireworks before and after the festival, in October or early November.

This series of NASA satellite images clearly shows the pollution plume moving across the landscape during the first two weeks of November. Red dots indicate live fires.

November 1.
NASA
November 8.
NASA
November 14.
NASA

These images show that crop burning is still continuing, especially in parts of Punjab. As the graph below shows, crop burning produced significant amounts of pollution from November 2, 2017, after an earlier pollution spike around October 20 due to Diwali.

https://datawrapper.dwcdn.net/ZHncI/1/

Other countries have taken measures to limit crop burning. In Australia, the Victorian state government strongly encourages farmers to retain crop stubble residues, although it allows sporadic burning. In some Canadian provinces, stubble burning is allowed by permit only.

There is no such legislation under consideration in India. But without a ban on crop burning, Delhi’s pollution woes are likely to continue.

It is high time that the government responded, before Delhi’s pollution gets even more out of hand. Particles in the PM2.5 size range can travel deep into the respiratory tract, reaching the lungs. Exposure to fine particles can cause short-term health effects such as eye, nose, throat and lung irritation, coughing, sneezing, runny nose and shortness of breath.

Exposure to fine particles can also affect lung function and worsen medical conditions such as asthma and heart disease. Studies have linked increases in daily PM2.5 exposure with increased respiratory and cardiovascular hospital admissions, emergency department visits and deaths. More than a million deaths in 2015 were attributed to India’s air pollution.

What governments and residents can do

There is a range of short- and long-term options to combat the problem.

Farmers in Haryana and Punjab should be banned from residue crop burning during October and November, and should be given financial compensation for the inconvenience.

Meanwhile, Delhi’s residents should consider driving less, either by carpooling or using public transport. The city’s authorities, meanwhile, could restrict the entry of polluting trucks and heavy-duty goods vehicles, gradually phase out and ultimately ban older vehicles, and increase parking charges or restrict families to a single car.

A reliable 24-hour power supply would help to reduce the reliance on heavily polluting diesel generators in offices and factories. Subsidies for cleaner fuels or electric or hybrid cars would also help.


Read more: Air pollution causes more than 3 million premature deaths a year worldwide


Authorities also have a duty to keep the public informed of pollution levels, through daily television, radio and social media updates, as well as pamphlets warning of the effects of air quality on health. On the worst days, schools should be closed and children and older people urged to stay indoors.

In the longer terms, a “green belt” could be planted around the city, to help soak up traffic-induced air and noise pollution.

The ConversationMany of these policies would involve significant upheaval. But Delhi needs action before it is too late. The alternative is to be plunged ever deeper into the murk.

Vijay Koul, Honorary fellow, CSIRO

This article was originally published on The Conversation. Read the original article.

Advertisements

Mercury from the northern hemisphere is ending up in Australia



File 20170915 16298 iyi3gv
Mercury pollution, often released from gold mining and coal power stations, is a global problem.
Shutterstock

Jenny Fisher, University of Wollongong; Dean Howard, Macquarie University; Grant C Edwards, Macquarie University, and Peter Nelson, Macquarie University

Mercury pollution has a long legacy in the environment. Once released into the air, it can cycle between the atmosphere and ecosystems for years or even decades before ending up deep in the oceans or land.

The amount of mercury in the ocean today is about six times higher than it was before humans began to release it by mining. Even if we stopped all human mercury emissions now, ocean mercury would only decline by about half by 2100.

To address the global and long-lasting mercury problem, a new United Nations treaty called the Minamata Convention on Mercury came into effect last month. The treaty commits participating countries to limit the release of mercury and monitor the impacts on the environment. Australia signed the Convention in 2013 and is now considering ratification.


Read more: Why won’t Australia ratify an international deal to cut mercury pollution?


Until now, we have only been able to guess how much mercury might be in the air over tropical Australia. Our new research, published in the journal Atmospheric Chemistry and Physics, shows that there is less mercury in the Australian tropics than in the northern hemisphere – but that polluted northern hemisphere air occasionally comes to us.

