Happy birthday, SA’s big battery, and many happy returns (of your recyclable parts)


Aleesha Rodriguez, Queensland University of Technology

A year ago today, Tesla’s big battery in South Australia began dispatching power to the state’s grid, one day ahead of schedule. By most accounts, the world’s largest lithium-ion battery has been a remarkable success. But there are some concerns that have so far escaped scrutiny.

The big battery (or the Hornsdale Power Reserve, to use its official name) was born of a Twitter wager between entrepreneurs Mike Cannon-Brookes and Elon Musk, with the latter offering to build a functioning battery in “100 days or it’s free”.

Musk succeeded, and so too has the battery in smoothing the daily operation of South Australia’s energy grid and helping to avert blackouts.




Read more:
A month in, Tesla’s SA battery is surpassing expectations


The battery has also been a financial success. It earned A$23.8 million in the first half of 2018, by selling stored electricity and other grid-stabilising services.

These successes have spurred further big battery uptake in Australia, while the global industry is forecast to attract US$620 billion in investments by 2040. It’s clear that big batteries will play a big role in our energy future.

But not every aspect of Tesla’s big battery earns a big tick. The battery’s own credentials aren’t particularly “green”, and by making people feel good about the energy they consume over summer, it arguably sustains an unhealthy appetite for energy consumption.

The problem of lithium-ion batteries

The Hornsdale Power Reserve is made up of hundreds of Tesla Powerpacks, each containing 16 “battery pods” similar to the ones in Tesla’s Model S vehicle. Each battery pod houses thousands of small lithium-ion cells – the same ones that you might find in a hand-held device like a torch.

The growing demand for lithium-ion batteries has a range of environmental impacts. Not least of these is the issue of how best to recycle them, which presents significant opportunities and challenges.

The Hornsdale Power Reserve claims that when the batteries stop working (in about 15 years), Tesla will recycle all of them at its Gigafactory in Nevada, recovering up to 60% of the materials.

It’s important that Tesla is held account to the above claim. A CSIRO report found that in 2016, only 2% of lithium-ion batteries were collected in Australia to be recycled offshore.

However, lithium-ion batteries aren’t the only option. Australia is leading the way in developing more sustainable alternative batteries. There are also other innovative ways to store energy, such as by harnessing the gravitational energy stored in giant hanging bricks.




Read more:
Charging ahead: how Australia is innovating in battery technology


Solving symptoms, not problems

Tesla’s big battery was introduced at a time when the energy debate was fixated on South Australia’s energy “crisis” and a need for “energy security”. After a succession of severe weather events and blackouts, the state’s renewable energy agenda was under fire and there was pressure on the government to take action.

On February 8, 2017, high temperatures contributed to high electricity demand and South Australia experienced yet another widespread blackout. But this time it was caused by the common practice of “load-shedding”, in which power is deliberately cut to sections of the grid to prevent it being overwhelmed.

A month later, Cannon-Brookes (who recently reclaimed the term “fair dinkum power” from Prime Minister Scott Morrison) coordinated “policy by tweet” and helped prompt Tesla’s battery-building partnership with the SA government.




Read more:
A year since the SA blackout, who’s winning the high-wattage power play?


Since the battery’s inception the theme of “summer” (a euphemism for high electricity demand) has followed its reports in media.

The combination of extreme heat and high demand is very challenging for an electricity distribution system. Big batteries can undoubtedly help smooth this peak demand. But that’s only solving a symptom of the deeper problem – namely, excessive electricity demand.

Time to talk about energy demand

These concerns are most likely not addressed in the national conversation because of the urgency to move away from fossil fuels and, as such, a desire to keep big batteries in a positive light.

But as we continue to adopt renewable energy technologies, we need to embrace a new relationship with energy. By avoiding these concerns we only prolong the very problems that have led us to a changed climate and arguably, make us ill-prepared for our renewable energy future.

