Africa – Reefs


Advertisements

‘Bright white skeletons’: some Western Australian reefs have the lowest coral cover on record


Corals at Scott Reef in 2012, and at the same site during the 2016 mass bleaching.
James Gilmour/AIMS

James Paton Gilmour, Australian Institute of Marine Science and Rebecca Green, University of Western Australia

Diving on the remote coral reefs in the north of Western Australia during the world’s worst bleaching event in 2016, the first thing I noticed was the heat. It was like diving into a warm bath, with surface temperatures of 34⁰C.

Then I noticed the expanse of bleached colonies. Their bright white skeletons were visible through the translucent tissue following the loss of the algae with which they share a biological relationship. The coral skeletons had not yet eroded and collapsed, a grim reminder of what it looked like just a few months before.

I spent the past 15 years documenting the recovery of these reefs following the first global coral bleaching event in 1998, only to see them devastated again in the third global bleaching event in 2016.




Read more:
Western Australia’s coral reefs are in trouble: we mustn’t ignore them


The WA coral reefs may not be as well known as the Great Barrier Reef, but they’re just as large and diverse. And they too have been affected by cyclones and coral bleaching. Our recent study found many WA reefs now have the lowest coral cover on record.

When my colleague, Rebecca Green, witnessed that mass bleaching for the first time, she asked me how long it would take the reefs to recover.

“Probably not in my lifetime” was my reply – an abrupt but accurate reply considering the previous rate of recovery, future increases in ocean temperatures … and my age.

The worst mass bleaching on record

A similar scene is playing out around the world as researchers document the decline of ecosystems they have spent a lifetime studying.

Our study, published in the journal Coral Reefs, is the first to establish a long-term history of changes in coral cover across eight reef systems, and to document the effects of the 2016 mass bleaching event at 401 sites across WA.




Read more:
The third global bleaching event took its toll on Western Australia’s super-corals


Given the vast expanse of WA coral reefs, our assessment included data from several monitoring programs and researchers from 19 institutions.

These reefs exist in some of the most remote and inaccessible parts of the
world, so our study also relied on important observations of coral bleaching from regional managers, tourist operators and Bardi Jawi Indigenous Rangers in the Kimberley.

Our aim was to establish the effects of climate change on coral reefs along Western Australia’s vast coastline and their current condition.

The heat stress in 2016 was the worst on record, causing mass bleaching and large reductions in coral cover at Christmas Island, Ashmore Reef and Scott Reef. This was also the first time mass bleaching was recorded in the southern parts of the inshore Kimberley region, including in the long oral history of Indigenous Australians who have managed this sea-country for thousands of years.

The mass bleaching events we documented were triggered by a global increase in temperature of 1⁰C above pre-industrial levels, whereas temperatures are predicted to rise by 1.5⁰C between 2030 and 2052.

In that scenario, the reefs that have bleached badly will unlikely have the capacity to fully recover, and mass bleaching will occur at the reefs that have so far escaped the worst impacts.




Read more:
The world’s coral reefs are in trouble, but don’t give up on them yet


The future of WA’s coral reefs is uncertain, but until carbon emissions can be reduced, coral bleaching will continue to increase.

Surviving coral reef refuges must be protected

The extreme El Niño conditions in 2016 severely affected the northern reefs, and a similar pattern was seen in the long-term records.

The more southern reefs were affected by extreme La Niña conditions – most significantly by a heatwave in 2011 that caused coral bleaching, impacted fisheries and devastated other marine and terrestrial ecosystems.

Since 2010, all of WA’s reefs systems have bleached at least once.

Frequent bleaching and cyclone damage have stalled the recovery of reefs at Shark Bay, Ningaloo and at the Montebello and Barrow Islands. And coral cover at Scott Reef, Ashmore Reef and at Christmas Island is low following the 2016 mass bleaching.

In fact, average coral cover at most (75%) reef systems is at or near the lowest on record. But not all WA reefs have been affected equally.

In 2016 there was little (around 10%) bleaching recorded at the northern inshore Kimberley Reefs, at the Cocos Keeling Islands, and at the Rowley Shoals. Coral cover and diversity at these reefs remain high.

And during mass bleaching there were patches of reef that were less affected by heat stress.

These patches of reef will hopefully escape the worst impacts and retain moderate coral cover and diversity as the world warms, acting as refuges. There are also corals that have adapted to survive in parts of the reef where temperatures are naturally hotter.