A global problem

While most of mercury’s health risks come from its accumulation in ocean food webs, its main entry point into the environment is through the atmosphere. Mercury in air comes from both natural sources and human activities, including mining and burning coal. One of the biggest mercury sources is small-scale gold mining – a trade that employs millions of people in developing countries but poses serious risks to human health and the environment.

Small-scale gold mining is an economic mainstay for millions of people, but it releases mercury directly into the air and water sources.

Once released to the air, mercury can travel thousands of kilometres to end up in ecosystems far away from the original source.

Measuring mercury in the tropics

While the United Nations was gathering signatures for the Minamata Convention, we were busy measuring mercury at the Australian Tropical Atmospheric Research Station near Darwin. Our two years of measurements are the first in tropical Australia. They are also the only tropical mercury measurements anywhere in the Maritime Continent region covering southeast Asia, Indonesia, and northern Australia.

We found that mercury concentrations in the air above northern Australia are 30-40% lower than in the northern hemisphere. This makes sense; most of the world’s population lives north of the Equator, so most human-driven emissions are there too.

More surprising is the seasonal pattern in the data. There is more mercury in the air during the dry season than the wet season.

The Australian monsoon appears to be partly responsible for the seasonal change. The amount of mercury jumps up sharply at the start of the dry season when the winds shift from blowing over the ocean to blowing over the land.

In the dry season the air passes over the Australian continent before arriving at the site, while in the wet season the air usually comes from over the ocean to the west of Darwin.
Howard et al., 2017 (modified)

But wind direction can’t explain the whole story. Mercury is likely being removed from the air by the intense rains that characterise the wet season. In other words, the lower mercury in the air during the wet season may mean more mercury is being deposited to the ocean and the land at this time of year. Unfortunately, there simply isn’t enough information from Australian ecosystems to know how this impacts local plants and wildlife.

Fires also play a role. Mercury previously absorbed by grasses and trees can be released back to the atmosphere when the vegetation burns. In our data, we see occasional large mercury spikes associated with dry season fires. As we move into a bushfire season predicted to be unusually severe, we may see even more of these spikes.

Air from the north

Although mercury levels were usually low in the wet season, on a few days each year the mercury jumped up dramatically.

To figure out where these spikes were coming from, we used two different models. These models combine our understanding of atmospheric physics with real observations of wind and other meteorological parameters.

Both models point to the same source: air transported from the north.

Australia is usually shielded from northern hemispheric air by a “chemical equator” that stops air from mixing. This barrier isn’t static – it moves north and south throughout the year as the position of the sun changes.

A few times a year, the chemical equator moves so far south that the top end of Australia actually falls within the atmospheric northern hemisphere. When this happens, polluted northern hemisphere air can flow directly to tropical Australia.

We observed 13 days when our measurement site near Darwin sampled more northern hemisphere air than southern hemisphere air. On each of these days, the amount of mercury in the air was much higher than on the days before or after.

Tracing the air backwards in time showed that the high-mercury air travelled over the Indonesian archipelago before arriving in Australia. We don’t yet know whether that mercury came from pollution, fires, or a mix of the two.

The highest mercury is observed when the air comes from the northern hemisphere.
Howard et al., 2017 (modified)

A global solution

To effectively reduce mercury exposure in sensitive ecosystems and seafood-dependent populations around the world, aggressive global action is necessary.

The cross-boundary influences on mercury that we have observed in northern Australia highlight the need for the type of multinational collaboration that the Minamata Convention will foster.

The ConversationOur new data establish a baseline for monitoring the effectiveness of new actions taken under the Minamata Convention. With the first Conference of the Parties having taken place last week, hopefully it will only be a matter of time before we begin to see the benefit.

Jenny Fisher, Senior Lecturer in Atmospheric Chemistry, University of Wollongong; Dean Howard, , Macquarie University; Grant C Edwards, Senior lecturer, Macquarie University, and Peter Nelson, Pro Vice Chancellor (Research Performance and Innovation), Macquarie University

This article was originally published on The Conversation. Read the original article.