The good news is that the big battery industry is just kicking off. That means now is the time to talk about what type of big batteries we want in the future, to review our expectations of energy supply, and to embrace more sustainable demand.The Conversation

Aleesha Rodriguez, Phd Student, Digital Media Research Centre, Queensland University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Why battery-powered vehicles stack up better than hydrogen



File 20181114 194500 iw2c1a.jpg?ixlib=rb 1.1
A battery electric vehicle in The University of Queensland’s vehicle fleet.
CC BY-ND

Jake Whitehead, The University of Queensland; Robin Smit, The University of Queensland, and Simon Washington, The University of Queensland

Low energy efficiency is already a major problem for petrol and diesel vehicles. Typically, only 20% of the overall well-to-wheel energy is actually used to power these vehicles. The other 80% is lost through oil extraction, refinement, transport, evaporation, and engine heat. This low energy efficiency is the primary reason why fossil fuel vehicles are emissions-intensive, and relatively expensive to run.

With this in mind, we set out to understand the energy efficiency of electric and hydrogen vehicles as part of a recent paper published in the Air Quality and Climate Change Journal.

Electric vehicles stack up best

Based on a wide scan of studies globally, we found that battery electric vehicles have significantly lower energy losses compared to other vehicle technologies. Interestingly, however, the well-to-wheel losses of hydrogen fuel cell vehicles were found to be almost as high as fossil fuel vehicles.

Average well-to-wheel energy losses from different vehicle drivetrain technologies, showing typical values and ranges. Note: these figures account for production, transport and propulsion, but do not capture manufacturing energy requirements, which are currently marginally higher for electric and hydrogen fuel cell vehicles compared to fossil fuel vehicles.

At first, this significant efficiency difference may seem surprising, given the recent attention on using hydrogen for transport.




Read more:
How hydrogen power can help us cut emissions, boost exports, and even drive further between refills


While most hydrogen today (and for the foreseeable future) is produced from fossil fuels, a zero-emission pathway is possible if renewable energy is used to:

Herein lies one of the significant challenges in harnessing hydrogen for transport: there are many more steps in the energy life cycle process, compared with the simpler, direct use of electricity in battery electric vehicles.

Each step in the process incurs an energy penalty, and therefore an efficiency loss. The sum of these losses ultimately explains why hydrogen fuel cell vehicles, on average, require three to four times more energy than battery electric vehicles, per kilometre travelled.

Electricity grid impacts

The future significance of low energy efficiency is made clearer upon examination of the potential electricity grid impacts. If Australia’s existing 14 million light vehicles were electric, they would need about 37 terawatt-hours (TWh) of electricity per year — a 15% increase in national electricity generation (roughly equivalent to Australia’s existing annual renewable generation).

But if this same fleet was converted to run on hydrogen, it would need more than four times the electricity: roughly 157 TWh a year. This would entail a 63% increase in national electricity generation.

A recent Infrastructure Victoria report reached a similar conclusion. It calculated that a full transition to hydrogen in 2046 – for both light and heavy vehicles – would require 64 TWh of electricity, the equivalent of a 147% increase in Victoria’s annual electricity consumption. Battery electric vehicles, meanwhile, would require roughly one third the amount (22 TWh).




Read more:
How electric cars can help save the grid


Some may argue that energy efficiency will no longer be important in the future given some forecasts suggest Australia could reach 100% renewable energy as soon as the 2030s. While the current political climate suggests this will be challenging, even as the transition occurs, there will be competing demands for renewable energy between sectors, stressing the continuing importance of energy efficiency.




Read more:
At its current rate, Australia is on track for 50% renewable electricity in 2025


It should also be recognised that higher energy requirements translate to higher energy prices. Even if hydrogen reached price parity with petrol or diesel in the future, electric vehicles would remain 70-90% cheaper to run, because of their higher energy efficiency. This would save the average Australian household more than A$2,000 per year.

Pragmatic plan for the future

Despite the clear energy efficiency advantages of electric vehicles over hydrogen vehicles, the truth is there is no silver bullet. Both technologies face differing challenges in terms of infrastructure, consumer acceptance, grid impacts, technology maturity and reliability, and driving range (the volume needed for sufficient hydrogen compared with the battery energy density for electric vehicles).

Battery electric vehicles are not yet a suitable replacement for every vehicle on our roads. But based on the technology available today, it is clear that a significant proportion of the current fleet could transition to be battery electric, including many cars, buses, and short-haul trucks.

Such a transition represents a sensible, robust and cost-efficient approach for delivering the significant transport emission reductions required within the short time frames outlined by the Intergovernmental Panel on Climate Change’s recent report on restraining global warming to 1.5℃, while also reducing transport costs.

