Five ways to reduce waste (and save money) on your home renovation



File 20181003 101579 1aaxhoc.jpg?ixlib=rb 1.1
Sensible design can dramatically reduce waste of a renovation.
Photo by Nolan Issac on Unsplash, CC BY-SA

Deepika Mathur, Charles Darwin University

On average, renovating a home generates far more waste than building a new one from scratch.

This waste goes straight to landfill, damaging the environment. It also hurts your budget: first you have to pay for demolition, then the new materials, and then disposal of leftover building products.

By keeping waste in mind from the start and following some simple guidelines, you can reduce the waste created by your home renovation.




Read more:
Thinking about a sustainable retrofit? Here are three things to consider


1. It starts with the design

Waste is often treated as inevitable, factored into a building budget with no serious attempt to reduce it.

By raising the issue early with your architect, designer or builder, they can make decisions at the design stage that reduce waste later. Often the designers and architects don’t see their decisions contributing to waste – or rather, they don’t really think about it.

During my research on reducing construction waste, I asked one architect what he thought happens to the waste generated. He laughed with a glint in his eyes and said, “I think it disappears into pixie dust!”

One simple early decision that dramatically reduces waste is designing with material sizes in mind. If you have a ceiling height that does not match the plasterboard sheet, you end up with a tiny little strip that has to be cut out of a full sheet. In the case of bricks, not matching the ceiling height is even more wasteful.

Obviously not all materials will work together at their standard sizes (and you need to fit your renovation to the existing house). But sensitive design can make intelligent trade-offs, reducing overall waste.

When I asked architects why they don’t design zero-waste buildings more often, they said clients don’t ask for it. Make it part of your brief, and ask the architect how they can save money by using the materials efficiently.

2. Get your builder involved early

If you’re using an architect for your renovation, it’s common to have very little collaboration between them and the builder. Any errors or issues are usually spotted after construction has begun, requiring expensive and wasteful rework.

Instead, ask your architect and builder to collaborate on a waste management plan. Such integrated approaches have worked well in Australia and the United States.

This means clients, engineers and builders are collaborating, rather than taking adversarial roles. For such contracts to work, it’s important to involve all parties early in the project, and to encourage cooperation.

The briefing stage is an opportunity for architects, quantity surveyors and builders to work together to identify a waste minimisation target.

3. Whatever you do, don’t change your mind

One the biggest contributions to waste on sites is late design changes. Client-led design changes are identified in all literature as having far-reaching implications on waste.

These are mostly due to owners changing their mind once something is built. Reworking any part of a building due to design changes can account for as much as 50% of the cost overrun, as well as causing delays and generating waste.

The early work with your design and construction team outlined in the first steps gives you the chance to make sure you’re committed to your original design. Skimping in the planning stage can end up costing you far more in the long run.

4. Deconstruction, not demolition

Ask your builder not to demolish the building, but to deconstruct it. Deconstruction means taking a building apart and recovering materials for recycling and reuse. This provides opportunities for sorting materials on site.

Salvaged materials can be resold to the community or reused in the renovations. It greatly reduces the tip fees which are usually higher for mixed waste (typical from demolition process) and lower for sorted waste.

Of course this takes more time and has an additional cost. Therefore you do have to balance the cost of deconstruction against the savings.

Denmark, which recycles 86% of its construction waste, has made it mandatory for all government buildings to undergo selective demolition and sorting of construction waste. A good place to start in Australia is your state environment department, which may have guidelines on what is involved.

5. Choose materials carefully

Good-quality materials last longer, reducing maintenance later. Choosing manufacturers that use minimal packaging also reduces waste (be careful here to check the difference between “minimal” and “inadequate” packaging, as the latter can mean your material breaks).

Reusing materials from your renovation may also be an option (you will need to discuss this with architect and builder at the beginning of the project). Finally, using materials with recycled content is a great option, and boosts our recycling industry.