Some reefs across WA will persist, thanks to these refuges from heat stress, their ability to adapt and to expand their range. These refuges must be protected from any additional stress, such as poor water quality and overfishing.




Read more:
Even the super-corals of Australia’s Kimberley are not immune to climate change


In any case, the longer it takes to curb carbon emissions and other pressures to coral reefs, the greater the loss will be.

Coral reefs support critical food stocks for fisheries around the world and provide a significant contribution to Australia’s Blue Economy, worth an estimated A$68.1 billion.

We are handing environmental uncertainty to the next generation of scientists, and we must better articulate to everyone that their dependence on nature is the most fundamental of all the scientific concepts we explore.The Conversation

James Paton Gilmour, Research Scientist: Coral Ecology, Australian Institute of Marine Science and Rebecca Green, Postdoctoral research associate, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Exploring Australia’s ‘other reefs’ south of Tasmania



File 20181217 27779 1tg4cyr.jpg?ixlib=rb 1.1
Solenosmilia coral reef with unidentified solitary yellow corals.
CSIRO

Nic Bax, CSIRO and Alan Williams, CSIRO

Off southern Tasmania, at depths between 700 and 1,500 metres, more than 100 undersea mountains provide rocky pedestals for deep-sea coral reefs.

Unlike shallow tropical corals, deep-sea corals live in a cold environment without sunlight or symbiotic algae. They feed on tiny organisms filtered from passing currents, and protect an assortment of other animals in their intricate structures.

Deep-sea corals are fragile and slow-growing, and vulnerable to human activities such as fishing, mining and climate-related changes in ocean temperatures and acidity.

This week we returned from a month-long research voyage on CSIRO vessel Investigator, part of Australia’s Marine National Facility. We criss-crossed many seamounts in and near the Huon and Tasman Fracture marine parks, which are home to both pristine and previously fished coral reefs. These two parks are part of a larger network of Australian Marine Parks that surround Australia’s coastline and protect our offshore marine environment.

The RV Investigator criss-crossed the Huon and Tasman Fracture marine parks.
CSIRO

The data we collected will answer our two key research questions: what grows where in these environments, and are corals regrowing after more than 20 years of protection?




Read more:
Explainer: the RV Investigator’s role in marine science


Our eyes on the seafloor

Conducting research in rugged, remote deep-sea environments is expensive and technically challenging. It’s been a test of patience and ingenuity for the 40 ecologists, technicians and marine park managers on board, and the crew who provide electronics, computing and mechanical support.

But now, after four weeks of working around-the-clock shifts, we’re back in the port of Hobart. We have completed 147 transects covering more 200 kilometres in length and amassed more than 60,000 stereo images and some 300 hours of video for analysis.

The deep tow camera system weighs 350 kilos and has four cameras, four lights and a control unit encased in high-strength aluminium housings.
CSIRO

A deep-tow camera system designed and built by CSIRO was our eye on the seafloor. This 350 kilogram system has four cameras, four lights and a control unit encased in high-strength aluminium housings.

An operations planner plots “flight-paths” down the seamounts, adding a one-kilometre run up for the vessel skipper to land the camera on each peak. The skipper navigates swell, wind and current to ensure a steady course for each one-hour transect.

An armoured fibre optic tow cable relays high-quality, real-time video back to the ship. This enables the camera “pilot” in the operations room to manoeuvre the camera system using a small joystick, and keep the view in focus, a mere two metres off the seafloor.

This is an often challenging job, as obstacles like large boulders or sheer rock walls loom out of the darkness with little warning. The greatest rapid ascent, a near-vertical cliff 45m in height, resulted in highly elevated blood pressure and one broken camera light!

Reaching into their world

Live imagery from the camera system was compelling. As well as the main reef-building stony coral Solenosmilia variabilis, we saw hundreds of other animals including feathery solitary soft corals, tulip-shaped glass sponges and crinoids. Their colours ranged from delicate creams and pinks to striking purples, bright yellows and golds.

To understand the make-up of coral communities glimpsed by our cameras, we also used a small net to sample the seafloor animals for identification. For several of the museum taxonomists onboard, this was their first contact with coral and mollusc species they had known, and even named, only from preserved specimens.

