How we found 112 ‘recovery reefs’ dotted through the Great Barrier Reef


File 20171129 28869 lod9mh.jpg?ixlib=rb 1.1
Some reefs are strong sources of coral larvae.
Peter Mumby, Author provided

Peter J Mumby, The University of Queensland

The Great Barrier Reef is better able to heal itself than we previously imagined, according to new research that identifies 112 individual reefs that can help drive the entire system towards recovery.

The back-to-back bleaching events in 2016 and 2017 that killed many corals on the Great Barrier Reef have led many researchers to ask whether and how it can recover. Conventionally, we tend to focus on what controls recovery on individual reefs – for example, whether they are fouled by seaweed or sediments.

But in our study, published in PLoS Biology, my colleagues and I stepped back to view the entire Great Barrier Reef as a whole entity and ask how it can potentially repair itself.


Read more: The Great Barrier Reef can repair itself, with a little help from science


We began by asking whether some reefs are exceptionally important for kick-starting widespread recovery after damage. To do this we set three criteria.

First, we looked for reefs that are major sources of coral larvae – the ultimate source of recovery. Every year corals engage in one of nature’s greatest spectacles, their mass reproduction during a November full moon. Fertilised eggs (larvae) travel on ocean currents for days or weeks in search of a new home.

With our partners at the CSIRO we’ve been able to model where these larvae go, and therefore the “connectivity” of the reef. By using this modelling (the Great Barrier Reef is far too large to observe this directly), we looked for reefs that strongly and consistently supply larvae to many other reefs.

Healthy reefs supply far more larvae than damaged ones, so our second criterion was that reefs should have a relatively low risk of being impacted by coral bleaching. Using satellite records of sea temperature dating back to 1985, we identified reefs that have not yet experienced the kind of temperature that causes mass coral loss. That doesn’t mean these reefs will never experience bleaching, but it does mean they have a relatively good chance of surviving at least for the foreseeable future.

Our final criterion was that reefs should supply coral larvae but not pests. Here we focused on the coral-eating crown-of-thorns starfish, whose larvae also travel on ocean currents. We know that outbreaks of these starfish tend to begin north of Cairns, and from that we can predict which reefs are most likely to become infested over time.

Fortunately, many good sources of coral larvae are relatively safe from crown-of-thorns starfish, particularly those reefs that are far offshore and bathed in oceanic water from the Coral Sea rather than the currents that flow past Cairns. Indeed, the access to deep – and often cooling – ocean water helps moderate temperature extremes in these outer reefs, which also reduces the risk of bleaching in some areas.

Using these three criteria, we pinpointed 112 reefs that are likely to be important in driving reef recovery for the wider system. They represent only 3% of the reefs of the Great Barrier Reef, but are so widely connected that their larvae can reach 47% of all the reefs within a single summer spawning season.

Unfortunately, their distribution across the reef is patchy. Relatively few are in the north (see map) so this area is relatively vulnerable.

Black dots show reefs identified as strong sources of coral larvae; grey dots show other reefs.
Hock et al., PLoS Biol.

Our study shows that reefs vary hugely, both in their exposure to damage and in their ability to contribute to the recovery of corals elsewhere. Where these patterns are pretty consistent over time – as is the case for the reefs we identified – it makes sense to factor this information into management planning.

It would be sensible to improve surveillance of these particular reefs, to check that crown-of-thorns starfish do not reach them, and to eradicate the starfish if they do.

To be clear, these are not the only reefs that should be managed. The Great Barrier Reef already has more than 30% of its area under protection from fishing, and many of its other individual reefs are important for tourism, fisheries and cultural benefits.

But the point here is that some reefs are far more important for ecosystem recovery than others. Factoring these patterns into tactical management – such as how best to respond in the aftermath of a cyclone strike – is the next step. It’s a need that has been articulated repeatedly by the Great Barrier Reef Marine Park Authority.


Read more: Coal and climate change: a death sentence for the Great Barrier Reef


Taking the long-term view, the greatest threats to the reef are rising sea temperatures and ocean acidification caused by elevated carbon dioxide levels. This is clearly a challenge for humanity and one that requires consistent policies across governments.

But local protection is vital in order to maintain the reef in the best state possible given the global environment. Actions include improvements to the quality of the water emerging from rivers, controlling crown-of-thorns starfish, and maintaining healthy fish populations.

The ConversationThis is an expensive process and resources need to be deployed as effectively as possible. Our results help target management effectively by revealing the underlying mechanisms of repair on the reef. If management can help protect and facilitate corals’ natural processes of recovery, this might go a long way towards sustaining the Great Barrier Reef in an already challenging environment.