Read more:
The return of the breeze block


In March 2017 the Housing Industry Association released data suggesting the Australian residential building industry will increasingly become more dependent on renovation work rather than new construction,

If you’re renovating your home, making efficiency and low waste a priority helps cut costs and reduce landfill.The Conversation

Deepika Mathur, Researcher in sustainable architecture, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

$60 million to save the Great Barrier Reef is a drop in the ocean, but we have to try


David Suggett, University of Technology Sydney

The Great Barrier Reef has never faced such a dire future. Amid increasingly doom-laden headlines, the federal government this week unveiled a recovery package aimed at securing the reef’s prospects. The question is whether this is indeed a rescue, or just a smokescreen of false hope.

The A$60 million package will be split between various projects:

  • A$36.6 million will be spent on reducing the runoff of land-based agricultural fertilisers and pesticides onto the reef

  • A$10.4 million will go towards an “all-out assault” on the coral-eating crown-of-thorns starfish

  • A$4.9 million will fund improved monitoring and early warning of issues such as mass bleaching

  • A$6 million will be spent on a new national Reef Restoration and Adaptation program.

But what return can we expect for this A$60 million investment, which is only 0.1% of the A$56 billion estimated economic value of the Great Barrier Reef?

Value for money

At face value, splitting the funding across several priority areas seems logical. Many local stressors, from pollution to overfishing, affect the Great Barrier Reef in different ways and in different places, so tackling them locally seems like a nice direct way to intervene.

But here’s the problem: these stressors interact and amplify each others’ effects. This means that spreading the money so thinly is a risky move, because successfully tackling any one problem rests on successfully tackling all the others.

Crown-of-thorns starfish is a great example. Even if we can remove or destroy them in sufficient numbers to make a difference, their populations will simply bounce back unless we also reduce the agricultural pollution that feeds their larvae. Alongside this, we need to ensure that their natural predators such as the giant triton mollusc also thrive.

Local impacts on the Great Barrier Reef are also amplified by global climate factors, such as the warming and increased ocean acidity caused by rising atmospheric carbon dioxide levels.

Focusing purely on local issues risks diverting attention from this wider problem. The unprecedented back-to-back mass bleaching that catastrophically damaged the Great Barrier Reef in 2016 and 2017 was a direct result of global climate change.

Preventing this from accelerating further requires global and collective
action on greenhouse gas emission reductions. As custodian of the Great Barrier Reef, as well as a major coal exporter and a signatory to the Paris Climate Agreement, Australia has a responsibility to lead from the front to find alternatives to fossil fuels.

For this reason, the new funding package has unsurprisingly been criticised for not attempting to “cure” the ultimate problem that ails the Great Barrier Reef. Local interventions such as the ones being funded are often called out for being band-aid solutions. But the reality is that we need band-aids more than ever – although perhaps “tourniquets” would be more apt.

Cutting emissions and curbing climate change must remain our absolute priority.
However, even relatively optimistic emissions reduction scenarios will leave us
with warmer and acidic reefs for the coming decades. This means we will have to think well outside the box if we are to ensure that the Barrier Reef stays great. We cannot deny treatment while we attempt to find the cure.




Read more:
The Great Barrier Reef can repair itself, with a little help from science


The problem is that most current local reef interventions are considered too risky or too expensive, and are therefore dismissed without trying them. But unless we try alternatives, and are prepared to learn by trial and error, how can we find the solutions that work? What the government’s new package ultimately therefore provides is the incentive to innovate.

In this sense it follows parallel calls from the Queensland government to find new ways to boost coral abundance. As such, the federal funding may only be successful if we ensure that the proposed investment focuses on tackling the priority areas in new ways, rather than simply scaling up the current efforts.

As the stress builds on the Great Barrier Reef, one thing is certain: its future will depend on maximising its resilience. This necessarily calls for a range of efforts, focusing on biology, ecosystems, and changing human behaviour – not just defaulting to a single solution. Intensifying efforts to harness corals that are already adapted to extreme conditions will likely be crucial.

The ConversationAnd of course, all of this will count for nothing unless we also take parallel action to tackle the underlying problem: climate change.