A deepwater hippolytid shrimp with large hooked claw, which it uses to clean coral and get food.
CSIRO

We found a raft of undescribed species, as expected in such remote environments. In many cases this is likely to be the only time these species are ever collected. We also found animals living among the corals, hinting at their complex interdependencies. This included brittlestars curled around corals, polychaete worms tunnelling inside corals, and corals growing on shells.

We used an oceanographic profiler to sample the chemical properties of the water to 2,000m. Although further analysis is required, our aim here is to see whether long-term climate change is impacting the living conditions at these depths.

A curious feature of one of the southern seamounts is that it hosts the world’s only known aggregation of deep-water eels. We have sampled these eels twice before and were keen to learn more about this rare phenomenon.

Using an electric big-game fishing rig we landed two egg-laden female eels from a depth of 1,100 metres: a possible first for the record books.

Dave Logan of Parks Australia with an eel landed from more than a kilometre under the sea.
Fraser Johnston/CSIRO

In a side-project, a team of observers recorded 42 seabird species and eight whale and dolphin species. They have one more set of data towards completing the first circum-Australia survey of marine birds and mammals.

More coral pedestals than we realise

An important finding was that living S. variabilis reefs extended between the seamounts on raised ridges down to about 1,450m. This means there is more of this important coral matrix in the Huon and Tasman Fracture marine parks than we previously realised.

In areas that were revisited to assess the regrowth of corals after two decades of protection from fishing, we saw no evidence that the coral communities are recovering. But there were signs that some individual species of corals, featherstars and urchins have re-established a foothold.




Read more:
Sludge, snags, and surreal animals: life aboard a voyage to study the abyss


In coming months we will work through a sub-sample of our deep-sea image library to identify the number and type of organisms in certain areas. This will give us a clear, quantitative picture of where and at what depth different species and communities live in these marine parks, and a foundation for predicting their likely occurrence both in Australia and around the world.


The seamount corals survey involved 10 organisations: CSIRO, the National Environmental Science Program Marine Biodiversity Hub, Australian Museum, Museums Victoria, Tasmanian Museum and Art Gallery, NIWA (NZ), three Australian universities and Parks Australia.The Conversation

Nic Bax, Director, NERP Marine Biodiversity Hub, CSIRO and Alan Williams, Researcher, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Cities can grow without wrecking reefs and oceans. Here’s how



File 20181203 194953 1yx65zo.jpg?ixlib=rb 1.1
Cairns has lots of hard grey infrastructure but much less green infrastructure that would reduce the impacts of the city’s growth.
Karine Dupré, Author provided

Silvia Tavares, James Cook University and Karine Dupré, Griffith University

What happens if the water temperature rises by a few degrees?” is the 2018 International Year of the Reef leading question. While the ocean is the focus, urbanisation is the main reason for the rising temperatures and water pollution. Yet it receives little attention in this discussion.

In turn, rising temperatures increase downpours and urban floods, adding to the pressures on urban infrastructure.




Read more:
Design for flooding: how cities can make room for water


Protecting the reef as Cairns grows

Cairns is an expanding Queensland city located between two World Heritage sites – the Great Barrier Reef and the Daintree Rainforest. While important research focuses on these sites themselves, not much is known about how the surrounding urban areas influence these natural environments. Similarly, little is known about how urban planning and design contribute to the health of the inner city and surrounding water bodies, including the ocean.

Cairns is a major Australian tourism destination with a unique coastal setting of rainforest and reef. This attracts growing numbers of visitors. One effect of this success is increased urbanisation to accommodate these tourists.

There are many opportunities to promote sustainable and socially acceptable growth in Cairns. Yet this growth is not without challenges. These include:

  • impacts of climate change, including sea-level rise and ocean warming
  • lack of comprehensive urban infrastructure strategy
  • lack of comprehensive assessment of the benefits of integrated urban design to maximise coastal resilience and the health of streams and oceans.
Rain gardens are common in Singapore.
Roger Soh/Flickr, CC BY-SA

As with most Australian cities, Cairns has an urban layout based on wide streets, mostly with little or no greenery. Rain gardens, for instance, are rare. Bioswales that slow and filter stormwater are present along highways, but seldom within the city.

The arguments for not adding greenery to the urban environment are familiar. These typically relate to costs of implementation and maintenance, but also to the speed with which water is taken out of streets during the tropical rainy season. This is because green stormwater solutions, if not well planned, can slow down the water flow, thus increasing floods.