Together with other energy-efficient technologies, such as the direct export of renewable electricity overseas, battery electric vehicles will ensure that the renewable energy we generate over the coming decades is used to reduce the greatest amount of emissions, as quickly as possible.




Read more:
The north’s future is electrifying: powering Asia with renewables


Meanwhile, research should continue into energy efficient options for long-distance trucks, shipping and aircraft, as well as the broader role for both hydrogen and electrification in reducing emissions across other sectors of the economy.

With the Federal Senate Select Committee on Electric Vehicles set to deliver its final report on December 4, let’s hope the continuing importance of energy efficiency in transport has not been forgotten.The Conversation

Jake Whitehead, Research Fellow, The University of Queensland; Robin Smit, Adjunct professor, The University of Queensland, and Simon Washington, Professor and Head of School of Civil Engineering, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Labor’s policy can smooth the energy transition, but much more will be needed to tackle emissions


Frank Jotzo, Crawford School of Public Policy, Australian National University

The Labor party’s energy policy platform, released last week, is politically clever and would likely be effective. It includes plans to underwrite renewable energy and storage, and other elements that would help the energy transition along. Its approach to the transition away from coal-fired power is likely to need more work, and it will need to be accompanied by good policy in other sectors of the economy where greenhouse emissions are still climbing.

The politics is quite simple for Labor: support the transition to renewable electricity which is already underway and which a large majority of Australians support, and minimise the risk that its proposed policy instruments will come under effective attack in the lead-up to the 2019 election.




Read more:
Grattan on Friday: Labor’s energy policy is savvy – now is it scare-proof?


By aiming for 50% renewables at 2030, the party has claimed the high ground. That goal and perhaps a lot more is achievable, given that the large investment pipeline in electricity consists almost entirely of wind and solar projects, and that new renewables are now typically the cheapest options to produce energy with new plants.

The question then is what policy instruments Labor would use to facilitate the transition from coal to renewables.

NEG games

The government’s abandoned National Energy Guarantee (NEG) policy is now a political asset for Labor. If the Coalition were to support it under a Labor government, the policy would effectively be immune to political attack. If the Coalition were to block it, Labor could blame many future problems in electricity on the Coalition’s refusal to endorse a policy that it originally devised.

The NEG has many warts. Some of the compromises in its design were necessary to get it through the Coalition party room. That no longer matters, and so it should be possible to make improvements. One such improvement would be to allow for an explicit carbon price in electricity under the NEG, by creating an emissions intensity obligation for electricity generators with traded certificates. This is better than the opaque model of contract obligations on electricity retailers under the original version.

Underwriting renewables

But the real action under a Labor government might well come from a more direct policy approach to push the deployment of renewables. In his energy policy speech last week, Shorten foreshadowed that Labor would “invest in projects and underwrite contracts for clean power generation, as well as firming technologies like storage and gas”.

As interventionist as this sounds, it has some clear advantages over more indirect support mechanisms. First, it brings the costs of new projects down further by making cheap finance available – a tried and tested method in state-based renewables schemes. Second, it allows for a more targeted approach, supporting renewable energy generation where it makes most sense given demand and transmission lines, and prioritising storage where and when it is needed. Third, it channels government support only to new installations, rather than giving free money to wind farms and solar plants that are already in operation.

Managing coal exit

Where renewables rise, coal will fall. Labor’s approach to this issue centres on the affected workers and communities. A “just transition authority” would be created as a statutory authority, to administer redundancies, worker training, and economic diversification.

This is a good approach if it can work effectively and efficiently. But it may not be enough to manage the large and potentially rapid shifts in Australia’s power sector.

Contract prices for new wind farms and solar plants now are similar to or lower than the operating costs of many existing coal plants. The economics of existing coal plants are deteriorating, and many of Australia’s ageing coal power plants may shut down sooner than anticipated.

All that Labor’s policy says on the issue is that all large power plants would be required to provide three years’ notice of closure, as the Finkel Review recommended. But in practice this is unlikely to work.

Without any guiding framework, coal power plants could close very suddenly. If a major piece of equipment fails and repair is uneconomic, then the plant is out, and operators may find it opportune to run the plant right until that point. It’s like driving an old car – it runs sort of OK until the gearbox goes, and it’s off to the wreckers right then. It is unclear how a three-year rule could be enforced.

