Fighting frog fungus: Lee Berger wins PM’s Life Scientist 2018 award



File 20181016 165903 16u8i1s.jpg?ixlib=rb 1.1
In 1998 Lee Berger identified a skin fungus as the cause of unexplained mass frog deaths.
Prime Minister’s Prizes for Science/WildBear

Lee Berger, University of Melbourne and Lee Francis Skerratt, University of Melbourne

Lee Berger is the 2018 recipient of the Frank Fenner Prize for Life Scientist of the Year, one of the Prime Minister’s Prizes for Science announced on October 17.

Lee’s research identified the cause of mysterious and devastating mass frog extinctions that spread across the world starting in the 1970s: it was a skin fungus.

With her colleague Lee Skerratt, here she describes the work that led to her prize, and what is still to be achieved for frog and wildlife conservation in Australia and across the world.


Combating fungi in frogs – why is this important?

Chytridiomycosis might be the worst disease in history. In a matter of decades, the illness cut a swathe through hundreds of species of frogs, causing mass extinctions as it spread out of Asia into Australia and the Americas.

Our research was the first to identify the cause – a novel chytrid fungus called Batrachochytrium dendrobatidis – but finding ways to combat the disease requires a lot more work.

Infected frogs are lethargic and experience excess skin shedding (this species is Mixophyes fasciolatus).
Lee Berger, Author provided

Here in Australia, six species have already been driven extinct, and another seven are on the brink. Fortunately, in Australia we also have the unique expertise and perspective to prevent further losses if we devote adequate resources to the problem.




Read more:
Frogs v fungus: time is running out to save seven unique species from disease


The keys to our research success have been a cross-disciplinary approach and a focus on delivering conservation outcomes.

Frog declines had been seen around the world from the late 1970s on, but it wasn’t until 1998 that we identified the chytrid fungus as the cause.

Parts of the fungus poke through an infected frog’s skin – as seen here under scanning electron microscope.
Lee Berger, Author provided

Why had nobody else figured this out before?

Discovering the fungus on the skin of frogs was not rocket science, but rather applying the methods from one discipline to a problem in another. An outbreak investigation approach – using the tools of medicine for frog conservation – allowed us to diagnose the cause of the frog deaths.

The main reason this approach was tried in Australia was the broad knowledge and interest of the late Rick Speare, an extraordinarily eclectic scientist, medical doctor and vet. (Like the prize’s namesake Frank Fenner, he was comfortable using his medical expertise for the environment.)

Rick’s help was sought by Keith McDonald, a chief ranger of Queensland and a herpetologist. Keith was concerned about the health of North Queensland frogs after witnessing major declines in the south.

After looking at the pattern of declines the pair thought they saw the trail of an unknown infectious, waterborne disease. They applied for funds to search for a disease.

Green-eyed treefrogs (Litoria serrata) in the Queensland rainforest have declined due to chytridiomycosis.
Lee Skerratt, Author provided

The idea that an infectious disease might be responsible for frog declines met resistance because of the belief that a pathogen can never cause extinction, because hosts will evolve resistance. So while Rick and Keith did obtain funding to tackle this urgent global mystery, it was only enough to support a single PhD student.

That PhD student was me, Lee Berger. To cut a long story short, my work in pathology and disease transmission experiments in frogs led to our conclusion that a novel and unusual fungus in the frogs’ skin caused a fatal disease and the mass amphibian deaths seen in North Queensland. As this was the first fungus from the phylum Chytridiomycota found to cause disease in a vertebrate, I had to develop many new methods to be able to further study the disease.

So in summary, it was about 20 years after global amphibian declines began that we discovered chytridiomycosis as the cause of the population crashes. It took about another ten years for the disease to be accepted as the prime cause of declines.

After the discovery, what came next?

In subsequent years our research has continued towards the more challenging goal of finding solutions to manage this issue.

Our small multidisciplinary One Health Research Group has tackled diverse questions to reduce the spread and the impact. Questions such as:

Now we are focused on understanding immunity to improve survival rates of the most threatened species of frogs in the wild.

This work has only been possible due to the extraordinary dedication of our students and staff and the collaboration with specialist scientists such as herpetologists, molecular biologists, immunologists, physiologists and others who have lent their expertise.

Common mistfrogs (Litoria rheocola) in the Queensland rainforest have also declined due to chytridiomycosis.
Lee Skerratt, Author provided

What does this mean for Australia’s wildlife?

Our research has clearly shown that introduced diseases can have catastrophic impacts for conservation, much like the arrival of feral predators. In fact, disease can cause extinction much more quickly than predators, within months rather than years. The catastrophe of invasive species is a cost of globalisation that will be ongoing unless we respond.

The responsibility for wildlife lies with environment departments, but because health expertise is in other institutes, wildlife health can fall between the cracks.

We argue that continued support for bodies such as Wildlife Health Australia (WHA) is important. We also need a centre of expertise for outbreak investigation and strategic research to develop new tools for wildlife health management.

Biodiversity will miss out unless we support research that promises no direct and fast commercial return but benefits our nation in the longer term. In particular, and most urgently, Australia must save its frogs before it is too late.


