Review of historic stock routes may put rare stretches of native plants and animals at risk


File 20170920 20014 1wts1nv
The travelling stock routes are a precious national resource.
Author provided

Luke S. O’Loughlin, Australian National University; Damian Michael, Australian National University; David Lindenmayer, Australian National University, and Thea O’Loughlin, Charles Sturt University

Since the 19th century, Australian drovers have moved their livestock along networks of stock routes. Often following traditional Indigenous pathways, these corridors and stepping-stones of remnant vegetation cross the heavily cleared wheat and sheep belt in central New South Wales.

The publicly owned Travelling Stock Reserve network of New South Wales is now under government review, which could see the ownership of much of this crown land move into private hands.

But in a study published today in the Australian Journal of Botany we suggest that privatising stock routes may endanger vital woodlands and put vulnerable species at risk.


Read more: How ancient Aboriginal star maps have shaped Australia’s highway network


The review will establish how individual reserves are currently being used. Although originally established for graziers, the patches of bush in the network are now more likely to be used for recreation, cultural tourism, biodiversity conservation, apiary and drought-relief grazing.

This shift away from simply moving livestock has put pressure on the government to seek “value” in the network. The review will consider proposals from individuals and organisations to buy or acquire long-term leases for particular reserves.

It is likely that most proposals to purchase travelling stock reserves would come from existing agricultural operations.

A precious national resource

Travelling stock reserves across New South Wales represent some of the most intact examples of now-endangered temperate grassy woodland ecosystems.

Our research found that changing the status or use of these reserves could seriously impact these endangered woodlands. They criss-cross highly developed agricultural landscapes, which contain very limited amounts of remnant vegetation (areas where the bush is relatively untouched). Travelling stock reserves are therefore crucially important patches of habitat and resources for native plants and animals.

This isn’t the first time a change in ownership of travelling stock reserves has been flagged. Over the last century, as modern transport meant the reserves were used less and less for traditional droving, pressure to release these areas for conventional agriculture has increased.

Historic stock routes are still used for grazing cattle.
Daniel Florance, Author provided

To understand what a change in land tenure might mean to the conservation values of these woodlands, we spent five years monitoring vegetation in stock reserves in comparison to remnant woodlands on private farmland.

We found that travelling stock reserves contained a higher number of native plant species, more native shrubs, and less exotic plants than woodland remnants on private land.

The higher vegetation quality in travelling stock reserves was maintained over the five years, which included both the peak of Australia’s record-breaking Millennium Drought and the heavy rainfall that followed, referred to as the “Big Wet”.

The take-home message was that remnant woodland on public land was typically in better nick than in private hands.

Importantly, other studies have found that this high-quality vegetation is critical for many threatened and vulnerable native animals. For example, eastern yellow robins and black-chinned honeyeaters occur more frequently in places with more shrubs growing below the canopy.

The vulnerable superb parrot also uses travelling stock reserves for habitat.
Damian Michael, Author provided

The contrast we saw between woodlands in travelling stock reserves and private land reflects the different ways they’re typically managed. Travelling stock reserves have a history of periodic low-intensity grazing, mostly by cattle, with long rest periods. Woodland on active farms tend to be more intensively grazed, by sheep and cattle, often without any strategic rest periods.

The stock reserves’ future

The uncertain future of travelling stock reserves casts doubt on the state of biodiversity across New South Wales.

The current review of travelling stock reserves is considering each reserve in isolation. It flies in the face of the belief of many managers, practitioners and researchers that the true value of these reserves is in the integrity of the entire network – that the whole is greater than the sum of its parts.

Travelling stock reserves protect threatened species, allow the movement of wildlife, are seed sources for habitat restoration efforts, and support the ecosystem of adjacent agricultural land. These benefits depend on the quality of the remnant vegetation, which is determined by the grazing regime imposed by who owns and manages the land.

Of course, not all travelling stock reserves are in good condition. Some are subject to high-intensity livestock grazing (for example, under longer-term grazing leases) coupled with a lack of funding to manage and enhance natural values.

Changing the land tenure status of travelling stock reserves risks increasing grazing pressure, which our study suggests would reduce ecosystem quality and decrease their conservation value.

The travelling stock routes are important parts of our ecosystem, our national heritage, and our landscape. They can best be preserved by remaining as public land, so the entire network can be managed sustainably.

This requires adequate funding for the Local Land Services, so they can appropriately manage pest animals, weeds, erosion and illegal firewood harvesting and rubbish dumping.

The ConversationTravelling stock reserves are more than just The Long Paddock – they are important public land, whose ecological value has been maintained under public control. They should continue to be managed for the public good.