The new Great Barrier Reef pollution plan is better, but still not good enough


Jon Brodie, James Cook University; Alana Grech, James Cook University, and Laurence McCook, James Cook University

The draft water quality improvement plan, released by the federal and Queensland governments this week, aims to reduce the pollution flowing from water catchments to the Great Barrier Reef over the next five years.

It is part of the overarching Reef 2050 Long-Term Sustainability Plan to protect and manage the reef until mid-century.

Water quality is one of the biggest threats to the reef’s health, but the new guidelines still fall short of what’s required, given the available scientific evidence.


Read more: Cloudy issue: we need to fix the Barrier Reef’s murky waters.


The draft plan, which is open for comment until October, presents several important and commendable advances in the management of water quality on the Great Barrier Reef. It addresses all land-based sources of water pollution (agricultural, urban, public lands and industrial) and includes social, cultural and economic values for the first time.

The principal sources of pollution are nitrogen loss from fertiliser use on sugar cane lands, fine sediment loss from erosion on grazing lands, and pesticide losses from cropping lands. These are all major risk factors for the Great Barrier Reef.

The draft plan also presents updated water quality targets that call for reductions in run-off nutrients and fine sediments by 2025. Each of the 35 catchments that feeds onto the reef has its own individual set of targets, thus helping to prioritise pollution-reduction measures across a region almost as large as Sweden.

The reef’s still suffering

The Great Barrier Reef suffered coral bleaching and death over vast areas in 2016, and again this year. The 2017 Scientific Consensus Statement, released with the draft water quality plan (and on which one of us, Jon Brodie, was an author), reports:

Key Great Barrier Reef ecosystems continue to be in poor condition. This is largely due to the collective impact of land run-off associated with past and ongoing catchment development, coastal development activities, extreme weather events and climate change impacts such as the 2016 and 2017 coral bleaching events.

Stronger action on the local and regional causes of coral death are seen to be essential for recovery at locations where poor water quality is a major cause of reef decline. These areas include mid-shelf reefs in the Wet Tropics region damaged by crown of thorns starfish, and inner-shelf reefs where turbid waters stop light reaching coral and seagrass. Human-driven threats, especially land-based pollution, must be effectively managed to reduce the impacts on the Great Barrier Reef.

But although the draft plan provides improved targets and a framework for reducing land-based pollution, it still doesn’t reflect the severity of the situation. The 2017 Scientific Consensus Statement reports that “current initiatives will not meet the water quality targets” by 2025.

This is because the draft plan does not provide any major new funding, legislation or other initiatives to drive down land-based pollution any further. As the statement explains:

To accelerate the change in on-ground management, improvements to governance, program design, delivery and evaluation systems are urgently needed. This will require greater incorporation of social and economic factors, better targeting and prioritisation, exploration of alternative management options and increased support and resources.


Read more: The Great Barrier Reef’s safety net is becoming more complex but less effective


The draft plan calls on farmers to go “beyond minimum standards” for practices such as fertiliser use in sugar cane, and minimum pasture cover in cattle grazing lands. But even the minimum standards are unlikely to be widely adopted unless governments implement existing legislation to enforce the current standards.

The draft plan is also silent on the impact of land clearing on water quality, and the conversion of grazing land to intensively farmed crops such as sugar cane, as proposed in the White Paper on Developing Northern Australia.

The federal and Queensland governments have committed A$2 billion over ten years to protect the Great Barrier Reef. Under the draft plan, about half of this (A$100 million a year) will be spent on water quality management. This is not an increase in resourcing, but rather the same level of funding that has been provided for the past seven years.

More than loose change

There is a very strong business case for major increases in funding to protect the Great Barrier Reef. Even with conservative assumptions, the economics firm Jacobs has estimated that protecting the industries that depend on the reef will require A$830 million in annual funding – more than four times the current level.


Read more: What’s the economic value of the Great Barrier Reef? It’s priceless.