David Suggett, Associate Professor in Marine Biology, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Low-energy homes don’t just save money, they improve lives


File 20170717 6046 1bm1rcr
Eco-houses at Scotland’s Housing Expo, Inverness. What is it like to live in a house like this?
via Wikipedia, CC BY-SA

Stephen Berry, University of South Australia; David Michael Whaley, University of South Australia, and Trivess Moore, RMIT University

Household energy use is a significant contributor to global carbon emissions. International policy is firmly moving towards technology-rich, low- and near-zero-energy homes. That is, buildings designed to reduce the need for additional heating, cooling and lighting. They use efficient or renewable energy technology to reduce the remaining energy use.

But what about the experiences of people who live in homes of this standard? Are these homes comfortable, easy to operate, and affordable? Do people feel confident using so-called smart energy technology designed for low energy use? What support systems do we need to help people live in low-energy, low-carbon houses?

We worked with other Australian and UK researchers to understand what it’s like to live in purpose-built low-energy housing. As part of this project, researchers from Sheffield Hallam University and the University of Salford in the UK visited South Australia to collect data from Lochiel Park Green Village, one of the world’s most valuable living laboratories of near-zero energy homes.

Lochiel Park’s 103 homes were built in the mid-2000s to achieve a minimum of 7.5 energy efficiency stars. They’re purpose-built to be a comfortable temperature year-round, and are packed with a solar photovoltaic system, solar hot water, a live feedback display to show households their energy use, plus a range of water- and energy-efficient appliances and equipment. Combined, these systems reduce both annual and peak energy demand, and supply much of that energy at a net zero-carbon impact.

To reciprocate, we spent several weeks investigating similar examples of niche low-energy housing developments in the Midlands and the North of England. We listened to the stories of people living in low energy homes, who experience the difference on a daily basis, and from season to season. They help us look beyond the dollars saved or percentage of emissions reduced; for them the impact of low-energy homes is personal.

This research provides new insights into the relationship between people, energy technologies and low-carbon buildings. For example, one elderly householder told us that moving into a dry and warm low-energy home allowed their grandchildren to come and stay, completely changing their life, and the life of their family.

Low-energy homes create a wide range of physical and mental changes. Several households spoke about health improvements from higher indoor air quality. Even the idea of living in a healthier and more environmentally sustainable home can prompt lifestyle changes – one woman in her mid-50s told us she gave up smoking after moving into her low-energy house because she felt her behaviour should match the building’s environmental design. She also shortened the length of her showers, reduced her food wastage, and lowered her transport use by visiting the supermarket less often.

Purpose-built low-energy homes also give economic empowerment to low-income households. One household told us that savings on energy bills let them afford annual family holidays, even overseas. This economic benefit matches our findings in other Australian examples.

As researchers, we might dismiss this as a macro-economic rebound effect, voiding many of the energy and environmental benefits. But to that household the result was a closer and stronger family unit, able to make the types of choices available to others in their community. The benefits in mental and physical wellbeing are real, and more important to that family than net carbon emission reductions.

Although international policy is firmly moving towards technology-rich, low-energy homes, our research shows that not all technology is user-friendly or easy to understand. For example, some households were frustrated by not knowing if their solar hot water system was efficiently using free solar energy, or just relying on gas or electric boosting. Design improvements with better user feedback will be critically important if we are to meet people’s real needs.

The ConversationThis research highlights the importance, in the transition to low-energy and low-carbon homes, of not forgetting the people themselves. Improving real quality of life should be the central focus of carbon-reducing housing policies.

Stephen Berry, Research fellow, University of South Australia; David Michael Whaley, Research Fellow in Sustainable Energy and Electrical Engineering, University of South Australia, and Trivess Moore, Research Fellow, RMIT University

This article was originally published on The Conversation. Read the original article.

Protected areas are helping save our favourite animals – but let’s not forget the others


Megan Barnes, The University of Queensland

Protected areas, like national parks and wildlife refuges, are the cornerstones of global conservation efforts. So making sure they achieve their mission is fundamental to our goal of halting biodiversity declines.

Unfortunately, how well protected areas maintain their biodiversity remains poorly understood. While there is clear evidence that protected areas, such as Egmont National Park in New Zealand, can prevent deforestation, there is much less evidence of how well they protect our wildlife.

Our work, published in the journal Nature Communications, examined trends for more than 500 species of birds and mammals in protected areas in 72 countries. The good news is that most animals are doing well, more so for birds than mammals. But that’s no reason to become complacent.