Luke S. O’Loughlin, Research fellow, Australian National University; Damian Michael, Ecologist, Australian National University; David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University, and Thea O’Loughlin, Ecologist, Adjunct Researcher, Charles Sturt University

This article was originally published on The Conversation. Read the original article.

Advertisements

The good news and bad news about the rare birds of Papua New Guinea


Robert Davis, Edith Cowan University

The rainforests of Papua New Guinea are home to one of the richest bird populations in the world. But many are threatened by logging and palm oil farming.

Now, a team of researchers led by Edith Cowan University have surveyed the PNG island of New Britain to see how the bird population is faring.

The good news: several bird species, like the Blue-eyed Cockatoo, were found to be doing better than before.

The bad news: the researchers saw only a few New Britain Kingfishers, and some vulnerable species, like the New Britain Bronzewing, Golden Masked-owl and Bismarck Thicketbird, were not seen at all.

The ConversationTheir results, recently published in the journal Bird Conservation International, help to inform the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species.

Robert Davis, Senior Lecturer in Vertebrate Biology, Edith Cowan University

This article was originally published on The Conversation. Read the original article.

Publish and don’t perish – how to keep rare species’ data away from poachers



File 20170713 19681 mu89o9
Birdwatchers are keeping the location of the newly rediscovered night parrot a closely guarded secret.
Adventure Australia, Author provided

Andrew Lowe, University of Adelaide; Anita Smyth, University of Adelaide; Ben Sparrow, University of Adelaide, and Glenda Wardle, University of Sydney

Highly collectable species, especially those that are rare and threatened, can potentially be put at risk from poaching if information describing where they can be found is published. But rather than withholding this information, as has been recently recommended, scientists should publish such information through secure data repositories so that this knowledge can continue to be used to help conserve and manage the world’s most threatened species.

Scientists are encouraged to publish data so their discoveries can be shared and scrutinised. However, a recent article has identified the risks of publishing the locations of rare, endangered or newly described species.

The example of the Chinese cave gecko shows that these concerns may be warranted. The species went extinct at the location where it was discovered, potentially at the hands of scientifically literate poachers.

But instead of withholding such information, we suggest (in a letter published today in Science) that scientists can publish sensitive data securely, while minimising the risk of misuse, by using one of a range of currently available tools.

A little knowledge

Typically, the problem for threatened species is not that too much information is available on their population and location, but rather quite the opposite. For example, in New South Wales more than 150 species have missed out on conservation funding because of a lack of such information.

On the flip side, there is little evidence that encouraging researchers to withhold this information will thwart people who are determined to find specific species. Collectors who specialise in highly collectable species can get location information from a variety of sources such as wildlife trade websites, pet and naturalist clubs, social media, and the popular press. This is despite the range of laws, regulations (such as scientific and collecting permits) and community reporting aimed at restricting the collection and trade of endangered species.

Grove of Wollemi pine, the location of which has been kept secret for more than 25 years.
Jaimie Plaza

How to publish sensitive data

Many governments have implemented sensitive data policies to protect ecological and species data, based on their own lists of sensitive species. Many of these policies have been in place for almost a decade and have kept secure the locations of hundreds of highly collectable species such as Australia’s Wollemi pine.

These policies are practised by numerous data portals worldwide, including DataONE, South Africa’s National Biodiversity Institute, Australia’s Virtual Herbarium, Australia’s Department of Environment, the Global Biodiversity Information Facility, the Terrestrial Ecosystem Research Network, and the Atlas for Living Australia.

A wealth of advice is also available to researchers and data managers on how to manage sensitive species information, such as the guidance provided by Science International and the Australian National Data Service. Science journals also work closely with open data repositories to ensure that sensitive species information is securely published – see, for example, the policies of leading journals Science and Nature.

Information entropy – why it’s a good idea to publish data before they are lost in the mists of time.
Michener (2006) Ecol. Informatics

One example of good data management is the AEKOS data portal run by Australia’s Terrestrial Ecosystem Research Network (TERN). AEKOS contains data from different government monitoring surveys covering almost 100,000 sites across the country. Its default position is to make ecological data and information freely available for land-management or wildlife research.

However, sensitive data are flagged during the early stages of the publishing process. The data are then secured in one of three ways:

  • masking sensitive information by giving only approximate locations or non-specific species names

  • making data available only after approval by the legal owners

  • embargoing the data for a maximum of two years.

To ensure data trustworthiness, TERN’s data reviewers further check for any data sensitivities that may have been overlooked during submission.

What’s the alternative?

We recognise the importance of keeping the locations of highly collectable species secure, and the need for caution in publishing precise site locations. But despite recent concerns, the examples given above show how online scientific data publishing practices have sufficiently matured to minimise misuses such as illegal or excessive collection, disturbance risk, and landholder privacy issues.