The draft water quality plan acknowledges the need for a “step change” in reef management, and to “accelerate our collective efforts to improve the land use practices of everyone living and working in the catchments adjacent to the Reef”.

This need is echoed in many other reports, both government and scientific. For example, the 2017 Scientific Consensus Statement makes several wide-ranging recommendations.

One of them is to make better use of existing legislation and policies, including both voluntary and regulatory approaches, to improve water quality standards.

This recommendation applies to both Commonwealth and Queensland laws. These include the federal Great Barrier Reef Marine Park Act 1975, which restricts or bans any activities that “may pollute water in a manner harmful to animals and plants in the Marine Park”, and the Environment Protection and Biodiversity Conservation Act 1999, which prohibits any action, inside or outside the marine park, that affects the Great Barrier Reef’s World Heritage values.

Another recommendation is to rethink existing land-use plans. For instance, even the best practice in sugar cane farming is inconsistent with the nitrogen fertiliser run-off limits needed to meet water quality guidelines. One option is to shift to less intensive land uses such as grazing in the Wet Tropics region – a priority area for nitrate fertiliser management because of its link to crown of thorns starfish outbreaks. This option is being explored in a NESP project.

The ConversationThese changes would require significantly increased funding to support catchment and coastal management and to meet the draft plan’s targets. Government commitment to this level of management is essential to support the resilience of the Great Barrier Reef to climate change.

Jon Brodie, Professorial Fellow, ARC Centre of Excellence for Coral Reef Studies, James Cook University; Alana Grech, Assistant Director, ARC Centre of Excellence for Coral Reef Studies, James Cook University, and Laurence McCook, Adjunct Principal Research Fellow, Partner Investigator, ARC Centre of Excellence for Coral Reef Studies, James Cook University

This article was originally published on The Conversation. Read the original article.

Pristine paradise to rubbish dump: the same Pacific island, 23 years apart



File 20170714 14306 wmgjzv
The same beach on Henderson Island, in 1992 and 2015.

Jennifer Lavers, University of Tasmania and Alexander Bond, Royal Society for the Protection of Birds

A few weeks ago, the world woke to the story of Henderson Island, the “South Pacific island of rubbish”. Our research revealed it as a place littered with plastic garbage, washed there by ocean currents.

This was a story we had been waiting to tell for more than a year, keeping our discoveries under wraps while we worked our way through mountains of data and photographs.

Our May 2017 video story detailing the rubbish on Henderson Island.

Everyone wanted to know how the plastic got there, and fortunately that is a question that our understanding of ocean currents can help us answer. But the question we couldn’t answer was: when did it all start to go so wrong?

This is the million-dollar question for so many wild species and spaces – all too often we only notice a problem once it’s too big to deny, or perhaps even solve. So when did Henderson’s sad story start? The answer is: surprisingly recently.

An eloquent photo

During our research we had reached out to those who had previously worked on Henderson Island or in nearby areas, to gain a better understanding of what forces contributed to the enormous piles of rubbish that have floated to Henderson’s sandy beaches.

Then, after our research was published and the world was busy reading about 37 million plastic items washed up on a remote south Pacific island, we received an email from Professor Marshall Weisler from the University of Queensland, who had seen the news and got in touch.

In 1992, he had done archaeological surveys on Henderson Island. The photos he shared from that expedition provided a rare glimpse into the beginning of this chapter of Henderson Island’s story, before it became known as “garbage island”.

Henderson Island in happier times.
Marshall Weisler, Author provided
The same stretch of beach in 2015.
Jennifer Lavers, Author provided

There are only 23 years between these two photos, and the transformation is terrifying – from pristine South Pacific gem to the final resting place for enormous quantities of the world’s waste.

Remember, this is not waste that was dumped directly by human hands. It was washed here on ocean currents, meaning that this is not just about one beach – it shows how much the pollution problem has grown in the entire ocean system in little more than two decades.