Land surrounding Egmont National Park has been cleared to its edges.
NASA/USGS

Winners and losers

On the whole, birds are doing better than mammals, and species in Europe better than those in Africa. Species doing well include hippopotamus, northern hairy-nose wombats and waterfowl across Europe such as flamingoes in the Camargue region of France.

Those declining in protected areas include bushbuck in Selous National Park and other antelope like kob. Common birds such as common teal and European skylark are not immune, nor are a number of shorebirds globally. Tonkin snub-nosed monkeys are declining in Na Hang National Park in Vietnam, Tucuman parrots in Argentina, and the delightful mallee emu-wren declined to precipitously low levels in Ngarkat National Park, before being wiped out in South Australia in a single fire.

South Australia’s mallee emu-wrens were completely wiped out by recent bushfires.
Dean Ingwersen, Author provided

As a result of this monitoring data, many of the declining populations we studied have now been targeted for management – for instance, wetland birds across Europe. Others, like shorebirds, are faced with an intimidating cocktail of hard-to-manage international threats.

A few surprises

Unexpectedly, we also found the biggest animals were doing the best. Species like giraffes and zebras have more positive populations than smaller species like jackals.

This is surprising since larger animals tend to be slow to grow, mature and reproduce. As a result they are often slow to recover from population suppression.

Large animals often act as flagships for particular ecosystems. For instance, orang-utans are a flagship for Indonesia’s rainforests. The implication of our research is that focusing on these species is not enough to make sure all species will survive.

While more than half of protected areas we studied are getting better, there remain many protected areas where declines are still occurring worldwide. Despite this, conditions that deliver success for wildlife in protected areas are poorly understood. So, we investigated which parks were doing best and why.

The Camargue’s greater flamingos are doing well.
Megan Barnes

Making better reserves

Wildlife in protected areas is going better in wealthier, more developed countries (Europe) compared to developing countries (like in West Africa). It is hard to tell, though, if the difference is due to more resources available in developed countries, or increasing threats in developing nations.

National-scale socioeconomic conditions were also far more important in influencing how well parks protect wildlife than factors such as size, design or type. This shows it’s important to tailor management to social and political conditions. Over long timescales, the design of protected areas is likely to remain important, but our results show the importance of managing parks for more immediate threats.

A pygmy hippo.
Ben Collen

Our results suggest that active management – like managing invasive predators, preventing poaching and reducing conflict between people and wildlife – helps animals with low reproductive rates and mitigates the greater threat faced by larger species of birds and mammals due to their slow reproductive rates. Parks still need to be well-managed, though, and threats can’t become too severe – as in the recent poaching crisis.

The tools to ensure good outcomes from protected areas exist — but the will and capacity to implement them must be strengthened if we expect them to act as refuges for all species forever.

This week at the World Conservation Congress, members of the International Union for the Conservation of Nature and NGOs will vote on policies to halt biodiversity declines by 2020. To date, conservationists have focused on increasing the size of the global protected area estate, but simply establishing more protected areas is not enough.

Instead, we need a radical change in commitment. To do this we need to address shortfalls in management. Ensuring both sufficient and secure finances for management and appropriate and equitable governance is just the beginning. Otherwise we’ll keep creating more parks, but wildlife will keep declining.

The Conversation

Megan Barnes, PhD Student in Conservation Science, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Could ‘nitrogen trading’ help the Great Barrier Reef?


Jim Smart, Griffith University; Adrian Volders, Griffith University; Chris Fleming, Griffith University, and Syezlin Hasan, Griffith University

Among the increasing sums of money being pledged to help save the Great Barrier Reef is a federal government pledge to spend A$40 million on improving water quality. The Queensland government has promised another A$33.5 million for the same purpose.

One of the biggest water-quality concerns is nitrogen runoff from fertiliser use. It is a concern all along the reef coast, and particularly in the sugar-cane regions of the Wet Tropics and the Burdekin. The government’s Reef 2050 Long Term Sustainability Plan calls for an 80% reduction in dissolved inorganic nitrogen flowing out onto the reef by 2025.

Our recent research suggests that “nitrogen trading” might be worth considering as a flexible economic mechanism to help farmers deliver these much-needed reductions in fertiliser use.