However, cities can be designed in a way to imitate nature with solutions that are an integral part of the urban system. This can include dedicated areas of larger wetlands and parks, which capture water and filter pollution and undesired nutrients more efficiently, reducing polluted runoff to the reef.




Read more:
If planners understand it’s cool to green cities, what’s stopping them?


Integrated urban design

Integrated urban design is an aspect of city planning and design that could be further developed to ensure the whole system works more efficiently. This involves integrating the three elements that make up urban infrastructure:

  1. the green – parks, residential gardens, rain gardens, green roofs and walls, bioswales, etc
  2. the grey – built drains, footpaths, buildings, underground vacuum
    system
    , etc
  3. the blue – streams, stormwater systems, etc.
A rain garden, which absorbs rain and stores water to help control run-off from impervious hard surfaces, in Wellington, New Zealand.
Karine Dupré

Urban infrastructure, therefore, can and should be planned and designed to provide multiple services, including coastal resilience and healthier water streams and oceans. To achieve this, a neighbourhood or city-wide strategy needs to be implemented, instead of intermittent and ad hoc urban design solutions. Importantly, each element should coordinate with the others to avoid overlaps, gaps and pitfalls.

This is what integrated urban design is about. So why don’t we implement it more often?

Challenges and opportunities

Research has shown that planning, designing and creating climate-resilient cities that are energy-optimised, revitalise urban landscapes and restore and support ecosystem services is a major challenge at the planning scale. To generate an urban environment that promotes urban protection and resilience while minimising urbanisation impacts and restoring natural systems, we need to better anticipate the risks and have the means to take actions. In other words, it is a two-way system: well planned and designed green and blue infrastructures not only deliver better urbanised areas but will also protect the ocean from pollution. Additionally, it helps to manage future risks of severe weather.

The uncertainties of green infrastructure capacity and costs of maintenance, combined with inflexible finance schemes, are obstacles to integrated urban solutions. Furthermore, the lack of inter- and transdisciplinary approaches results in disciplinary barriers in research and policymaking to long-term planning of the sort that generates urban green infrastructure and its desired outcomes.

On the bright side, there is also strong evidence to suggest sound policy can help overcome these barriers through technical guides based on scientific research, standards and financial incentives.




Read more:
Here’s how green infrastructure can easily be added to the urban planning toolkit


Collaborative partnerships are promising, too. Partnerships between academia and industry tend to be more powerful than streamlined industry project developments.

Finally, and very promisingly, Australia has its own successful green infrastructure examples. Melbourne’s urban forest strategy has been internationally acclaimed. Examples like these provide valuable insights into local green infrastructure governance.

Cairns has stepped up with some stunning blue infrastructure on the Esplanade which raises awareness of both locals and visitors about the protection of our oceans.

This is only the start. Together academics, local authorities, industry stakeholders and communities can lead the way to resilient cities and healthier oceans.

Cairns Esplanade Lagoon helps raise awareness of the need to protect the ocean as the city grows.
Karine Dupré, Author provided



Read more:
How green is our infrastructure? Helping cities assess its value for long-term liveability


The Conversation


Silvia Tavares, Lecturer in Urban Design, James Cook University and Karine Dupré, Associate Professor in Architecture, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How we found 112 ‘recovery reefs’ dotted through the Great Barrier Reef


File 20171129 28869 lod9mh.jpg?ixlib=rb 1.1
Some reefs are strong sources of coral larvae.
Peter Mumby, Author provided

Peter J Mumby, The University of Queensland

The Great Barrier Reef is better able to heal itself than we previously imagined, according to new research that identifies 112 individual reefs that can help drive the entire system towards recovery.

The back-to-back bleaching events in 2016 and 2017 that killed many corals on the Great Barrier Reef have led many researchers to ask whether and how it can recover. Conventionally, we tend to focus on what controls recovery on individual reefs – for example, whether they are fouled by seaweed or sediments.

But in our study, published in PLoS Biology, my colleagues and I stepped back to view the entire Great Barrier Reef as a whole entity and ask how it can potentially repair itself.


Read more: The Great Barrier Reef can repair itself, with a little help from science


We began by asking whether some reefs are exceptionally important for kick-starting widespread recovery after damage. To do this we set three criteria.

First, we looked for reefs that are major sources of coral larvae – the ultimate source of recovery. Every year corals engage in one of nature’s greatest spectacles, their mass reproduction during a November full moon. Fertilised eggs (larvae) travel on ocean currents for days or weeks in search of a new home.