This is effectively what happened with the Hazelwood plant in Victoria. That closure caused a temporary rise in wholesale power prices, as new supply capacity gradually fills the gap.

One way to deal with this would be to draw up and implement some form of specific exit timetable for coal power plants. This would give notice to local communities, provide time to prepare investment in alternative economic activities, and allow replacement generation capacity to be brought online. Such a timetable would need a mechanism to implement it, probably a system of carrots and sticks.

Batteries, energy efficiency and the CEFC

Most public attention was given to a relatively small part of Labor’s energy policy platform: the promise to subsidise home batteries. Batteries can help reduce peak demand, and cut electricity bills for those who also have solar panels. But it is not clear whether home batteries are good value for money in the system overall. And the program would tend to benefit mostly upper middle-income earners.




Read more:
Labor’s battery plan – good policy, or just good politics?


Labor’s platform also foreshadows a renewed emphasis on energy efficiency, which is economically sensible.

Finally, Labor promises to double the Clean Energy Finance Corporation’s endowment with another A$10 billion, to be used for revolving loans. The CEFC is already the world’s biggest “green bank”, co-financing projects that cut emissions and deliver financial returns. Another A$5 billion is promised as a fund for upgrading transmission and distribution infrastructure. These are big numbers, and justifiably so – building our future energy system will need massive investments, and some of these will be best made by government.

Big plans for electricity, but what about the rest?

Overall, Labor’s plan is a solid blueprint to support the electricity transition, with strong ambition made possible by the tremendous technological developments of recent years.

But really it is only the start. Electricity accounts for one-third of national greenhouse emissions. Emissions from the power sector will continue to fall, but emissions from other sectors have been rising. That poses a huge challenge for the economy-wide emissions reductions that are needed not only to achieve the 2030 emissions targets, but the much deeper reductions needed in coming decades.

A national low-carbon strategy will need to look at how to get industry to shift to zero-emission electricity, how to convert road transport to electricity or hydrogen, and how to tackle the difficult question of agricultural emissions. More pre-election announcements are to come. It will be interesting to see how far Labor will be willing to go in the direction of putting a price on carbon, which remains the economically sensible but most politically charged policy option.

As difficult as electricity policy may seem based on the tumultuous politics that have surrounded it, more seismic shifts are waiting in the wings.The Conversation

Frank Jotzo, Director, Centre for Climate Economics and Policy, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

47% say prioritise cutting power bills: Ipsos


File 20181118 35171 jytkk3.jpg?ixlib=rb 1.1
The poll found stark differences between voting intentions and attitude to energy policy.
Shutterstock

Michelle Grattan, University of Canberra

Fresh focus will turn to the energy debate this week, with a Fairfax
Ipsos poll showing 47% of Australians support giving the main priority
to cutting bills, and Labor expected to release details of its energy
policy.

The Ipsos poll found 39% want the federal government to give the main
priority to reducing carbon emissions, while 13% were most concerned
with reducing the risk of blackouts.

In a highly interventionist approach, the government is concentrating
on wielding what it calls “a big stick” to force power companies to
lower prices.

Ipsos found a big difference in priorities according to which party
people supported. Among Coalition voters, 58% prioritised reducing
bills, compared with 22% who nominated cutting emissions and 20% who
opted for reducing the risk of blackouts.

But a majority of Labor voters put reducing emissions top (53%), with
36% opting for giving priority to cutting power prices and only 11%
nominating reducing the blackout risk. Three quarters of Greens voters
gave top priority to cutting emissions.

Voters outside capital cities are more likely to give priority to
cutting bills than urban voters. People aged 40-54 are more likely
than other age groups to be concerned with reducing bills, as are
those on incomes under $100,000 compared with people with higher
income.

Younger voters are more likely to give priority to cutting emissions
than older age groups.

The Ipsos poll has Labor leading in two-party terms 52-48%.

Bill Shorten on Thursday addresses BloombergNEF with a speech billed
“Labor’s plan to tackle Australia’s energy crisis”. The address will
be followed by a question and answer session.

Labor’s shadow cabinet will consider the ALP policy before the speech.

Labor has previously flagged it is open to incorporating aspects of
the National Energy Guarantee that the Coalition abandoned in its
internal meltdown that ended in the change of leadership.