Peter J Mumby, Chair professor, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Advertisements

Australia is a global top-ten deforester – and Queensland is leading the way


Noel D Preece, James Cook University and Penny van Oosterzee, James Cook University

When you think of devastating deforestation and extinction you usually think of the Amazon, Borneo and the Congo. But eastern Australia ranks alongside these in the top 10 of the world’s major deforestation fronts – the only one in a developed nation. Most of the clearing is happening in Queensland, and it is accelerating.

Only last year a group of leading ecologists voiced their alarm at new data which showed the clearing of 296,000 hectares of forest in 2013-14. This was three times higher than in 2008-09, kicking Australia up the list as one of the world’s forest-clearing pariahs. At the 2016 Society for Conservation Biology Conference, a Scientists’ Declaration was signed by hundreds of scientists, expressing concern at these clearing rates.


Read more: Queensland land clearing is undermining Australia’s environmental progress


But the latest snapshot, Queensland’s Department of Science report on land cover change published last month, showed a staggering 395,000ha of clearing for 2015-16: an increase of one third on 2014-15. As far as we can tell this rate of increased clearing is unmatched anywhere else on the globe.

showed a staggering 395,000 of clearing for 2015-16: which is an increase of one third on 2014-15, or 133% over the period

Strong vegetation management laws enacted in Queensland – the Vegetation Management Act 1999 – achieved dramatic reductions in forest and woodland loss. But the subsequent Liberal National state government, elected in 2012, overturned these protections.

The current government, elected in 2015, has tried and failed to reinstate the protections. In response, “panic clearing” caused clearing rates to shoot up, in anticipation that the state election will deliver a government that will reintroduce the much-needed protection of forests.

The Queensland Parliament is now in caretaker mode ahead of the November 25 election. The Queensland Labor Party has pledged to reinstate laws to prevent wholesale clearing, while the LNP opposition has vowed to retain current clearing rates.

Forest cleared by bulldozers towing massive chains.
Noel Preece

Australian community and wildlife lose

Whichever way you look at it, there is not a lot of sense in continued clearing. Australia already has some of the highest extinction rates on the planet for plants and animals. With 80% of Queensland’s threatened species living in forest and woodland, more clearing will certainly increase that rate.

Clearing also kills tens of millions of animals across Australia each year, a major animal welfare concern that rarely receives attention. This jeopardises both wildlife and the A$140 million invested in threatened species recovery.


Read more: Land clearing isn’t just about trees – it’s an animal welfare issue too


This rate of clearing neutralises our major environment programs. Just one year of clearing has removed more trees than the bulk of 20 million trees painstakingly planted, at a cost of A$50 million. Australia’s major environment programs simply can’t keep up, and since 2013 are restoring only one-tenth of the extent of land bulldozed just last year.

Restoration costs to improve the quality of waters running onto the Great Barrier Reef are estimated at around A$5 billion to A$10 billion over 10 years. Nearly 40% of the land cleared in Queensland is in reef catchments, which will reverse any water quality gains as sediment pours onto the reef.

Climate efforts nullified

Since 2014, the federal government has invested A$2.55 billion on reducing emissions in the Carbon Farming Initiative through the Emissions Reduction Fund. Currently 189 million tonnes of abatement has been delivered by the Emissions Reduction Fund. This – the central plank of the Australian government’s climate response – will be all but nullified by the end of 2018 with the current clearing rates, and will certainly be wiped out by 2020, when Australia is expected to meet its climate target of 5% below 2000 emissions.

Ironically, this target will be achieved with the help of carried-over results from the first commitment period of the Kyoto Protocol, which Australia was only able to meet because land clearing had decreased between 1990 and 1997.

Why is this happening?

Most of the clearing in Queensland since 1999 has been for pasture. Most good cropping land was cleared decades ago. Removing trees in more marginal lands can increase the carrying capacity for a short time with an immediate, and usually short-lived, financial reward. These rewards come at the expense of long-term sustainability, which future landholders and government will bear.

Large areas of the cleared lands have been subject to substantial erosion and nutrient loss from the newly cleared lands, and land degradation over time, and some areas have suffered massive woody weed incursions.

This is playing out today across the north where pastoralism is a marginal activity at best, with declining terms of trade of about 2% per year, with no net productivity growth, high average debts and low returns, and many enterprises facing insolvency. Clearing vegetation won’t change that.

A recent preliminary valuation of ecosystem services, on the other hand, estimated that uncleared lands are worth A$3,300-$6,100 per hectare per year to the Australian community, compared with productivity of grazing lands of A$18 per hectare.

With a clear divide between the policies Labor and the LNP are taking to the election, now is a good time to give land clearing’s social, economic and environmental impact the scrutiny it deserves.


The ConversationThis article was updated on November 21 to reflect that land clearing increased in by a third in 2015-16 over 2014-15 levels. Previously the article stated an increase of 133%.