With our partners at the CSIRO we’ve been able to model where these larvae go, and therefore the “connectivity” of the reef. By using this modelling (the Great Barrier Reef is far too large to observe this directly), we looked for reefs that strongly and consistently supply larvae to many other reefs.

Healthy reefs supply far more larvae than damaged ones, so our second criterion was that reefs should have a relatively low risk of being impacted by coral bleaching. Using satellite records of sea temperature dating back to 1985, we identified reefs that have not yet experienced the kind of temperature that causes mass coral loss. That doesn’t mean these reefs will never experience bleaching, but it does mean they have a relatively good chance of surviving at least for the foreseeable future.

Our final criterion was that reefs should supply coral larvae but not pests. Here we focused on the coral-eating crown-of-thorns starfish, whose larvae also travel on ocean currents. We know that outbreaks of these starfish tend to begin north of Cairns, and from that we can predict which reefs are most likely to become infested over time.

Fortunately, many good sources of coral larvae are relatively safe from crown-of-thorns starfish, particularly those reefs that are far offshore and bathed in oceanic water from the Coral Sea rather than the currents that flow past Cairns. Indeed, the access to deep – and often cooling – ocean water helps moderate temperature extremes in these outer reefs, which also reduces the risk of bleaching in some areas.

Using these three criteria, we pinpointed 112 reefs that are likely to be important in driving reef recovery for the wider system. They represent only 3% of the reefs of the Great Barrier Reef, but are so widely connected that their larvae can reach 47% of all the reefs within a single summer spawning season.

Unfortunately, their distribution across the reef is patchy. Relatively few are in the north (see map) so this area is relatively vulnerable.

Black dots show reefs identified as strong sources of coral larvae; grey dots show other reefs.
Hock et al., PLoS Biol.

Our study shows that reefs vary hugely, both in their exposure to damage and in their ability to contribute to the recovery of corals elsewhere. Where these patterns are pretty consistent over time – as is the case for the reefs we identified – it makes sense to factor this information into management planning.

It would be sensible to improve surveillance of these particular reefs, to check that crown-of-thorns starfish do not reach them, and to eradicate the starfish if they do.

To be clear, these are not the only reefs that should be managed. The Great Barrier Reef already has more than 30% of its area under protection from fishing, and many of its other individual reefs are important for tourism, fisheries and cultural benefits.

But the point here is that some reefs are far more important for ecosystem recovery than others. Factoring these patterns into tactical management – such as how best to respond in the aftermath of a cyclone strike – is the next step. It’s a need that has been articulated repeatedly by the Great Barrier Reef Marine Park Authority.


Read more: Coal and climate change: a death sentence for the Great Barrier Reef


Taking the long-term view, the greatest threats to the reef are rising sea temperatures and ocean acidification caused by elevated carbon dioxide levels. This is clearly a challenge for humanity and one that requires consistent policies across governments.

But local protection is vital in order to maintain the reef in the best state possible given the global environment. Actions include improvements to the quality of the water emerging from rivers, controlling crown-of-thorns starfish, and maintaining healthy fish populations.

The ConversationThis is an expensive process and resources need to be deployed as effectively as possible. Our results help target management effectively by revealing the underlying mechanisms of repair on the reef. If management can help protect and facilitate corals’ natural processes of recovery, this might go a long way towards sustaining the Great Barrier Reef in an already challenging environment.

Peter J Mumby, Chair professor, The University of Queensland

This article was originally published on The Conversation. Read the original article.

How to work out which coral reefs will bleach, and which might be spared


Clothilde Emilie Langlais, CSIRO; Andrew Lenton, CSIRO, and Scott Heron, National Oceanic and Atmospheric Administration

Regional variations in sea surface temperature, related to seasons and El Niño, could be crucial for the survival of coral reefs, according to our new research. This suggests that we should be able to identify the reefs most at risk of mass bleaching, and those that are more likely to survive unscathed.

Healthy coral reefs support diverse ecosystems, hosting 25% of all marine fish species. They provide food, coastal protection and livelihoods for at least 500 million people.

But global warming, coupled with other pressures such as nutrient and sediment input, changes in sea level, waves, storms, ventilation, hydrodynamics, and ocean acidification, could lead to the end of the world’s coral reefs in a couple of decades.


