Rising carbon dioxide is greening the Earth – but it’s not all good news


Pep Canadell, CSIRO and Yingping Wang, CSIRO

Dried lake beds, failed crops, flattened trees: when we think of global warming we often think of the impacts of droughts and extreme weather. While there is truth in this image, a rather different picture is emerging.

In a paper published in Nature Climate Change, we show that the Earth has been getting greener over the past 30 years. As much as half of all vegetated land is greener today, and remarkably, only 4% of land has become browner.

Our research shows this change has been driven by human activities, particularly the rising concentration of carbon dioxide (CO₂) in the atmosphere. This is perhaps the strongest evidence yet of how people have become a major force in the Earth’s functioning.

We are indeed in a new age, the Anthropocene.

How do you measure green?

Plants play a vital role in maintaining Earth as a habitable place, not least through absorbing CO₂. We wanted to know how people are affecting this ability.

To do this, we needed to know how much plants are growing. We couldn’t possibly measure all the plants on Earth so we used satellites observations to measure light reflected and absorbed from the Earth’s surface. This is a good indicator of leaf area, and therefore how plants are growing.

We found consistent trends in greening across Australia, central Africa, the Amazon Basin, southeast United States, and Europe. We found browning trends in northwest North America and central South America.

Updated figure to 2015. Source: http://sites.bu.edu/cliveg/files/2016/04/LAI-Change.png

We then used models to figure out what was driving the trends in different regions.

A CO₂-richer world

Plants need CO₂ to grow through photosynthesis. We found that the biggest factor in driving the global greening trend is the fertilisation effect of rising atmospheric CO₂ due to human activity (atmospheric concentration grew by 46 parts per million during the period studied).

This effect is well known and has been used in agricultural production for decades to achieve larger and faster yields in greenhouses.

In the tropics, the CO₂ fertilisation effect led to faster growth in leaf area than in most other vegetation types, and made this effect the overwhelming driver of greening there.

A warmer world

Climate change is also playing a part in driving the overall greening trend, although not as much as CO₂ fertilisation.

But at a regional scale, climate change, and particularly increasing temperature, is a dominant factor in northern high latitudes and the Tibetan Plateau, driving increased photosynthesis and lengthening the growing season.

Greening of the Sahel and South Africa is primarily driven by increased rainfall, while Australia shows consistent greening across the north of the continent, with some areas of browning in interior arid regions and the Southeast. The central part of South America also shows consistent browning.

A nitrogen-richer world

We know that heavy use of chemical nitrogen fertilisers leads to pollution of waterways and excess nitrogen which leads to declining plant growth. In fact, our analysis attributes small browning trends in North America and Europe to a long-term cumulative excess nitrogen in soils.

But, by and large, nitrogen is a driver of greening. For most plants, particularly in the temperate and boreal regions of the Northern Hemisphere, there is not enough nitrogen in soils. Overall, increasing nitrogen in soils has a positive effect on greening, similar to that of climate change.

A more intensively managed world

The final set of drivers of the global greening trend relates to changes in land cover and land management. Land management includes forestry, grazing, and the way cropland is becoming more intensively managed with multiple crops per year, increasing use of fertilisers and irrigation.

All of this affects the intensity and time the land surface is green.

Perhaps surprisingly, felled forests don’t show as getting browner, because they are typically replaced by pastures and crops, although this change has profound effects on ecosystems.

The greening trends in southeast China and the southeastern United States are clearly dominated by land cover and management changes, both regions having intensive cropping areas and also reforestation.

Although this management effect has the smallest impact on the greening trend presented in this study, the models we used are not suitable enough to assess the influence of human management globally.

The fact that people are making parts of the world greener and browner, and the world greener overall, constitutes some of the most compelling evidence of human domination of planet Earth. And it could be good news: a greening world is associated with more positive outcomes for society than a browning one.

For instance, a greener world is consistent with, although it does not fully explain, the fact that land plants have been removing more CO₂ from the atmosphere, therefore slowing down the pace of global warming.

But don’t get your hopes up. We don’t know how far into the future the greening trend will continue as the CO₂ concentration ultimately peaks while delayed global warming continues for decades after. Regardless, it is clear that the benefits of a greening Earth fall well short compared to the estimated negative impacts of extreme weather events (such as droughts, heat waves, and floods), sea level rise, and ocean acidification.