Noel D Preece, Adjunct Principal Research Fellow at Charles Darwin and, James Cook University and Penny van Oosterzee, Principal Research Adjunct James Cook University and University Fellow Charles Darwin University, James Cook University

This article was originally published on The Conversation. Read the original article.

Nothing but truthiness: Adani and Co’s post-truth push for the Carmichael mine


Benedetta Brevini, University of Sydney and Terry Woronov, University of Sydney

This article is part of an ongoing series from the Post-Truth Initiative, a Strategic Research Excellence Initiative at the University of Sydney. The series examines today’s post-truth problem in public discourse: the thriving economy of lies, bullshit and propaganda that threatens rational discourse and policy.

The project brings together scholars of media and communications, government and international relations, physics, philosophy, linguistics and medicine, and is affiliated with the Sydney Social Sciences and Humanities Advanced Research Centre (SSSHARC), the Sydney Environment Instituteand the Sydney Democracy Network.


“Post-truth”, defined as “relating to or denoting circumstances in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief”, was the Oxford Dictionary’s 2016 Word of the Year, selected as a hallmark of the times in the US and UK. (Macquarie Dictionary chose “fake news” as its 2016 Word of the Year.)

Yet post-truth politics and “truthiness”, a term Stephen Colbert coined in 2005, are not solely British and American phenomena. “Truthiness” is rampant in Australia too. The debate about the proposed Adani Carmichael mine in central Queensland shows how truthiness has become part of Australian political discourse.

How can a coal mine be subject to a regime of “truthiness”? A decision to build a greenfield megamine would appear to come down to the facts, with the known harms weighed against the potential benefits. Yet we can identify three distinct traits in official discourses around the Adani mine that show truthiness at work.

Appeal to emotion and ‘gut feelings’

First, “truthiness” replaces a reliance on facts with appeals to emotion and a logic of “gut feelings”.

One of the champions of this form of logic is Tony Abbott. As prime minister, he faced criticism from environmentalists after opening a coal mine and declaring:

Coal is good for humanity, coal is good for prosperity, coal is an essential part of our economic future, here in Australia, and right around the world.

Earlier in 2014, he had said that “it is our destiny in this country to bring affordable energy to the world”.

In addition to the feel-good narrative of coal as national saviour, politicians have argued that Australia’s coal will help the world solve environmental problems, rather than making them worse.

An excellent example of this reasoning comes again from the former prime minister on his visit to India in September 2014. There, echoing the Adani chief executive, Abbott argued that the Carmichael mine could improve Indian living standards and cut carbon emissions by providing “clean coal”.

Using this same emotional logic, the government later told parliament that opening the southern hemisphere’s largest coalmine would actually cut carbon pollution.

Create doubt about facts – or make them up

A second component of “truthiness” is the practice of deliberately presenting empirical facts as debatable, uncertain or political – or simply lying. The best examples of lying are the claims of the mine’s benefits to Queensland and Australia.

Most common are references to the number of jobs the Carmichael mine will provide to the Queensland economy, where the employment situation is portrayed as desperate.

For instance, Queensland federal MP Michelle Landry claimed:

The Adani Carmichael coalmine offers up to 10,000 new jobs, mainly in Queensland; A$20 billion of investment in Australia; and power, to build the living standards of 100 million people in India.

In fact, Jerome Fahrer, who prepared an economic assessment of the Carmichael mine for Adani, admitted in court that it will create an average of 1,464 direct and indirect jobs over the life of the project. Yet virtually every mine supporter has since 2014 repeated an incorrect figure of 10,000 new jobs. They include the prime minister, the attorney-general and federal and state Liberal and National Party MPs.

Another prominent tactic used to cast unwanted facts as debatable or doubtful is to generate oxymorons that promote contradictory messages.

Mining corporations in Australia – and globally – use the term “sustainable mining” to describe projects that provide jobs. Politicians have adopted this; Anthony Lynham, Queensland’s minister for natural resources and mines, declared:

This government strongly supports the sustainable development of the Galilee Basin for the jobs and economic development that it will provide for regional Queensland.

Perhaps the most pernicious oxymoron used by mine supporters is “clean coal”. To counter the claim that Galilee Basin coal is “clean”, The Australia Institute cites estimates by Adani and India’s Ministry of Coal that it “is only 10% above the average quality of domestic Indian thermal coal in terms of energy content”. This is because “the ash content of Carmichael coal is estimated to be 26% – more than double the average of 12% for Australian thermal coal”.

The institute also notes that transporting the coal inevitably creates extra pollution.

Smear without evidence

Third, to construct truthiness, statements that are not scientific, logical or fact-based have proliferated in the political debate about the Adani mine. Politicians have constantly reframed the term “activist” to connote an enemy of both the mine and the national interest. MPs have called members of green groups economic saboteurs, “vigilantes”, “terrorists” and “extremists”.