To us, Henderson Island was a brutal wake-up call, and there are undoubtedly other garbage islands out there, inundated and overwhelmed by the waste generated in the name of progress. Although the amount of trash on Henderson is staggering – an average of 3,570 new pieces arrive each day on one beach alone – it represents a minute fraction of the rubbish produced around the globe.

Cleanup confounded

In the wake of the story, the other big question we received (and one we should have seen coming) was: can I help you clean up Henderson Island? The answer is no, for a very long list of reasons – some obvious, some not.

To quote a brilliant colleague, what matters is this: if all we ever do is clean up, that is all we will ever do. With thousands of new plastic items washing up on Henderson Island every day, the answer is clear.

The solution doesn’t require travel to a remote island, only the courage to look within. We need to change our behaviour, to turn off the tap and stem the tide of trash in the ocean. Our oceans, our islands, and our planet demand, and deserve it.

However difficult those changes may be, what choice do we have?

Prevention, not cure

While grappling with the scale of the plastics issue can at times be overwhelming, there are simple things you can do to make a difference. The solutions aren’t always perfect, but each success will keep you, your family, and your community motivated to reduce plastic use.

First, ask yourself this: when did it become acceptable for something created from non-renewable petrochemicals, extracted from the depths of the Earth and shipped around the globe, to be referred to as “single use” or “disposable”? Your relationship with plastic begins with the language you use.

But don’t stop there: here are a couple of facts illustrating how you can challenge yourself and make a difference.

Challenge: switch to bamboo toothbrushes, which cost just a few dollars each and are available from a range of online retailers or wholefood shops.

Challenge: switch to products that use crushed apricot kernels, coconut shell, coffee grounds, or sea salts as natural exfoliants.

The ConversationThese are only small changes, and you can undoubtedly think of many more. But we need to start turning the tide if we are to stop more pristine places being deluged with our garbage.

Jennifer Lavers, Research Scientist, Institute for Marine and Antarctic Studies, University of Tasmania and Alexander Bond, Senior Conservation Scientist, Royal Society for the Protection of Birds

This article was originally published on The Conversation. Read the original article.

How our research is helping clean up coal-mining pollution in a World Heritage-listed river



Image 20170329 1674 1tkl166
The Wollangambe River’s canyons are loved by adventurers.
Ben Green

Ian Wright, Western Sydney University

The Wollangambe River in New South Wales is a unique gift of nature, flowing through the stunning Wollemi National Park, wilderness areas and the World Heritage-listed Blue Mountains. It’s an adventure tourism hotspot, with thousands of people clambering through the river’s majestic canyons each year.

So it was with a sense of irony that bushwalkers noticed unnatural flow and discolouration in the river and suspected it was pollution. In 2012 they contacted Western Sydney University, which has since conducted ongoing investigations.

The pollution was traced back to the Clarence Colliery, owned by Centennial Coal. Our recent research confirms that this is one of the worst cases of coal mine pollution in Australia, and indeed the world.

For four years I and other researchers have been investigating the pollution and its impacts on the river. The NSW Environment Protection Authority (EPA) has verified our findings. In exciting news, the mine was in March issued a revised environmental licence, which we believe is the most stringent ever issued to an Australian coal mine.

This is appropriate given the conservation significance of the river and the current scale of the pollution. We are now hopeful that the pollution of the Wollangambe River may soon be stopped.

Water pollution damages the river and its ecology

The Clarence Colliery is an underground mine constructed in 1980. It is just a few kilometres from the boundary of the Blue Mountains National Park.

Clarence Colliery and Wollangambe River.
Ian Wright

Our research revealed that waste discharges from the mine cause a plume of water pollution at least 22km long, deep within the conservation area. The mine constantly discharges groundwater, which accumulates in underground mines. The water is contaminated through the mining process. The mine wastes contributed more than 90% of the flow in the upper reaches of the river.

The EPA regulates all aspects of the mining operation relating to pollution. This includes permission to discharge waste water to the Wollangambe River, provided that it is of a specified water quality.