The alternative is not to deposit these valuable data at all. But this risks the loss of vital knowledge in the quest to protect wildlife.

In tackling poaching, we should perhaps seek to motivate poachers to help protect our most endangered wildlife. Such tactics are thought by some to have contributed to the discovery of several endangered bird species populations, and potentially the recent rediscovery of the night parrot, after a century of elusiveness in Australia. If poachers are willing to turn gamekeeper, getting them to share their rare species knowledge securely would certainly improve conservation outcomes.


The ConversationThe authors acknowledge their co-signatories of the letter published in Science: Ken Atkins (WA Department of Parks and Wildlife), Ron Avery (NSW Office of Environment and Heritage), Lee Belbin (Atlas of Living Australia), Noleen Brown (Qld Department of Science, Information Technology and Innovation), Amber E. Budden (DataONE, University of New Mexico), Paul Gioia (WA Department of Parks and Wildlife), Siddeswara Guru (TERN, University of Queensland), Mel Hardie (Victoria Department of Environment, Land, Water and Planning), Tim Hirsch (Global Biodiversity Information Facility), Donald Hobern (Global Biodiversity Information Facility), John La Salle (Atlas of Living Australia, CSIRO), Scott R. Loarie (California Academy of Sciences), Matt Miles (SA Department of Environment, Water and Natural Resources), Damian Milne (NT Department of Environment and Natural Resources), Miles Nicholls (Atlas of Living Australia, CSIRO), Maurizio Rossetto (National Herbarium of NSW), Jennifer Smits (ACT Environment, Planning and Sustainable Development Directorate), Gregston Terrill (ACT Department of Environment and Energy), and David Turner (University of Adelaide).

Andrew Lowe, Director of Food Innovation, University of Adelaide; Anita Smyth, Data manager, TERN, University of Adelaide; Ben Sparrow, Associate professor and Director – TERN AusPlots and Eco-informatics, University of Adelaide, and Glenda Wardle, Professor in Ecology and Evolution, University of Sydney

This article was originally published on The Conversation. Read the original article.

Scientists are accidentally helping poachers drive rare species to extinction



File 20170525 31761 tpg49j
The beautiful Chinese cave gecko, or Goniurosaurus luii, is highly prized by poachers.
Carola Jucknies

Benjamin Scheele, Australian National University and David Lindenmayer, Australian National University

If you open Google and start typing “Chinese cave gecko”, the text will auto-populate to “Chinese cave gecko for sale” – just US$150, with delivery. This extremely rare species is just one of an increasingly large number of animals being pushed to extinction in the wild by animal trafficking.

What’s shocking is that the illegal trade in Chinese cave geckoes began so soon after they were first scientifically described in the early 2000s.

It’s not an isolated case; poachers are trawling scientific papers for information on the location and habits of new, rare species.

As we argue in an essay published today in Science, scientists may have to rethink how much information we publicly publish. Ironically, the principles of open access and transparency have led to the creation of detailed online databases that pose a very real threat to endangered species.

We have personally experienced this, in our research on the endangered pink-tailed worm-lizard, a startling creature that resembles a snake. Biologists working in New South Wales are required to provide location data on all species they discover during scientific surveys to an online wildlife atlas.

But after we published our data, the landowners with whom we worked began to find trespassers on their properties. The interlopers had scoured online wildlife atlases. As well as putting animals at risk, this undermines vital long-term relationships between researchers and landowners.

The endangered pink-tailed worm-lizard (Aprasia parapulchella).
Author provided

The illegal trade in wildlife has exploded online. Several recently described species have been devastated by poaching almost immediately after appearing in the scientific literature. Particularly at risk are animals with small geographic ranges and specialised habitats, which can be most easily pinpointed.

Poaching isn’t the only problem that is exacerbated by unrestricted access to information on rare and endangered species. Overzealous wildlife enthusiasts are increasingly scanning scientific papers, government and NGO reports, and wildlife atlases to track down unusual species to photograph or handle.

This can seriously disturb the animals, destroy specialised microhabitats, and spread disease. A striking example is the recent outbreak in Europe of a amphibian chytrid fungus, which essentially “eats” the skin of salamanders.

This pathogen was introduced from Asia through wildlife trade, and has already driven some fire salamander populations to extinction.

Fire salamanders have been devastated by diseases introduced through the wildlife trade.
Erwin Gruber

Rethinking unrestricted access

In an era when poachers can arm themselves with the latest scientific data, we must urgently rethink whether it is appropriate to put detailed location and habitat information into the public domain.

We argue that before publishing, scientists must ask themselves: will this information aid or harm conservation efforts? Is this species particularly vulnerable to disruption? Is it slow-growing and long-lived? Is it likely to be poached?