This narrative casts environmentalists not only as economic enemies of Australia, but opposition to the mine as a form of terrorism. In parliament, Queensland LNP MP George Christensen described legal action to stop the mine as “an act of ecoterrorism”. He continued:

Their lies, misinformation, slander and the frivolous legal action attacking a company for the sake of furthering an ideological cause can only be described as terrorism if you look at the criminal code.

The accusations of “eco-terrorism” and “sabotage” had no foundation in fact whatsoever. These claims were not linked to actual illegal activities by environmental groups opposed to the mine.

Queensland Premier Annastacia Palaszczuk summarised perhaps the most pernicious claim by mine proponents when she told parliament:

Queensland taxpayers will not be funding any infrastructure for this project. Stringent conditions will be enforced to safeguard landholders’ and traditional owners’ interests.

To keep Queensland taxpayers from funding the mine’s infrastructure, the burden will fall instead on Australian taxpayers via the Commonwealth government’s proposed $1 billion loan from the Northern Australia Infrastructure Facility to Adani. This will fund rail lines from the mine to the coast.

Nor have the rights of the traditional owners of the mine site been respected or upheld. The state and federal governments and courts have denied all legal challenges from the Aboriginal people most affected by it.

The primary purpose of dissecting the arguments in favour of the Carmichael mine is to demonstrate the complexity of “truthiness” regimes. None of these discursive forms – gut feelings, spin and the politicisation of unwanted facts, or even outright lies – are enough on their own. Rather, these strategies overlap, intersect and reinforce each other.

The effect is to create an overarching “truthiness” regime that presents new megamines as desirable, inevitable and essential to maintain Australia’s national destiny. In response, a more complex and multi-pronged approach will be needed to convince the voting public that coal mining is not good for Australia, its economy, or the globe.


The ConversationYou can read other articles in the series here.

Benedetta Brevini, Senior Lecturer in Communication and Media, University of Sydney and Terry Woronov, Senior Lecturer in Anthropology, University of Sydney

This article was originally published on The Conversation. Read the original article.

Is it too cheap to visit the ‘priceless’ Great Barrier Reef?



File 20171016 27708 hx6tj4.jpg?ixlib=rb 1.1
Would you pay more if you thought it would help?
Wikimedia Commons, CC BY-SA

Michael Vardon, Australian National University

The Great Barrier Reef is one of the world’s finest natural wonders. It’s also extraordinarily cheap to visit – perhaps too cheap.

While a visit to the reef can be part of an expensive holiday, the daily fee to enter the Great Barrier Reef Marine Park itself is a measly A$6.50. In contrast, earlier this year I was lucky enough to visit Rwanda’s mountain gorillas and paid a US$750 fee, and the charge has since been doubled to US$1,500.

To me, seeing the reef was better than visiting the gorillas. Personally, I would be happy to pay more to visit the Great Barrier Reef. Does this mean we’re undervaluing our most important natural wonder? And if we do ask visitors to pay a higher price, would it actually help the reef or simply harm tourism numbers?


Read more: Money can’t buy me love, but you can put a price on a tree


Putting dollar values on the natural world can be a heated topic. Earlier this year Deloitte Access Economics valued the Great Barrier Reef at A$56 billion “as an Australian economic, social and iconic asset”, but was met with the retort that its true value is priceless.

The A$56 billion estimate was based on surveys that measured “consumer surplus and non-use benefits”. This common research technique involves asking people what they would be willing to pay to get a particular benefit. For example, the entrance fee for the reef is A$6.50 but if I am willing to pay A$50 (say), that equates to a consumer surplus of A$43.50. In other words, I am receiving A$43.50 worth of value that I did not have to pay for.

I understand that some people instinctively object to the idea of trying to put monetary values on things like the Great Barrier Reef. But I think valuation helps, on balance, because it offers a way to assimilate environmental information into the economic processes through which most decisions are made. Money makes the world go around, after all.

However this should be done on the proviso that the valuation is systematic and based on sound environmental and economic data.

Accounting for the Great Barrier Reef

The process by which these values are calculated is called “environmental accounting”, and estimates have to meet international standards known as the System of Environmental-Economic Accounting or SEEA in order to be valid. This builds on the System of National Accounts (which among many other things gives us the GDP indicator). In this accounting, as in business accounting, the values recorded are exchange values – that is, what someone paid (or was likely to pay) for a good, service or asset. For assets that aren’t regularly traded, this figure can be based on either previous sales or expected future income.

It does not use willingness-to-pay measures. The Deloitte report also estimated exchange values in line with accounting values, with the Great Barrier Reef contributing A$6.4 billion to the economy through tourism, fishing, recreation, and research and scientific management.