Fairfax Media reported at the weekend that Labor’s policy “is modelled
on the guarantee, but the party is also working towards a much broader
set of measures as it seeks to compete with the government’s pledge to
bring down power prices and shore up supplies.”

The ALP is committed to cutting emissions by 45% by 2030 off a 2005 baseline.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How biomethane can help turn gas into a renewable energy source



File 20181015 109216 amdwxv.jpg?ixlib=rb 1.1
Are there greener pastures ahead for gas?
Shutterstock.com

Bernadette McCabe, University of Southern Queensland

Australia’s report card on reducing its greenhouse gas emissions is not exactly glowing, but there are ample opportunities to get it on track during this period of rapid change in the energy sector. Greater use of renewable electricity sources like wind and solar are playing a large part in reducing emissions, and gas can also lift its game.

Gas provides nearly one quarter of Australia’s total energy supply. Around 130,000 commercial businesses rely on gas, and it delivers 44% of Australia’s household energy to more than 6.5 million homes which use natural gas for hot water, domestic heating, or cooking.

Gas has lower greenhouse emissions than most other fuels, and the gas used in power generation has about half the emissions of the current electricity grid.

Even so, natural gas can do more to help Australia meet its carbon-reduction targets.




Read more:
Biogas: smells like a solution to our energy and waste problems


An industry document released last year, Gas Vision 2050, explains how new technologies such as biomethane and hydrogen can make that happen, by replacing conventional natural gas with low-emission alternative fuels.

Around the world

Worldwide, renewable natural gas is dominated by biomethane, which can be generated from organic materials and residues from agriculture, food production and waste processing.

Multiple products of anaerobic digestion.
Modified from ADBA with permission

The top biomethane-producing countries include Germany, the UK, Sweden, France and the United States, and many others are planning to use renewable gas more widely.

A 2017 report suggests that renewable natural gas could meet 76% of Europe’s natural gas demand by 2050.

What is biomethane?

Biomethane is a clean form of biogas that is 98% methane. Also known as green gas, it can be used interchangeably with conventional fossil-fuel natural gas.

Biogas is a mixture of around 60% methane and 40% carbon dioxide, plus traces of other contaminants. Turning biogas into biomethane requires technology that scrubs out the carbon dioxide.

Biomethane’s benefits include:

  • Net zero emissions
  • Interchangeability with existing natural gas usage
  • Ability to capture methane emissions from other processes such as landfill and manure production
  • Potential economic opportunity for regional areas
  • Generation of skilled jobs in planning, engineering, operating and maintenance of biogas and biomethane plants.

Australia’s potential for biomethane

While Australia currently does not have any upgrading plants, the production of biomethane can provide a huge boost to Australia’s nascent biogas industry.

The main use for biogas in Australia is for electricity production, heat, and combined heat and power.

Australia’s biogas sector has more than 240 anaerobic digestion (AD) plants, most of which are associated with landfill gas power units and municipal wastewater treatment. They also include:

  • about 20 agricultural AD plants, which use waste manure from piggeries
  • about 18 industrial AD plants, which use wastewater from red meat processing and rendering as feedstock for biogas production;

There is also manure from around one million head of cattle in feedlots, which is currently not used to produce biogas, but is stockpiled for use as fertiliser on agricultural land.

Australian biogas facilities.
CAE/USQ

There are untapped opportunities to produce biomethane using municipal sewage sludge, red meat processing waste, residues from breweries and distilleries, food waste, and poultry and cattle manure.




Read more:
Home biogas: turning food waste into renewable energy


The Australian Renewable Energy Agency is currently supporting the Australian Biomass for Bioenergy (ABBA) project. The Australian Renewable Energy Mapping Infrastructure (AREMI) platform will map existing and projected biomass resource data from the ABBA project, alongside other parameters such as existing network and transport infrastructure, land-use capability, and demographic data.

This topic and many others related to biogas and bioenergy more widely will be discussed at this week’s Annual Bioenergy Australia conference.