Humans have shown their capacity to (inadvertently) affect the word’s entire biosphere, it is now time to (advertently) use this knowledge to mitigate climate change and ameliorate its impacts.

The Conversation

Pep Canadell, CSIRO Scientist, and Executive Director of the Global Carbon Project, CSIRO and Yingping Wang, Chief research scientist, CSIRO

This article was originally published on The Conversation. Read the original article.

Advertisements

Rising extreme weather warns of ecosystem collapse: study


Alfredo Huete, University of Technology Sydney and Xuanlong Ma, University of Technology Sydney

The world’s climate is already changing. Extreme weather events (floods, droughts, and heatwaves) are increasing as global temperatures rise. While we are starting to learn how these changes will affect people and individual species, we don’t yet know how ecosystems are likely to change.

Research published in Nature, using 14 years of NASA satellite data, shows eastern Australia’s drylands are among the most sensitive ecosystems to these extreme events, alongside tropical rainforests and mountains. Central Australia’s desert ecosystems are also vulnerable, but for different reasons.

As the world warms, this information can help us manage ecosystems and to anticipate irreversible changes or ecological collapse.

Maps created using satellite data to show which ecosystems are most sensitive to climate (orange) and least sensitive (green). Both could be worrying as the world warms.
Seddon et al.

Tipping points

Ecological theory tells us that as ecosystems become unhealthy, they approach critical thresholds (also referred to as tipping points). The more unhealthy they become, the quicker they respond to disturbances.

Ecosystems that cross a critical threshold are transformed into new states, often with losses in biodiversity, exotic species invasions, and sudden forest die-off events. For example, over the past 10 years, ecosystems in the western US have experienced large-scale tree deaths and native, black grama grasslands have been transformed to the exotic, South African Lehmann lovegrass.

Farms and crops can be thought of as agricultural ecosystems, and they are highly sensitive to variations in climate. This means they are very challenging to manage for sustainable livestock and crop production under such intensifying conditions of sudden good and bad periods.

As humans we show weakened resistance when we are sick, and we become more susceptible to external conditions. Similarly, slower than normal ecosystem responses to external changes may also be indicative of an unhealthy ecosystem.

Both of these measures, fast and slow, are early warning signs for ecosystem collapse.

Seeing ecosystems from space

But how do we know if an ecosystem is going to collapse? Space offers a unique vantage point. The new research uses data from NASA’s Moderate Resolution Imaging Spectroradiometer (or MODIS) satellites. The satellites, orbiting roughly 900 km above Earth’s surface, measure things like snow and ice, vegetation, and the oceans and atmosphere.

The satellites measure ecosystem “greenness”, which indicates how much an ecosystem is growing. This is not too different from a farmer visually interpreting cues of plant health based on colour, except that satellites can have the capability to analyse colour in parts of the spectrum beyond our sensing capabilities.

The researchers developed a “Vegetation Sensitivity Index”, which showed how ecosystems responded to changes in climate. They particularly looked at changes in temperature, cloud cover, and rainfall.

One nice aspect of this research is that it specifically shows which climate component has the biggest role in changing ecosystems. For example changes to alpine meadows were attributed to warming temperatures, while tropical rainforests were very sensitive to fluctuations in solar radiation (or cloud cover).

Australia’s dry ecosystems show dramatic changes between wet and dry. This is spinifex grassland during the dry. Spinifex covers around 20% of Australia’s land area.
James Cleverly, Author provided

Mulga woodland during a wet period.
James Cleverly, Author provided

Australia’s vulnerable ecosystems

Eastern Australia’s dry woodlands and semi-arid grasslands, according to the study, are some of the most sensitive ecosystems to climate change, alongside tropical rainforests and alpine regions. The main factor in Australia is water.

This is in line with our recent study conducted in southeast Australia since 2000, which shows sudden, abrupt shifts in ecosystem function over many semi-arid ecosystems. This demonstrated the vulnerability of eastern Australian ecosystems to climatic variability and future extreme climatic events.

The new study also found central Australia’s deserts and arid lands show unusually slow responses to climate variability, which is concerning. Slower responses may be an early warning that these ecosystems are approaching a critical threshold before collapsing.