Read more: How much coral has died in the Great Barrier Reef’s worst bleaching event?


Climate warming is the major cause of stress for corals. The world just witnessed an event described as the “longest global coral die-off on record”, and scientists have been raising the alarm about coral bleaching for decades.

The first global-scale mass bleaching event happened in 1998, destroying 16% of the world coral reefs. Unless greenhouse emissions are drastically reduced, the question is no longer if coral bleaching will happen again, but when and how often?

To help protect coral reefs and their ecosystems, effective management and conservation strategies are crucial. Our research shows that understanding the relationship between natural variations of sea temperature and human-driven ocean warming will help us identify the areas that are most at risk, and also those that are best placed to provide safe haven.

A recurrent threat

Bleaching happens when sea temperatures are unusually high, causing the corals to expel the coloured algae that live within their tissues. Without these algae, corals are unable to reproduce or to build their skeletons properly, and can ultimately die.

The two most devastating global mass bleaching events on record – in 1998 and 2016 – were both triggered by El Niño. But when water temperatures drop back to normal, corals can often recover.

Certain types of coral can also acclimatise to rising sea temperatures. But as our planet warms, periods of bleaching risk will become more frequent and more severe. As a consequence, corals will have less and less time to recover between bleaching events.

We are already witnessing a decline in coral reefs. Global populations have declined by 1-2% per year in response to repeated bleaching events. Closer to home, the Great Barrier Reef lost 50% of its coral cover between 1985 and 2012.

A non-uniform response to warming

While the future of worldwide coral reefs looks dim, not all reefs will be at risk of recurrent bleaching at the same time. In particular, reefs located south of 15ºS (including the Great Barrier Reef, as well as islands in south Polynesia and Melanesia) are likely to be the last regions to be affected by harmful recurrent bleaching.

We used to think that Micronesia’s reefs would be among the first to die off, because the climate is warming faster there than in many other places. But our research, published today in Nature Climate Change, shows that the overall increase in temperature is not the only factor that affects coral bleaching response.

In fact, the key determinant of recurrent bleaching is the natural variability of ocean temperature. Under warming, temperature variations associated with seasons and climate processes like El Niño influence the pace of recurrent bleaching, and explain why some reefs will experience bleaching risk sooner than others in the future.

Different zones of the Pacific are likely to experience differing amounts of climate variability.
Author provided
Degrees of future bleaching risk for corals in the three main Pacific zones.
Author provided

Our results suggest that El Niño events will continue to be the major drivers of mass bleaching events in the central Pacific. As average ocean temperatures rise, even mild El Niño events will have the potential to trigger widespread bleaching, meaning that these regions could face severe bleaching every three to five years within just a few decades. In contrast, only the strongest El Niño events will cause mass bleaching in the South Pacific.

In the future, the risk of recurrent bleaching will be more seasonally driven in the South Pacific. Once the global warming signal pushes summer temperatures to dangerously warm levels, the coral reefs will experience bleaching events every summers. In the western Pacific, the absence of natural variations of temperatures initially protects the coral reefs, but only a small warming increase can rapidly transition the coral reefs from a safe haven to a permanent bleaching situation.


Read more: Feeling helpless about the Great Barrier Reef? Here’s one way you can help


One consequence is that, for future projections of coral bleaching risk, the global warming rate is important but the details of the regional warming are not so much. The absence of consensus about regional patterns of warming across climate models is therefore less of an obstacle than previously thought, because globally averaged warming provided by climate models combined with locally observed sea temperature variations will give us better projections anyway.

The ConversationUnderstanding the regional differences can help reef managers identify the reef areas that are at high risk of recurring bleaching events, and which ones are potential temporary safe havens. This can buy us valuable time in the battle to protect the world’s corals.

Clothilde Emilie Langlais, research scientist at CSIRO Oceans and Atmosphere, CSIRO; Andrew Lenton, Senior Research Scientist, Oceans and Atmosphere, CSIRO, and Scott Heron, Physical Scientist, National Oceanic and Atmospheric Administration

This article was originally published on The Conversation. Read the original article.

The world’s coral reefs are in trouble, but don’t give up on them yet


Terry Hughes, James Cook University and Joshua Cinner, James Cook University

The world’s coral reefs are undoubtedly in deep trouble. But as we and our colleagues argue in a review published today in Nature, we shouldn’t give up hope for coral reefs, despite the pervasive doom and gloom.