Of course, biomethane is just one way in which Australia can make the transition to a low-emissions future. But as natural gas is already touted as a “transition fuel” to a low-carbon economy, these new technologies can help ensure that existing gas infrastructure can still be used in the future.The Conversation

Bernadette McCabe, Associate Professor and Principal Scientist, University of Southern Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New solar cells offer you the chance to print out solar panels and stick them on your roof


File 20180829 195313 1i0zj6w.jpg?ixlib=rb 1.1
This roof in Newcastle has become the first in Australia to be covered with specially printed solar cells.
University of Newcastle, Author provided

Paul Dastoor, University of Newcastle

Australia’s first commercial installation of printed solar cells, made using specialised semiconducting inks and printed using a conventional reel-to-reel printer, has been installed on a factory roof in Newcastle.

The 200 square metre array was installed in just one day by a team of five people. No other energy solution is as lightweight, as quick to manufacture, or as easy to install on this scale.




Read more:
Smart windows could combine solar panels and TVs too


Our research team manufactured the solar modules using standard printing techniques; in fact, the machine that we use typically makes wine labels. Each solar cell consists of several individual layers printed on top of each other, which are then connected in series to form a bank of cells. These cells are then connected in parallel to form a solar module.

Since 1996, we have progressed from making tiny, millimetre-sized solar cells to the first commercial installation. In the latest installation each module is ten metres long and sandwiched between two layers of recyclable plastic.

At the core of the technology are the specialised semiconducting polymer-based inks that we have developed. This group of materials has fundamentally altered our ability to build electronic devices; replacing hard, rigid, glass-like materials such as silicon with flexible inks and paints that can be printed or coated over vast areas at extremely low cost.

As a result, these modules cost less than A$10 per square metre when manufactured at scale. This means it would take only 2-3 years to become cost-competitive with other technologies, even at efficiencies of only 2-3%.

These printed solar modules could conceivably be installed onto any roof or structure using simple adhesive tape and connected to wires using simple press-studs. The new installation at Newcastle is an important milestone on the path towards commercialisation of the technology – we will spend the next six months testing its performance and durability before removing and recycling the materials.

The solar cells can be installed with little more than sticky tape.
University of Newcastle, Author provided

We think this technology has enormous potential. Obviously our technology is still at the trial stage, but our vision is a world in which every building in every city in every country has printed solar cells generating low-cost sustainable energy for everyone. This latest installation has brought the goal of solar roofs, walls and windows a step closer.




Read more:
WA bathes in sunshine but the poorest households lack solar panels – that needs to change


Ultimately, we imagine that these solar cells could even benefit those people who don’t own or have access to roof space. People who live in apartment complexes, for example, could potentially sign up to a plan that lets them pay to access the power generated by cells installed by the building’s owner or body corporate, and need never necessarily “own” the infrastructure outright.

But in a fractured and uncertain energy policy landscape, this new technology is a clear illustration of the value of taking power into one’s own hands.The Conversation

Paul Dastoor, Professor, School of Mathematical and Physical Sciences, University of Newcastle

This article was originally published on The Conversation. Read the original article.

What’s wrong with big solar in cities? Nothing, if it’s done right



File 20180724 76263 9i8ydz.jpg?ixlib=rb 1.1
Residents near big solar projects are often concerned they cause glare and noise.
Electrical and Mechanical Services Department Headquarters rooftop solar, Hong Kong/Wikimedia Commons

Jason Byrne, University of Tasmania

Many of us are familiar with developments of big solar farms in rural and regional areas. These are often welcomed as a positive sign of our transition towards a low-carbon economy. But do large-scale solar installations have a place in our cities?

The City of Fremantle in Western Australia is considering a proposal to use a former landfill site for a large-scale solar farm. The reportedly 4.9 megawatt solar power station on an eight-hectare site would be, it’s said, Australia’s largest urban solar farm. The initiative is part of Fremantle’s ambition to be powered by 100% clean energy within a decade.




Read more:
Solar is now the most popular form of new electricity generation worldwide


The proposal is facing some community opposition, however. Residents are reportedly alarmed by the potential public health consequences of building on a rubbish dump, which risks releasing toxic contaminants such as asbestos into the environment. Other concerns include glare from the solar panels, or excessive noise.

Similar complaints about solar panels in cities are being seen all over the world, with opponents generally of the view “they do not belong in residential areas”. So what are the planning issues associated with large-scale solar installations in cities? And should we be concerned about possible negative impacts?

What is large-scale solar?