What is nitrogen trading?

You probably already know about carbon trading, which allows polluters to buy the right to emit greenhouse gases from those with spare carbon credits. Nitrogen trading would work in a similar way, but for fertiliser use.

A nitrogen market could offer a flexible way of encouraging farmers to use fertiliser more efficiently, as well as rewarding innovations in farming practice. It could be a useful addition to existing fertiliser-reduction schemes such as the industry-led Smart Cane Best Management Practice. These are making headway but evidently not enough.

A nitrogen market isn’t going to happen tomorrow, but it could be part of a future in which an annual limit (called a cap) is set on the total amount of nitrogen flowing out from river catchments to the reef.

One way to enforce this cap would be to set a limit on fertiliser applications per hectare. Cane farmers would have to manage the best they could with that fixed amount of nitrogen.

But nitrogen trading would offer more flexibility, while still staying under the same total nitrogen cap. Instead of a fixed limit, farmers would receive a certain number of “nitrogen permits” per hectare of cane. Then, if they wanted or needed to, they could buy or sell these permits through a centralised online “smart market”.

How would it work?

Imagine you’re a farmer with a property that sits on good soil. The amount of fertiliser you can apply to your crop must match the number of nitrogen permits you hold. But you know that, on your good land, you would get more profits if you could apply more fertiliser.

To do this you would have to buy extra permits through the nitrogen market. These extra permits would be worth buying as long as they deliver more than enough extra profit to cover the cost.

The total number of permits is limited by the cap – so buyers can only buy extra permits if other farmers are selling them. So who’s selling?

Putting fertiliser onto a field with poor soil won’t increase your profits as much, because a lot of that fertiliser will just run off before the crop can use it. On a bad paddock, nitrogen permits aren’t worth much in terms of extra crop yield, so you might make more money by just selling them to other farmers with good paddocks. That is why trading happens.

The overall effect of this trading would be to switch a significant amount of nitrogen fertiliser away from less profitable, leaky soils, and onto more profitable, less leaky land. As a result, the total nitrogen cap would be distributed more efficiently across the farming landscape.

For individual farmers, the reward for low-nitrogen farming practice is the opportunity to sell unused permits at a profit. This incentive will help to drive ongoing improvement and innovation.

Our simulations suggest that overall sugar cane profits and production would be higher with trading than they would under a fixed per-hectare nitrogen limit – with the same overall cap on the amount of nitrogen hitting the Great Barrier Reef.

Opportunity for the future?

Will it just mean more expensive regulation, green tape and hassle for farmers? Farmers are already signing up to calculate and record actual fertiliser applications paddock by paddock under the Six Easy Steps nutrient management program.

If we’re in a future where the government is monitoring and managing a fixed nitrogen cap anyway, then not much extra work is needed to set up an online trading market.

So could nitrogen trading help the Great Barrier Reef? Maybe. There’s more thinking still to be done, but nitrogen trading schemes are already operating in New Zealand and the United States.

A firm overall limit on fertiliser use seems to be essential for the reef’s survival. The incentives provided by a nitrogen market could give Queensland’s farmers the flexibility they need to thrive in this nitrogen-constrained future.

Graeme Curwen and
Michele Burford of the Australian Rivers Institute at Griffith University contributed to the research on which this article is based.

The Conversation

Jim Smart, Senior Lecturer, Griffith School of Environment, Griffith University; Adrian Volders, Adjunct Professor, Griffith University; Chris Fleming, Associate Professor, Griffith University, and Syezlin Hasan, Research Assistant, Australian Rivers Institute, Griffith University

This article was originally published on The Conversation. Read the original article.

This election is our last chance to save the Great Barrier Reef


Jon Brodie, James Cook University and Richard Pearson, James Cook University

The Great Barrier Reef has been in the spotlight thanks to severe coral bleaching since March, leaving only 7% of the reef untouched. The bleaching, driven by record-breaking sea temperatures, has been linked to human-caused climate change.

Apart from bleaching, the reef is in serious trouble thanks to a variety of threats. Many species and ecosystems of the Great Barrier Reef are in serious decline.