Our research found that the wastes totally modified the water chemistry of the river. Salinity increased by more than ten times below the mine. Nickel and zinc were detected at levels that are dangerous to aquatic species.

We surveyed aquatic invertebrates, mostly insects, along the river and confirmed that the mine waste was devastating the river’s ecology. The abundance of invertebrates dropped by 90% and the number of species was 65% lower below the mine waste outfall than upstream and in tributary streams. Major ecological impacts were still detected 22km downstream.

We shared our early research findings with the NSW EPA in 2014. The authority called for public submissions and launched an investigation using government scientists from the NSW Office of Environment and Heritage. Their study confirmed our findings.

Progress was interrupted when tonnes of sediment from the mine were dislodged in 2015 after heavy rainfall and the miner and the EPA focused on cleaning the sediment from the river. This incident has resulted in the EPA launching a prosecution in the NSW Land and Environment Court.

We recently compared the nature and scale of pollution from this mine with other coal mine pollution studies. The comparison confirms that this is one of the most damaging cases of coal mine water pollution in Australia, or internationally.

Even 22km below the waste outfall, the Wollangambe is still heavily polluted and its ecosystems are still degraded. One of the unique factors is that this mine is located in an otherwise near-pristine area of very high conservation value.

New licence to cut pollution

The new EPA licence was issued March 1, 2017. It imposes very tight limits on an extensive suite of pollutant concentrations that the mine is permitted to discharge to the Wollangambe River.

The licence covers two of the most dangerous pollutants in the river: nickel and zinc. Nickel was not included in the former licence.

The new licence now includes a sampling point on the river where it flows into the World Heritage area, about 1km downstream from the mine. The licence specifies vastly lower concentrations of pollutants at this new sampling point.

For example, the permitted concentration of zinc has been reduced from 1,500 micrograms per litre in the waste discharge, in the old licence, to 8 micrograms per litre.

It can be demoralising to witness growing pollution that is damaging the ecosystems with which we share our planet. This case study promises something different.

The actions of the EPA in issuing a new licence to the mine provide hope that the river might have a happy ending to this sad case study. The new licence comes into effect on June 5, 2017.

The ConversationOur current data suggest that water quality in the river is already improving. We dream that improved water quality, following this licence, will trigger a profoundly important ecological recovery. Now we just have to wait and see whether the mine can improve its waste treatment to meet the new standards.

Ian Wright, Senior Lecturer in Environmental Science, Western Sydney University

This article was originally published on The Conversation. Read the original article.

This South Pacific island of rubbish shows why we need to quit our plastic habit


Jennifer Lavers, University of Tasmania

A remote South Pacific island has the highest density of plastic debris reported anywhere on the planet, our new study has found. The Conversation

Our study, published in the journal Proceedings of the National Academy of Sciences, estimated that more than 17 tonnes of plastic debris has washed up on Henderson Island, with more than 3,570 new pieces of litter arriving every day on one beach alone.

Our study probably actually underestimates the extent of plastic pollution on Henderson Island, as we were only able to sample pieces bigger than two millimetres down to a depth of 10 centimetres. We also could not sample along cliffs.
Jennifer Lavers, Author provided

It is estimated that there are nearly 38 million pieces of plastic on the island, which is near the centre of the South Pacific Gyre ocean current.

Henderson Island, marked here by the red pin, is in the UK’s Pitcairn Islands territory and is more than 5,000 kilometres from the nearest major population centre. That shows plastic pollution ends up everywhere, even in the most remote parts of the world.
Google Maps

A 2014 paper published in the journal PLOS One used data from surface water all over the world. The researchers estimated that there are 5.25 trillion pieces of plastic in the top 10 centimetres of the world’s oceans.

Plastics pose a major threat to seabirds and other animals, and most don’t ever break down – they just break up. Every piece of petrochemical-derived plastic ever made still exists on the planet.

Jennifer Lavers, Research Scientist, Institute for Marine and Antarctic Studies, University of Tasmania

This article was originally published on The Conversation. Read the original article.