But this might also be an adaptation to the extreme climate variability these ecosystems already experience. The vegetation “knows” that the good, rainy times don’t last and therefore they may not invest in new growth that will later become a burden when drought returns.

What does this mean for ecosystems?

This research isn’t the end of the story. Although satellite data are valuable, they can’t tell us exactly what are the causes or mechanisms of ecosystem change. To do that, we need information on the ground, and consistent data over long periods of time is hard to come by. One example is Australia’s Terrestrial Ecosystem Research Network, or TERN.

The next step is to attribute the reasons why some systems appear to be more sensitive than others and more importantly, predict where and when the critical transitions will occur.

When forests, grasslands, and other ecosystems approach their critical thresholds, their resistance is weakened and they become highly susceptible to insects, pests, disease, species invasions, and mortality. One way to help ecosystems cope may be to reduce pressures on the land, such as recreation, harvesting and grazing.

If ecosystems collapse, we can mitigate some of the damage by helping wildlife and minimising soil erosion and runoff following tree deaths. But the most important thing is recognising that each ecosystem will behave differently; some may collapse, but others will survive.

The Conversation

Alfredo Huete, Professor, Plant Functional Biology & Climate Change, University of Technology Sydney and Xuanlong Ma, Research Associate in Remote Sensing of Environment, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Rising seas threaten to drown important mangrove forests, unless we intervene


Neil Saintilan; Catherine Lovelock, The University of Queensland, and Kerrylee Rogers, University of Wollongong

Mangroves are some of the world’s most important trees. They provide food and resources for people and animals, protect coasts, and store huge amounts of carbon. The world’s largest mangrove forest – the Sundarbans in the Bay of Bengal – supports millions of livelihoods. In terms of the services they provide, they are worth nearly US$200,000 per hectare per year.

But these coastal forests are threatened by rising seas and human development. In a study published today in Nature, we show that some of these forests will drown unless we help them.

Catherine Lovelock explains her new mangrove study

Getting to the root of it all

Mangroves grow along tropical coasts. Unique amongst the world’s plants, they can survive in salt water and can filter seawater. The rain of leaf-fall from tropical mangrove forests provides food for crabs and other herbivores, the foundation of a food web that extends to fish (and therefore people) right across the tropics.

One of the distinguishing characteristics of mangroves are their roots, used to anchor the plant on unstable ground and buttress against wind, waves and currents. The form of root architecture varies greatly between families of mangrove, including the dense prop-roots (Rhizophora), cathedral-like buttresses (Bruguiera), and numerous pneumatophores – literally narrow breathing–tubes – of the common grey mangrove of southeast Australia (Avicennia).

Prop roots on a mangrove
Ruth Reef

A high proportion of the living mass of mangroves exists below-ground. This means mangroves are the most efficient ecosystem globally in the capture and sequestration of atmospheric carbon dioxide. The uniquely oxygen-poor, salty characteristics of mangrove soil provides the perfect setting for long-term preservation of carbon below ground. The typical mangrove forest sequesters several times more carbon dioxide than a tropical rainforest of comparable size.

Mangrove roots trap sediment as currents carrying suspended particles are intercepted and slowed. Between the carbon sequestered below-ground, and the sediment trapped within the tangle of roots, mangroves are effectively able to raise the height of the land over time.

Keeping up with rising seas

Analysis of these sediments shows mangroves can deal with low to moderate sea-level rise by building up land. But how will mangroves respond to future rising seas when people are in the way?

We and other colleagues measured how fast mangrove forests in the Indo-Pacific region increase the height of the land. We used a tool called Surface Elevation Table-Marker Horizon, as you see in the video below.

Mangroves also build up land height by accumulating roots below ground. Previous studies have focused on this. Our study, using up to 16 years of data across a range of coastal settings, shows that sediment build up is also important.

We also compared the rate of land height increase in mangroves to local tidal gauges, to assess whether mangroves were keeping pace with the local rate of sea-level rise.

In most cases (90 out of 153 monitoring stations) mangroves were lagging behind. This is not an immediate problem if mangroves are already high enough to delay the effect of expected sea-level rise. However, mangroves at the low end of their elevation are highly vulnerable.

We used this insight to model how long mangroves might survive rising seas across the Indo-Pacific. We used a range of sea-level rise projections from the Intergovernmental Panel on Climate Change, including a low-range scenario (48 cm by 2010), high-range (63 cm by 2100) and extreme (1.4 m by 2100).