The Australian Bureau of Statistics has a huge amount of data on the Great Barrier Reef, covering the physical state of the reef and its surroundings, the economic activity occurring in the region, and more besides.

Unsurprisingly, tourism is the region’s most valuable industry, contributing A$3.8 billion in gross value added in 2015-16 (see Table 1 here). That year the Marine Park had 2.3 million visitors, who together paid just under A$9 million in park entry charges (see Table 4 here).

Ecosystem services are the contributions of the natural world to benefits enjoyed by people. For example, farmers grow crops that are pollinated by insects and use nutrients found in the soil. These things are not explicitly paid for, but by examining economic transactions we can estimate their value.

Surprisingly, the value of ecosystem services used by tourism was A$600 million – just half the value of the ecosystem services used by the agriculture industry.

Value of ecosystem services (in millions of dollars) used by selected industries in the Great Barrier Reef Region in 2014-15.
ABS

The result is partly explained by the way things are valued. Agricultural products are bought and sold in markets, whereas the Great Barrier Reef is a public asset and the fee for visiting it is set by governments, not by a market.

On these numbers, paying A$6.50 to visit one of the great treasures of the world is a bargain indeed. But what does it mean for the reef itself?

Reef under threat

The reef is under pressure from many factors, including climate change, nutrient runoff, tourism impacts, and fishing. Managing the pressure requires resources, and it makes sense to ask those who use it to pay for it.

Increased funding to help manage these pressures would therefore be good. What’s more, governments could conceivably also use natural resources to generate money to fund other public goods and services, such as roads, education, health, defence, and so on.

Before you protest at this idea, ask yourself: why should the Great Barrier Reef not be used to generate revenue for government? Other natural resources are used this way. The federal and Queensland governments are pursuing economic benefits from the coal in the nearby Galilee Basin. If government revenue from the Great Barrier Reef were increased, it might reduce the need for revenue from elsewhere.

So what next?

Environmental accounting offers a clear way to assess such trade-offs, and will hopefully lead to better decisions. To achieve this we will need:

  • Regular environmental-economic accounts from trusted institutions like the ABS
  • Governments and business to incorporate this new accounting into their strategic planning and management (including, in the case of the Great Barrier Reef, assessing the likely revenue from increased marine park fees)
  • The public to use the accounts to hold our government and business leaders to
    account.

The ConversationThe last will no doubt make some uncomfortable, while the second will take some time. The first is already a reality. I hope others take the time to understand and analyse the accounts already available, and that we get as much debate about managing the environment as we do about managing the economy.

Michael Vardon, Visiting Fellow at the Fenner School, Australian National University

This article was originally published on The Conversation. Read the original article.

The Great Barrier Reef can repair itself, with a little help from science



File 20171008 32184 1wf4zmb.jpg?ixlib=rb 1.1
How the Great Barrier Reef can be helped to help repair the damaged reef.
AIMS/Neal Cantin, CC BY-ND

Ken Anthony, Australian Institute of Marine Science; Britta Schaffelke, Australian Institute of Marine Science; Line K Bay, Australian Institute of Marine Science, and Madeleine van Oppen, Australian Institute of Marine Science

The Great Barrier Reef is suffering from recent unprecedented coral bleaching events. But the answer to part of its recovery could lie in the reef itself, with a little help.

In our recent article published in Nature Ecology & Evolution, we argue that at least two potential interventions show promise as means to boost climate resilience and tolerance in the reef’s corals: assisted gene flow
and assisted evolution.

Both techniques use existing genetic material on the reef to breed hardier corals, and do not involve genetic engineering.

But why are such interventions needed? Can’t the reef simply repair itself?

Damage to the reef, so far

Coral bleaching in 2016 and 2017 took its biggest toll on the reef to date, with two-thirds of the world’s largest coral reef ecosystem impacted in these back-to-back events. The consequence was widespread damage.

Bleached corals on the central Great Barrier Reef at the peak of the heat wave in March 2017. Most branching corals in the photo were dead six months later.
Neal Cantin/AIMS, CC BY-ND

Reducing greenhouse gas emissions will dampen coral bleaching risk in the long term, but will not prevent it. Even with strong action to tackle climate change, more warming is locked in.

So while emissions reductions are essential for the future of the reef, other actions are now also needed.

Even in the most optimistic future, reef-building corals need to become more resilient. Continued improvement of water quality, controlling Crown-of-Thorns Starfish, and managing no-take areas will all help.

But continued stress from climate change – in frequency and intensity – increasingly overwhelms the natural resilience despite the best conventional management efforts. Although natural processes of adaptation and acclimation are in play, they are unlikely to be fast enough to keep up with any rate of global warming.