It is now overwhelmingly clear that we need to fix these problems to give the reef the best chance in a warming world. In fact, the upcoming election is arguably our last chance to put in place a plan that will save the reef.

In a recent paper, we estimate that we need to spend A$10 billion over the next ten years – about five times as much as current state and federal governments are spending – to fix up reef water quality before climate change impacts overwhelm it.

Stop water pollution

Poor water quality is one of the major threats to the Great Barrier Reef. Sediment and nutrients (such as nitrogen) washed by rivers onto the reef cause waters to become turbid, shutting out light for corals and seagrass. It can also encourage algal growth and outbreaks of coral-eating crown-of-thorns starfish.

The Queensland and Australian governments have made plans with targets to improve water quality, but the main plan – the Reef 2050 Long Term Sustainability Plan – is completely inadequate according to the Australian Academy of Science. Its targets are unlikely to be met. And others have suggested ways to improve water quality on the Great Barrier Reef.

To provide resilience for the Great Barrier Reef against the current and rapidly increasing climate impacts, water quality management needs to be greatly improved by 2025 to meet the targets and guidelines. 2025 is important as it’s likely that climate change effects will be overwhelming after that date. It is also the target date for the Reef 2050 Long Term Sustainability Plan.

What needs to be done

Proposed boundaries of the Greater GBR. The area inside the red line is the GBR World Heritage Area and the shaded area is the proposed Greater GBR management area, including the GBR catchment, the GBRWHA, Torres Strait and Hervey Bay
J Waterhouse, TropWATER. Data for the GBR provided by the Great Barrier Reef Marine Park Authority, Author provided

In our recent article, we analysed what we need to do to respond to the current crisis, especially for water quality.

  1. Refocus management to the “Greater Great Barrier Reef (GBR)” – that is, include management of Torres Strait, Hervey Bay and river catchments that run into the reef as priorities along with the world heritage area. This area is shown in figure above.

  2. Prioritise management for ecosystems in relatively good condition, such Torres Strait, northern Cape York and Hervey Bay which have the highest current integrity. These areas should still be prioritised despite the recent severe bleaching in the northern Great Barrier Reef.

  3. Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR.

  4. Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR. In the period 2009-16, more than A$500 million was spent on water quality management (with some success) without a robust comprehensive plan to ensure the most effective use of the funding.

  5. Use existing federal legislation (the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act) to regulate catchment activities that lead to damage to the Greater GBR, together with the relevant Queensland legislation. These rules were established long ago and are immediately available to tackle terrestrial pollutant discharge.

  6. Fund catchment and coastal management to the required level to largely solve the pollution issues for the Greater GBR by 2025, to provide resilience for the system in the face of accelerating climate change impacts. The funding required is large – of the order of A$1 billion per year over the next ten years but small by comparison to the worth of the Great Barrier Reef – estimated to be of the order of A$20 billion per year.

  7. Continue enforcement of the zoning plan.

  8. Show commitment to protecting the Greater GBR through greenhouse gas emissions control, of a scale to be relevant to protecting the reef (for example those proposed by the Climate Change Authority), by 2025.

Unless immediate action is taken to improve water quality, the onset of accelerating climate change impacts mean there is little chance the current decline in reef health can be prevented.

The Conversation

Jon Brodie, Chief Research Scientist, Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER), James Cook University and Richard Pearson, Emeritus Professor, College of Marine & Environmental Sciences, James Cook University

This article was originally published on The Conversation. Read the original article.

The best way to protect us from climate change? Save our ecosystems


Tara Martin, CSIRO and James Watson, The University of Queensland

When we think about adapting humanity to the challenges of climate change, it’s tempting to reach for technological solutions. We talk about seeding our oceans and clouds with compounds designed to trigger rain or increasing carbon uptake. We talk about building grand structures to protect our coastlines from rising sea levels and storm surges.

However, as we discuss in Nature Climate Change, our focus on these high-tech, heavily engineered solutions is blinding us to a much easier, cheaper, simpler and better solution to adaptation: look after our planet’s ecosystems, and they will look after us.