Instead, we have to accept that coral reefs around the world are transforming rapidly into a newly emerging ecosystem unlike anything humans have experienced before. Realistically, we can no longer expect to conserve, maintain, preserve or restore coral reefs as they used to be.

This is a confronting message. But it also focuses attention on what we need to do to secure a realistic future for reefs, and to retain the food security and other benefits they provide to society.

The past three years have been the warmest on record, and many coral reefs throughout the tropics have suffered one or more bouts of bleaching during prolonged underwater heatwaves.

A bleached coral doesn’t necessarily die. But in 2016, two-thirds of corals on the northern Great Barrier Reef did die in just six months, as a result of unprecedented heat stress. This year the bleaching happened again, this time mainly on the middle section of the reef.

Reefs are being degraded by global pressures, not just local ones.
Terry Hughes, Author provided

In both years, the southern third of the reef escaped with little or no bleaching, because it was cooler. So bleaching is patchy and it varies in severity, depending partly on where the water is hottest each summer, and on regional differences in the rate of warming. Consequently some regions, reefs, or even local sites within reefs, can escape damage even during a global heatwave.

Moderate bleaching events are also highly selective, affecting some coral species and individual colonies more than others, creating winners and losers. Coral species also differ in their capacity to reproduce, disperse as larvae, and to rebound afterwards.

This natural variability offers hope for the future, and represents different sources of resilience. Surviving corals will continue to produce billions of larvae each year, and their genetic makeup will evolve under intense natural selection.

In response to fishing, coastal development, pollution and four bouts of bleaching in 1998, 2002, 2016 and 2017, the Great Barrier Reef is already a highly altered ecosystem, and it will change even more in the coming decades. Although reefs will be different in future, they could still be perfectly functional in centuries to come – capable of sustaining ecological processes and regenerating themselves. But this will only be possible if we act quickly to curb climate change.

The Paris climate agreement provides the key framework for avoiding very dangerous levels of global warming. Its 1.5℃ and 2℃ targets refer to increases in global average land and sea temperatures, relative to pre-industrial times. For most shallow tropical oceans, where temperatures are rising more slowly than the global average, that translates to 0.5℃ of further warming by the end of this century – slightly less than the amount of warming that coral reefs have already experienced since industrialisation began.

If we can improve the management of reefs to help them run this climate gauntlet, then reefs should survive. Reefs of the future will have a different mix of species, but they should nonetheless retain their aesthetic values, and support tourism and fishing. However, this cautious optimism is entirely contingent on steering global greenhouse emissions away from their current trajectory, which could see annual bleaching of corals occurring in most tropical locations by 2050. There is no time to lose before this narrowing window of opportunity closes.

A crisis of governance

Reef governance is failing because it is largely set up to manage local threats, such as overfishing and pollution. In Australia, when the Great Barrier Reef Marine Park Authority was set up in 1976, the objective of managing threats at the scale of (almost) the entire Great Barrier Reef was revolutionary. But today, the scale of threats is global: market pressures for Australian reef fish now come from overseas; port dredging and shipping across the reef are spurred on by fossil fuel exports to Asia; a housing crisis in the United States can batter reef tourism half a world away; and record breaking marine heatwaves due to global warming can kill even the most highly protected and remote corals.

Increasingly, coral reef researchers are turning to the social sciences, not just biology, in search of solutions. We need better governance that addresses both local and larger-scale threats to coral reef degradation, rather than band-aid measures such as culling starfish that eat corals.

In many tropical countries, the root causes of reef degradation include poverty, increasing market pressures from globalisation, and of course the extra impacts of global warming. Yet these global issues desperately need more attention at just the time when some governments are reducing foreign aid, failing to address global climate change, and in the case of Australia and the US, trying to resuscitate the dying fossil fuel industry with subsidies for economically unviable projects.

Effective reef governance will not only require increased cooperation among nations to tackle global issues, as in the case of the Paris climate deal, but will also require policy coordination at the national level to ensure that domestic action matches and supports these larger-scale goals.

The ConversationQuite simply, we can’t expect to have thriving coral reefs in the future as well as new coal mines – policies to promote both are incompatible.

Terry Hughes, Distinguished Professor, James Cook University, James Cook University and Joshua Cinner, Professor & ARC Future Fellow, ARC Centre of Excellence, Coral Reef Studies, James Cook University

This article was originally published on The Conversation. Read the original article.