So to boost the reef’s resilience in the face of climate change we need to consider new interventions – and urgently.

That’s why we believe assisted gene flow and assisted evolution could help the reef.

Delaying their development could mean that climate change degrades the reef beyond repair, and before we can save key species.

What is assisted gene flow?

The idea here is to move warm-adapted corals to cooler parts of the reef. Corals in the far north are naturally adapted to 1C to 2C higher summer temperatures than corals further south.

This means there is an opportunity to build resistance to future warming in corals in the south under strong climate change mitigation, or to decades of warming under weaker mitigation.

There is already natural genetic connectivity of coral populations across most of the reef. But the rate of larval flow from the warm north to the south is limited, partly because of the South Equatorial Current that flows west across the Pacific.

The South Equatorial Current splits into the north-flowing Gulf of Papua Current and south-flowing East Australian Current off the coast of north Queensland. This means coral larvae spawned in the warm north are often more likely to stay in the north.

So manually moving some of the northern corals south could help overcome that physical limitation of natural north-to-south larval flow. If enough corals could be moved it could help heat-damaged reefs recover faster with more heat-resistant coral stock.

We could start safe tests at a subset of well-chosen reefs to understand how warm-adapted populations can be spread to reefs further south.

These two-year old corals reared in AIMS’s National Sea Simulator are hybrids between different species of the genus Acropora. They are the results of artificial selection under experimental climate change and show tolerance to prolonged heat stress expected in the future.
Neal Cantin/AIMS, CC BY-ND

What is assisted evolution?

While assisted gene flow may be effective for southern or recently degraded reefs, it will not be enough or feasible for all reefs or species. Here, we argue that assisted evolution could help.

Assisted evolution is artificial selection on steroids. It combines multiple approaches that target the coral host and its essential microbial symbionts.

These are aimed at producing a hardier coral without the use of genetic engineering. Experiments at the Australian Institute of Marine Science are already making progress, with results yet to be published.

First, evolution of algal symbionts in isolation from the coral host has been fast-tracked to resist higher levels of heat stress. When symbionts are made to reengage with the coral host, benefits to bleaching resistance are still small, but with more work we expect to see a hardier symbiosis.

Secondly, experiments have created new genetic diversity of corals through hybridisation and researchers have selected these artificially for increased climate resilience.

Natural hybridisation happens only occasionally on the reef, so this result gives us new options for climate hardening corals using existing genetic stocks.

The danger of doing nothing?

The right time to start any new intervention is when the risk of inaction is greater than the risk of action.

Assisted gene flow and assisted evolution represent manageable risk because they use genetic material already present on the reef. The interventions speed up naturally occurring processes and do not involve genetic engineering.


Read more: Back-to-back bleaching has now hit two-thirds of the Great Barrier Reef


These interventions would not introduce or produce new species. Assisted gene flow would simply enhance the natural flow of warm-adapted corals into areas on the reef that desperately need more heat tolerance.

Risk of increasing the spread of diseases may also be low because most parts of the Reef are already interconnected. A full understanding of risks is an area of continued research.

The ConversationThese are just two examples of new tools that could help build climate resilience on the reef. Other interventions are developing and should be put on the table for open discussion.

Ken Anthony, Principal Research Scientist, Australian Institute of Marine Science; Britta Schaffelke, Research Program Leader – A Healthy and Sustainable Great Barrier Reef, Australian Institute of Marine Science; Line K Bay, Senior Research Scientist and Team Leader, Australian Institute of Marine Science, and Madeleine van Oppen, Marine molecular ecologist, Australian Institute of Marine Science

This article was originally published on The Conversation. Read the original article.

Why are we still pursuing the Adani Carmichael mine?


Michael West, University of Sydney

Why, if Adani’s gigantic Carmichael coal project is so on-the-nose for the banks and so environmentally destructive, are the federal and Queensland governments so avid in their support of it?

Once again the absurdity of building the world’s biggest new thermal coal mine was put in stark relief on Monday evening via an ABC Four Corners investigation, Digging into Adani.


Read more: Adani gives itself the green light, but that doesn’t change the economics of coal


Where the ABC broke new ground was in exposing the sheer breadth of corruption by this Indian energy conglomerate. And its power too. The TV crew was detained and questioned in an Indian hotel for five hours by police.

It has long been the subject of high controversy that the Australian government, via the Northern Australia Infrastructure Facility (NAIF)that is still contemplating a A$1 billion subsidy for Adani’s rail line, a proposal to freight the coal from the Galilee Basin to Adani’s port at Abbot Point on the Great Barrier Reef.

But more alarming still, and Four Corners touched on this, is that the federal government is also considering using taxpayer money to finance the mine itself, not just the railway.