Biting the hand that feeds us

People are currently engaged in wholesale destruction of the systems that shelter us, clean our water, clean our air, feed us and protect us from extreme weather. Sometimes this destruction is carried out for the purpose of protecting us from the threats posed by climate change.

For example, in Melanesia’s low-lying islands, coral reefs are dynamited to provide the raw building materials for seawalls in an attempt to slow the impact of sea-level rise.

A seawall built using coral in Papua New Guinea
J.E.M Watson

In many parts of the world, including Africa, Canada and Australia, drought has led to the opening up of intact forest systems, protected grasslands and prairies for grazing and agriculture.

Similarly, the threat of climate change has driven the development of more drought-tolerant crops that can survive climate variability, but these survival abilities also make those plant species more likely to become invasive.

On the surface, these might seem like sensible ways to reduce the impacts of climate change. But they are actually likely to contribute to climate change and increase its impact on people.

Sea walls and drought-tolerant crops do have a place in adapting to climate change: if they’re sensitive to ecosystems. For example, if storm protection is required on low-lying islands, don’t build a seawall from the coral reef that offers the island its only current protection. Bring in the concrete and steel needed to build it.

How ecosystems protect us

Intact coral reefs act as barriers against storm surges, reducing wave energy by an average of 97%. They are also a valuable source of protein that support local livelihoods.

Similarly, mangroves and seagrass beds provide a buffer zone against storms and reduce wave energy, as well as being a nursery for many of the fish and other marine creatures that our fishing industries are built on.

Intact forests supply a host of valuable ecosystem services that are not only taken for granted, but actively squandered when those forests are decimated by land clearing.

There is now clear evidence that intact forests have a positive influence on both planetary climate and local weather regimes. Forests also provide shelter from extreme weather events, and are home to a host of other valuable ecosystems that are important to human populations as sources of food, medicine and timber.

Forests play a key role in capturing, storing and sequestering carbon from the atmosphere, a role that will likely become increasingly important in avoiding the worst of climate change. Yet we continue to decimate forests, woodlands and grasslands.

Northern Australia is home to the largest savannah on earth, containing enormous carbon stores and influencing both local and global climate. Despite its inherent value as a carbon store, there has been discussion around whether these northern regions might be opened up to become Australia’s new food bowl, putting those extensive carbon stories in jeopardy.

Cheaper than techno-solutions

In Vietnam, 12,000 hectares of mangroves have been planted at a cost of US$1.1 million, but saving the US$7.3 million per year that would have been spent on maintaining dykes.

Planting mangroves in the Philippines to restore forests.
Trees ForTheFuture/Flickr, CC BY

In Louisiana, the destruction of Hurricane Katrina in 2005 led to an examination of how coastal salt marshes might have reduced some of the wave energy in the hurricane-associated storm surges.

Data have now confirmed that salt marshes would have significantly reduced the impact of those surges, and stabilised the shoreline against further insult, at far less cost than engineered coastal defences. With this data in hand, discussions are now beginning around how to restore the Louisiana salt marshes to insulate against future extreme weather events.

US foreign aid in Papua New Guinea has also encouraged the restoration and protection of mangroves for the same reason.

Instead of turning cattle to graze on native grasslands and savannah during times of drought, farmers struggling to sustain livestock in marginal areas could instead be funded to farm carbon and biodiversity by restoring or preserving these ecosystems. This might involve reducing the number of cattle, or in some cases even removing cattle entirely. Australia is very well-informed about the carbon value of its many and varied ecosystems, but is yet to fully put that knowledge into practice.

The cost of adapting to climate change using largely technological solutions has been put at a staggering US$70-100 billion per year. This is small change compared to current global energy subsidies estimated by the International Monetary Fund for 2015 at US$5.3 trillion per year.

Protecting ecosystems reduces the risk to people and infrastructure, as well as the degree of climate change: a win-win.

There is no doubt that technological solutions have a role to play in climate adaptation but not at the expense of intact functioning ecosystems. It is time to set a policy agenda that actively rewards those countries, industries and entrepreneurs who develop ecosystem-sensitive adaptation strategies.

The Conversation

Tara Martin, Principal Research Scientist, CSIRO and James Watson, Associate professor, The University of Queensland

This article was originally published on The Conversation. Read the original article.