According to the Australian Clean Energy Regulator, large-scale solar refers to “a device with a kilowatt (kW) rating of more than 100 kilowatts”. A kilowatt is a measure of power – the rate of energy delivery at a given moment – whereas a kilowatt-hour (kWh) is a measure of the total energy produced (so a 100kW device operating for one hour would produce 100kWh of electricity).

Device here refers to not only the photovoltaic (PV) panels – the actual panels used in solar energy – but also to the infrastructure “behind the electricity meter”. So interconnected panels may still constitute a single device.

By this definition, there may already be large-scale solar installations in Australian cities. In Sydney for example, the recently opened system on top of the Alexandra Canal Transport Depot is by all accounts a large-scale solar system. It combines around 1,600 solar panels with enough battery storage for 500kWh of electricity.




Read more:
Sydney’s closer to being a zero-carbon city than you think


But this is not Sydney’s largest solar installation. That honour is presently held by the Sydney Markets in Flemington, among Australia’s largest rooftop solar installations, which generates around 3 megawatts (that’s 3,000kW). To date, there have been no publicly disclosed complaints received about these facilities.

Large-scale solar (sometimes called “big solar”) can also refer to solar arrays that use mirrors to concentrate sunlight onto solar PV panels. This is different to concentrated thermal solar, which uses mirrors to focus sunlight onto the top of a tower to heat salt, oil or other materials that can then be used to generate steam to power turbines for electricity generation.

What’s the problem with solar in cities?

Internationally, there is increasing recognition cities could be ideal locations for large-scale solar installations due to the amounts of unused land. This includes land alongside freeways and main roads, flood-prone land, and rooftops on factories, warehouses and residences. And locating big solar in cities can also reduce the energy losses that occur with transmitting electricity over long distances.

Australia’s combined rooftop solar installations already supply the equivalent of enough power for all the homes in Sydney. And even former landfill sites – which have few uses other than parkland and are often too contaminated to sustain other land uses such as residential development – can be a good use of space for solar farms. But such sites would need to be carefully managed so contaminants are not released during construction.

Large-scale solar installations can present some challenges for urban planning. For instance, mirrors can cause problems with glare, or even damage if they were misaligned (problems thus far have been in solar thermal plants). Maintenance vehicles may increase traffic in neighbourhoods. Installing solar panels could cause temporary problems with noise and lighting. And views could potentially be disrupted if adjoining residents overlook a large-scale solar installation.




Read more:
Pace of renewable energy shift leaves city planners struggling to keep up


But not all of these impacts would be long-term, and they can all potentially be managed through planning approval, permitting processes and development conditions. Installing screens or trees can improve views, for instance. Glare is a potential problem but again can be managed via screening (at the site or on overlooking buildings) or protective films on the panels.

The issue with the proposed solar farm in Fremantle is the fact it’s planned atop a former landfill site, known to contain harmful substances including asbestos, hydrocarbons and heavy metals. Unless carefully managed, construction of the solar farm could disturb these materials and potentially expose nearby residents to health impacts.

Most state environmental protection agencies recognise risks if the use of potentially contaminated land is to be changed, and have developed stringent guidelines for landfill management.

The Algarve Lagos solar farm in Portugal shows how empty land in cities can be used to host energy efficiency platforms.
Wikimedia Commons

The City of Fremantle has approved the proposed development, subject to the preparation of a site management plan among other conditions. Depending on site management, and the characteristics of surrounding neighbourhoods, poorly managed big solar on landfill sites could become an environmental justice issue. From this perspective, residents’ concerns are understandable, and the City of Fremantle will need to ensure it carefully monitors construction.




Read more:
Infrasound phobia spreads … to solar energy cells! What’s next?


Lessons for planning

It is reasonable to expect that cities will increasingly host large-scale solar installations. With careful site selection and management, the multiple benefits of clean energy can accrue to urban residents. Otherwise leftover or marginal land can derive an economic return.

The ConversationOf course care will need to be taken to minimise potential habitat loss or off site impacts such as visual intrusion, noise, and glare. But solar farms also have the potential to provide new habitats both via physical infrastructure (sites for nesting) and as part of site rehabilitation and management.

Jason Byrne, Professor of Human Geography and Planning, University of Tasmania

This article was originally published on The Conversation. Read the original article.