No investors in sight

As private banks have walked away from the project, the only way Carmichael can get finance is with the government providing guarantees to a private banking syndicate, effectively putting taxpayers on the hook for billions of dollars in project finance.

The prospect is met with the same incredulity in India as it is here in Australia:

FOUR CORNERS: “Watching on from Delhi, India’s former Environment Minister can’t believe what he is seeing.”

JAIRAM RAMESH: “Ultimately, it’s the sovereign decision of the Australian Government, the federal government and the state government.

FOUR CORNERS: “But public money is involved, and more than public money, natural resources are involved.

JAIRAM RAMESH: “I’m very, very surprised that the Australian government, uh, for whatever reason, uh, has uh, seen it fit, uh, to all along handhold Mr Adani.”

Here we have a project that does not stack up financially, and whose profits – should it make any – are destined for tax haven entities controlled privately by Adani family interests. Yet the Queensland government has shocked local farmers and environmentalists by gifting Adani extremely generous water rights, and royalties concessions to boot.

Why are Australian governments still in support?

The most plausible explanation is simply politics and political donations. There is no real-time disclosure of donations and it is relatively easy to disguise them, as there is no disclosure of the financial accounts of state and federal political parties either. Payments can be routed through opaque foundations, the various state organisations, and other vehicles.

Many Adani observers believe there must be money involved, so strident is the support for so unfeasible a project. The rich track record of Adani bribing officials in India, as detailed by Four Corners, certainly points that way. But there is little evidence of it.

In the absence of proof of any significant financial incentives however, the most compelling explanation is that neither of the major parties is prepared to be “wedged” on jobs, accused of being anti-business or anti-Queensand.

There are votes in Queensland’s north at stake. Furthermore, the fingerprints of Adani’s lobbyists are everywhere.

Adani lobbyist and Bill Shorten’s former chief of staff Cameron Milner helped run the re-election campaign of Premier Annastacia Palaszczuk. This support, according to The Australian, has been given free of charge:

Mr Milner is volunteering with the ALP while keeping his day job as director and registered lobbyist at Next Level Strategic Services, which counts among its clients Indian miner Adani…

The former ALP state secretary held meetings in April and May with Ms Palaszczuk and her chief of staff David Barbagallo to negotiate a government royalties deal for Adani, after a cabinet factional revolt threatened the state’s lar­gest mining project.

Adani therefore enjoys support and influence on both sides of politics. “Next Level Strategic Services co-director David Moore — an LNP stalwart who was Mr Newman’s chief of staff during his successful 2012 election campaign — is also expected to volunteer with the LNP campaign.”

So it is that Premier Palaszczuk persists with discredited claims that Carmichael will produce 10,000 jobs when Adani itself conceded in a court case two years ago the real jobs number would be but a fraction of that.

If the economics don’t stack up, why is Adani still pursuing the project?

The Adani group totes an enormous debt load, the seaborne thermal coal market is in structural decline as new solar capacity is now cheaper to build than new coal-fired power plants and the the government of India is committed to phasing out coal imports in the next three years.

Why flood the market with 60 million tonnes a year in new supply and further depress the price of one of this country’s key export commodities?

The answer to this question lies in the byzantine structure of the Adani companies themselves. Adani already owns the terminal at Abbot Point and it needs throughput to make it financially viable.

Both the financial structures behind the port and the proposed railway are ultimately controlled in tax havens: the Cayman Islands, the British Virgin Islands and Singapore. Even if Adani Mining and its related Indian entities upstream, Adani Enterprises and Adani Power, lose money on Carmichael, the Adani family would still benefit.


Read more: Australia’s $1 billion loan to Adani is ripe for High Court challenge


The port and rail facilities merely “clip the ticket” on the volume of coal which goes through them. The Adani family then still profits from the privately-controlled infrastructure, via tax havens, while shareholders on the Indian share market shoulder the likely losses from the project.

As the man who used to be India’s most powerful energy bureaucrat, E.A.S. Sharma, told the ABC: “My assessment is that by the time the Adani coal leaves the Australian coast the cost of it will be roughly about A$90 per tonne.

“We cannot afford that, it is so expensive.”

More questions than answers remain

This renders the whole project even more bizarre. Why would the government put Australian taxpayers on the hook for a project likely to lose billions of dollars when the only clear beneficiaries are the family of Indian billionaire Gautam Adani and his Caribbean tax havens.

The ConversationMy view is that this project is a white elephant and will not proceed. Given the commitment by our elected leaders however, it may be that some huge holes in the earth may still be dug before it falls apart.

Michael West, Adjunct Associate Professor, School of Social and Political Sciences, University of Sydney

This article was originally published on The Conversation. Read the original article.