Mangrove forests with a high tidal range and/or high sediment supply such as Northern Australia, eastern Borneo, east Africa and the Bay of Bengal proved to be relatively resilient. Most of these forests will likely survive well into the second half of the century under low and moderate rates of sea-level rise.

The prospect of mangrove survival to 2070 under the 63 cm and 1.4 m scenarios was poor for the Gulf of Thailand, the southeast coast of Sumatra, the north coasts of Java and Papua New Guinea and the Solomon Islands.

Dams holding mangroves back

Our results imply that factors that prevent sediment building up may prevent mangroves responding to sea-level rise. This might include dams holding sediment within water catchments.

This impact is already being felt. An 80% reduction in sediment delivery to the Chao Phraya River delta has, for example, contributed to kilometres of mangrove shoreline retreat.

Similar developments are planned for the Mekong River. These threats compound those already being felt, including the widespread conversion of mangrove to aquaculture.

Appreciation of the financial contribution of mangroves has been slowing the trend of decline. However, long-term survival will require planning that includes both the continued provision of sediment supply, and in many cases the provision of retreat pathways, to allow mangroves to respond to sea level in ways they always have.

The Conversation

Neil Saintilan, Head, Department of Environmental Science; Catherine Lovelock, Professor of Biology, The University of Queensland, and Kerrylee Rogers, ARC Future Fellow, University of Wollongong

This article was originally published on The Conversation. Read the original article.

Rising seas could drown turtle eggs: new research


James Whitmore, The Conversation

Immersion in seawater kills sea turtle eggs, suggesting that sea turtles are increasingly at risk from rising seas, according to research published today in Royal Society Open Science.

In a laboratory experiment, researchers immersed green turtle eggs in seawater for varying lengths of time. The researchers tested eggs of various ages, and then counted the number of eggs that hatched. They found that immersion for six hours reduced survival by a third.

The study partly explains reduced numbers turtle of hatchlings recorded at Raine Island, home to the largest population of green sea turtles in the world.

David Pike, lecturer in tropical biology at James Cook University and lead author of the study, said turtle nests low down on beaches could be underwater for six hours during abnormally high “king” tides or storm surges.

Michele Thums, ecologist at the Australian Institute of Marine Science, said that given climate projections for increased severe weather events, this could mean fewer hatchlings survive in the future.

But every beach will see different impacts from rising seas, said Tim Dempster, senior lecturer in marine biology at University of Melbourne.

“You can’t just take [a…] scenario of a certain degree of warming, say that will lead to a certain amount of sea level rise, project how much land will be inundated and then project what proportion of nesting habitat will be affected,” he said.

Turtle embryos need oxygen to develop into baby turtles, and immersion in water prevents oxygen from the soil entering the eggs. The embryos effectively suffocate, a process known as “hypoxia”.

Thums said that while most turtles nest above the high tide line and are rarely immersed for six hours, “there are always inexperienced turtles that will lay further down the beach and also there is competition at high density nesting sites like Raine Island”.

Compared to the rest of the world, green sea turtles on Raine Island have a much lower level of breeding success, which could lead to a large decline in the number of breeding adults in the future.

Pike said the low level of success could be partly explained by inundation, but there were likely other factors at work.

“One possibility is that the sand is full of bacteria from all of the rotting eggs that are beneath the sand, and that any fresh eggs laid there may be exposed to bacteria that overgrow the egg and kill the embryo,” he said.

“Another possibility is that contaminants (heavy metals, pesticides) are being passed from the mother turtle to the eggs, and that may cause the embryos to die.”

The Queensland Department of Environmental Heritage and Protection is currently trying to raise low lying spots on Raine Island by moving sand. The island could lose between 7 and 27% of its area thanks to rising seas.

With Janelle Braithwaite, editor at The Conversation.

The Conversation

James Whitmore is Editor, Environment & Energy at The Conversation.

This article was originally published on The Conversation.
Read the original article.

Antarctic Ice Melt Increasing Rising Sea Levels


The link below is to an article that looks at the rising threat of the Antarctic ice melt to sea levels around the world.

For more visit:
http://inhabitat.com/melting-east-antarctic-ice-sheet-could-raise-sea-levels-for-thousands-of-years/