Other winners in the 2018 Prime Ministers Science Prizes are: The Conversation

  • Prime Minister’s Prize for Science: Kurt Lambeck
  • Prime Minister’s Prize for Innovation: The Finisar team
  • Frank Fenner Prize for Life Scientist of the Year: The Finisar team
  • Malcolm McIntosh Prize for Physical Scientist of the Year: Jack Clegg
  • Prime Minister’s Prize for New Innovators: Geoff Rogers
  • Prime Minister’s Prize for Excellence in Science Teaching in Primary Schools: Brett Crawford
  • Prime Minister’s Prize for Excellence in Science Teaching in Secondary Schools: Scott Sleap

Lee Berger, , University of Melbourne and Lee Francis Skerratt, , University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Teaching reptiles to avoid cane toads earns top honour in PM’s science prizes


Michael Hopkin, The Conversation

A conservation biologist who is bidding to help Australia’s native animals learn to give cane toads a wide berth has been awarded the 2016 Prime Minister’s Prize for Science.

University of Sydney professor Rick Shine was given the award for his work in using evolutionary principles to boost the effectiveness of real-world conservation.

One example is his innovative use of “teacher toads” – small cane toads deployed in areas where native animals are threatened by the poisonous invaders. These small toads aren’t big enough to kill but are unpleasant enough to encourage animals such as quolls and lizards to steer clear of eating bigger cane toads in future.

Invading cane toads are spreading westwards across tropical Australia and have now reached the northern parts of Western Australia, growing bigger and faster as they go. By deliberately releasing smaller cane toads ahead of the invasion front, the project aims to give native animals a better chance of avoiding being caught on the hop.

Professor Shine’s research has also explored ways to stop cane toads reproducing, by lacing traps with pheromones from other species that attract cane toad tadpoles.

Originally a reptile biologist, Professor Shine began studying cane toads after one arrived at a site on the Adelaide River near Darwin, making him realise the significance of the threat the toads posed.

“The creatures like snakes and lizards that dominate our ecosystems, they’re the ones we have to focus on, they’re the ones we need to understand if we want to keep Australia’s ecosystems functioning,” he said.

Rick Shine on his love of reptiles.

UNSW Australia conservation ecologist Mike Letnic said that Professor Shine has been a role model for many scientists, particularly biologists tackling big questions about evolution and conservation.

“For me the biggest contribution he has made is in studying the rapid evolution of some species such as snakes, and obviously the work on cane toads feeds into that. The big challenge is whether you can harness that evolution for biological control,” he said.

“With cane toads it is not just the selection process but also the spatial sorting – faster, fitter toads are skewing selection by being at the invasion front.”

Cash and plastic

Other award recipients include Michael Aitken of the Capital Markets Cooperative Research Centre, who won the Prime Minister’s Prize for Innovation for his use of financial data to identify ways to improve Australia’s health markets.

Having initially developed ways to detect fraud in financial markets, Professor Aitken then turned his attention to spotting inefficiencies in health spending.

He and his colleagues have identified examples of “low-value treatments”, which are over-prescribed relative to the benefits they deliver – such as prostate screening and surgeries for chronic arthritis.

“We are looking at maybe A$20 billion per year that could be directed to improve health care in areas of genuine want,” he said. “These might be treatments that are of no great benefit. But surgeons are paid to do surgery – and if they don’t do surgery they don’t get paid, so they do it.”

Professor Aitken said you can learn a lot by studying the “low-hanging fruit” of health financial data to spot treatments that are being over-prescribed. But he then asks clinical experts to evaluate the evidence base for the treatments themselves.

Michael Aitken explains his data-driven approach.

Another scientist being honoured for innovation is Colin Hall of the University of South Australia, who has created a high-tech, all-plastic replacement for standard car wing mirrors.

His design is lighter and more sustainable than the conventional metal-and-glass design, but it had to pass a succession of stringent tests designed to mimic harsh motoring conditions before being adopted by the car industry.

“The hardest was the salt test – it had to be sprayed with very salty hot water for ten days,” Hall said.

Other tests included a thermal shock test in which the mirrors had to cycle rapidly between -40℃ and 80℃, 200 times in a row, to ensure they could handle temperature changes.

Colin Hall’s high-tech plastics have passed the test.
Prime Minister’s Prizes for Science/WildBear

Hall’s earlier research focused on designing high-tech plastics for spectacles. But while a pair of glasses might be replaced within a year, cars are designed to last at least a decade, which means the industry is very strict about which designs it approves.

Hall hopes that, in time, all of the metal components on cars can be replaced with plastic alternatives, thereby doing away with the highly polluting electroplating processes currently used in car production.

Peptides, proteins and ecosystems

Other prizewinners include Richard Payne of the University of Sydney, whose work on re-engineering protein molecules found in nature promises to give us new ways to treat stroke, malaria, tuberculosis and even cancer, and has earned him the Malcolm McIntosh Prize for Physical Scientist of the Year.

University of Queensland conservation scientist Kerrie Wilson has won the Frank Fenner Prize for Life Scientist of the Year, for her work on evaluating “ecosystem services” – the benefits provided by natural resources such as clean air, water and food.

Perth teacher and former geoscientist Suzy Urbaniak has won the prize for excellence in secondary school science teaching, while the award for primary school science education went to Sydney-based Gary Tilley.

The winners, who will share a prize pool of A$750,000, will receive their prizes from Prime Minister Malcolm Turnbull and Science Minister Greg Hunt at a dinner in Parliament House this evening.

The Conversation

Michael Hopkin, Environment + Energy Editor, The Conversation

This article was originally published on The Conversation. Read the original article.