How to work out which coral reefs will bleach, and which might be spared


Clothilde Emilie Langlais, CSIRO; Andrew Lenton, CSIRO, and Scott Heron, National Oceanic and Atmospheric Administration

Regional variations in sea surface temperature, related to seasons and El Niño, could be crucial for the survival of coral reefs, according to our new research. This suggests that we should be able to identify the reefs most at risk of mass bleaching, and those that are more likely to survive unscathed.

Healthy coral reefs support diverse ecosystems, hosting 25% of all marine fish species. They provide food, coastal protection and livelihoods for at least 500 million people.

But global warming, coupled with other pressures such as nutrient and sediment input, changes in sea level, waves, storms, ventilation, hydrodynamics, and ocean acidification, could lead to the end of the world’s coral reefs in a couple of decades.


Read more: How much coral has died in the Great Barrier Reef’s worst bleaching event?


Climate warming is the major cause of stress for corals. The world just witnessed an event described as the “longest global coral die-off on record”, and scientists have been raising the alarm about coral bleaching for decades.

The first global-scale mass bleaching event happened in 1998, destroying 16% of the world coral reefs. Unless greenhouse emissions are drastically reduced, the question is no longer if coral bleaching will happen again, but when and how often?

To help protect coral reefs and their ecosystems, effective management and conservation strategies are crucial. Our research shows that understanding the relationship between natural variations of sea temperature and human-driven ocean warming will help us identify the areas that are most at risk, and also those that are best placed to provide safe haven.

A recurrent threat

Bleaching happens when sea temperatures are unusually high, causing the corals to expel the coloured algae that live within their tissues. Without these algae, corals are unable to reproduce or to build their skeletons properly, and can ultimately die.

The two most devastating global mass bleaching events on record – in 1998 and 2016 – were both triggered by El Niño. But when water temperatures drop back to normal, corals can often recover.

Certain types of coral can also acclimatise to rising sea temperatures. But as our planet warms, periods of bleaching risk will become more frequent and more severe. As a consequence, corals will have less and less time to recover between bleaching events.

We are already witnessing a decline in coral reefs. Global populations have declined by 1-2% per year in response to repeated bleaching events. Closer to home, the Great Barrier Reef lost 50% of its coral cover between 1985 and 2012.

A non-uniform response to warming

While the future of worldwide coral reefs looks dim, not all reefs will be at risk of recurrent bleaching at the same time. In particular, reefs located south of 15ºS (including the Great Barrier Reef, as well as islands in south Polynesia and Melanesia) are likely to be the last regions to be affected by harmful recurrent bleaching.

We used to think that Micronesia’s reefs would be among the first to die off, because the climate is warming faster there than in many other places. But our research, published today in Nature Climate Change, shows that the overall increase in temperature is not the only factor that affects coral bleaching response.

In fact, the key determinant of recurrent bleaching is the natural variability of ocean temperature. Under warming, temperature variations associated with seasons and climate processes like El Niño influence the pace of recurrent bleaching, and explain why some reefs will experience bleaching risk sooner than others in the future.

Different zones of the Pacific are likely to experience differing amounts of climate variability.
Author provided
Degrees of future bleaching risk for corals in the three main Pacific zones.
Author provided

Our results suggest that El Niño events will continue to be the major drivers of mass bleaching events in the central Pacific. As average ocean temperatures rise, even mild El Niño events will have the potential to trigger widespread bleaching, meaning that these regions could face severe bleaching every three to five years within just a few decades. In contrast, only the strongest El Niño events will cause mass bleaching in the South Pacific.

In the future, the risk of recurrent bleaching will be more seasonally driven in the South Pacific. Once the global warming signal pushes summer temperatures to dangerously warm levels, the coral reefs will experience bleaching events every summers. In the western Pacific, the absence of natural variations of temperatures initially protects the coral reefs, but only a small warming increase can rapidly transition the coral reefs from a safe haven to a permanent bleaching situation.


Read more: Feeling helpless about the Great Barrier Reef? Here’s one way you can help


One consequence is that, for future projections of coral bleaching risk, the global warming rate is important but the details of the regional warming are not so much. The absence of consensus about regional patterns of warming across climate models is therefore less of an obstacle than previously thought, because globally averaged warming provided by climate models combined with locally observed sea temperature variations will give us better projections anyway.

The ConversationUnderstanding the regional differences can help reef managers identify the reef areas that are at high risk of recurring bleaching events, and which ones are potential temporary safe havens. This can buy us valuable time in the battle to protect the world’s corals.

Clothilde Emilie Langlais, research scientist at CSIRO Oceans and Atmosphere, CSIRO; Andrew Lenton, Senior Research Scientist, Oceans and Atmosphere, CSIRO, and Scott Heron, Physical Scientist, National Oceanic and Atmospheric Administration

This article was originally published on The Conversation. Read the original article.