Fortunately, this calculus will only be relevant in a few cases. Researchers might feel an intellectual passion for the least lovable subjects, but when it comes to poaching, it is generally only charismatic and attractive animals that have broad commercial appeal.

But in high-risk cases, where economically valuable species lack adequate protection, scientists need to consider censoring themselves to avoid unintentionally contributing to species declines.

Restricting information on rare and endangered species has trade-offs, and might inhibit some conservation efforts. Yet, much useful information can still be openly published without including specific details that could help the nefarious (or misguided) to find a vulnerable species.

There are signs people are beginning to recognise this problem and adapt to it. For example, new species descriptions are now being published without location data or habitat descriptions.

Biologists can take a lesson from other fields such as palaeontology, where important fossil sites are often kept secret to avoid illegal collection. Similar practices are also common in archaeology.

Restricting the open publication of scientifically and socially important information brings its own challenges, and we don’t have all the answers. For example, the dilemma of organising secure databases to collate data on a global scale remains unresolved.

For the most part, the move towards making research freely available is positive; encouraging collaboration and driving new discoveries. But legal or academic requirements to publish location data may be dangerously out of step with real-life risks.

The ConversationBiologists have a centuries-old tradition of publishing information on rare and endangered species. For much of this history it was an innocuous practice, but as the world changes, scientists must rethink old norms.

Benjamin Scheele, Postdoctoral Research Fellow in Ecology, Australian National University and David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.

Australia’s rarest insect goes global: Lord Howe Island stick insect breeding colonies now in US, UK and Canada


Susan Lawler, La Trobe University

If you haven’t heard of the Lord Howe Island stick insect, you have missed out on one of the most remarkable conservation stories of the decade.

This week’s news is that breeding colonies of Australia’s rarest insect will soon be established in zoos at San Diego, Toronto and Bristol. These new colonies will join those at the Melbourne Zoo and the Lord Howe Island Museum to ensure the future of this unique species.

The remarkable story of these stick insects (which are also called phasmids or land lobsters) started when rats escaped from a shipwreck in 1918 and proceeded to eat every last stick insect on Lord Howe Island. The species was thought to be extinct until a few live specimens were discovered on Balls Pyramid in 2001. The news headline in the Sydney Morning Herald at the time proclaimed: “Joy as ancient ‘walking sausage’ found alive.”

This remote and almost inaccessible population was the key to survival for the phasmids, but presented enormous difficulties for scientists who wanted to study them. Eventually an expedition was arranged to collect live specimens, which had to be done at night when the insects are out of their burrows and active.

The story of the captive breeding program is almost heart-stopping with many twists and turns. The original pair held at the Melbourne zoo were named Adam and Eve and because almost nothing was known of their lifestyle and habits, trial and error and careful observation were needed to provide them with appropriate care. At one point Eve nearly died but was revived when zookeeper Patrick Rohan carefully dropped a mixture of sugar, calcium and ground melaleuca leaves into her mouth.

Eve’s first egg hatched on Threatened Species Day on 2003, and although this wasn’t the end of the challenges facing Melbourne Zoo staff, it turned out to be the beginning of hope for the species’ successful captive breeding program.

I became personally acquainted with these insects when the zoo allowed selected schools to hatch some eggs and one of the babies spent time at my house. A film of her first steps and the story of our excitement was published here in 2012.

Sticks that spoon: juvenile Lord Howe Stick Insects hatched at Tallangatta Secondary School in 2012.
Geoff Edney

The Lord Howe stick insects start out small and green but grow up fat and black. They spend their days curled up together in burrows and head out at night to feed. Their story has caught the attention of David Attenborough and Jane Goodall.

New books about Lord Howe Stick Insects

If you want to know all about the story of the Lord Howe Stick Insects, two recent books are ready for you to devour.

For adults, Return of the Phasmid: Australia’s rarest insect fights back from the brink of extinction, by Rick Wilkinson provides a comprehensive and fascinating summary of the history, geology and human drama involved in this story, complete with great photos and personal accounts. Anyone who wants to understand what it takes to bring a species back from the brink will find it great reading.

Additionally and delightfully, the invertebrate zookeeper Rohan Cleave has released a children’s book, Phasmid: Saving the Lord Howe Stick Insect, with lovely watercolour illustrations that bring phasmids to life for young hearts.

Soon these books will become important in a global context, as people in San Diego, Toronto and Bristol get to meet our very own ‘walking sausages’.

The Conversation

Susan Lawler, Senior Lecturer, Department of Ecology, Environment and Evolution, La Trobe University

This article was originally published on The Conversation. Read the original article.