Why Antarctica’s sea ice cover is so low (and no, it’s not just about climate change)



File 20190115 180513 i5mp2g.jpg?ixlib=rb 1.1
Sea ice responds to changes in winds and ocean currents, sometimes with origins thousands of kilometres away.
NASA/Nathan Kurtz

Julie Arblaster, Monash University; Gerald A Meehl, National Center for Atmospheric Research , and Guomin Wang, Australian Bureau of Meteorology

Sea ice cover in Antarctica shrank rapidly to a record low in late 2016 and has remained well below average. But what’s behind this dramatic melting and low ice cover since?

Our two articles published earlier this month suggest that a combination of natural variability in the atmosphere and ocean were to blame, though human-induced climate change may also play a role.




Read more:
Record high to record low: what on earth is happening to Antarctica’s sea ice?


What happened to Antarctic sea ice in 2016?

Antarctic sea ice is frozen seawater, usually less than a few metres thick. It differs from ice shelves, which are formed by glaciers, float in the sea, and are up to a kilometre thick.

Sea ice cover in Antarctica is crucial to the global climate and marine ecosystems and satellites have been monitoring it since the late 1970s. In contrast to the Arctic, sea ice around Antarctica had been slowly expanding (see figure below).




Read more:
Expanding sea ice is causing headaches for Antarctic stations


However, in late 2016 Antarctic sea ice dramatically and rapidly melted reaching a record low. This piqued the interest of climate scientists because such large, unexpected and rapid changes are rare. Sea ice coverage is still well below average now.

We wanted to know what caused this unprecedented decline of Antarctic sea ice and what changes in the system have sustained those declines. We also wanted to know if this was a temporary shift or the beginning of a longer-term decline, as predicted by climate models. Finally, we wanted to know whether human-induced climate change contributed to these record lows.

Hunting for clues

Sea ice cover around Antarctica varies a lot from one year or decade to the next. In fact, Antarctic sea ice cover had reached a record high as recently as 2014.

Antarctic and Arctic sea ice cover (shown as the net anomaly from the 1981–2010 average) for January 1979 to May 2018. Thin lines are monthly averages and indicate the variability at shorter time-scales. Thick lines are 11-month running averages.
Bureau of Meteorology, Author provided

That provided a clue. As year-to-year and decade-to-decade sea ice cover varies so much, this can mask longer-term melting of sea ice due to anthropogenic warming.

The next clue was in records broken far away from Antarctica. In the spring of 2016 sea surface temperatures and rainfall in the tropical eastern Indian Ocean were at record highs. This was in association with a strongly negative Indian Ocean Dipole (IOD) event, which brought warmer waters to the northwest of Australia.

While IOD events influence rainfall in south-eastern Australia, we found (using both statistical analysis and climate model experiments) that it promoted a pattern in the winds over the Southern Ocean that was particularly conducive to decreasing sea ice.

These surface winds blowing from the north not only pushed the sea ice back towards the Antarctic continent, they were also warmer, helping to melt the sea ice.

These northerly winds almost perfectly matched the main regions where sea ice declined.

Atmospheric circulation and sea ice concentration during September to October 2016. The top figure shows the Sep–Oct wind anomaly (vectors, scale in upper right, m/s) in the lower part of the atmosphere; red shading shows warmer, northerly airflow, and blue shading represents southerly flow. The bottom figure shows sea ice extent: green represents more sea ice than average, and purple shows regions of a reduction in sea ice (Figure 2a of Wang, et al 2019.
Author provided

Though previous studies had linked this wind pattern to the sea ice decline, our studies are the first to argue for the dominant role of the tropical eastern Indian Ocean in driving it.

But this wasn’t the only factor.

Later in 2016 the typical westerly winds that surround Antarctica weakened to record lows. This caused the ocean surface to warm up, promoting less sea ice cover.

The weaker winds started at the top of the atmosphere over Antarctica, in the region known as the stratospheric polar vortex. We think this sequential occurrence of tropical and then stratospheric influences contributed to the record declines in 2016.

Taken together, the evidence we present supports the idea that the rapid Antarctic sea ice decline in late 2016 was largely due to natural climate variability.

The current state of Antarctic sea ice

Since then, sea ice has remained mostly well below average in association with warmer upper ocean temperatures around Antarctica.

We argue these are the product of stronger than normal westerly winds in the previous 15 or so years around Antarctica, driven again from the tropics. These stronger westerlies induced a response in the ocean, with warmer subsurface water moving towards the surface over time.

The combination of record tropical sea surface temperatures and weakened westerly winds in 2016 warmed the entire upper 600m of water in most regions of the Southern Ocean around Antarctica. These warmer ocean temperatures have maintained the reduced extent of sea ice.




Read more:
A 20-year plan welcomed for Australia in the Antarctic


Antarctic sea ice extent is seeing a record low start to the New Year. It suggests the initial rapid decline seen in late 2016 was not an isolated event and, when combined with the decadal-timescale warming of the upper Southern Ocean, could mean reduced sea ice extent for some time.

We argue what we are seeing so far can be understood in terms of natural variability superimposed on a long-term human-induced warming signal.

This is because the rainfall and ocean temperature records seen in the tropical eastern Indian Ocean that led to the initial sea ice decline in 2016 likely have some climate change contribution.

This warming and the recovery of the Antarctic ozone hole may also impact the surface wind patterns over coming decades.

Such changes could be driving climate change effects that are starting to emerge in the Antarctic region. However the limited data record and large variability indicate it’s still too early to tell.


We would like to acknowledge the role of our co-authors S Abhik, Cecilia M Bitz, Christine TY Chung, Alice DuVivier, Harry H Hendon, Marika M Holland, Eun-Pa Lim, LuAnne Thompson, Peter van Rensch and Dongxia Yang in contributing to the research discussed in this article.The Conversation

Julie Arblaster, Associate Professor, Monash University; Gerald A Meehl, Senior scientist, National Center for Atmospheric Research , and Guomin Wang, Research scientist, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Ocean waves and lack of sea ice can trigger Antarctic ice shelves to disintegrate


Luke Bennetts, University of Adelaide; Rob Massom, and Vernon Squire

Large waves after the loss of sea ice can trigger Antarctic ice shelf disintegration over a period of just days, according to our new research.

With other research also published today in Nature showing that the rate of annual ice loss from the vulnerable Antarctic Peninsula has quadrupled since 1992, our study of catastrophic ice shelf collapses during that time shows how the lack of a protective buffer of sea ice can leave ice shelves, already weakened by climate warming, wide open to attack by waves.




Read more:
Antarctica has lost 3 trillion tonnes of ice in 25 years. Time is running out for the frozen continent


Antarctica is covered by an ice sheet that is several kilometres thick in places. It covers an area of 14 million square kilometres – roughly twice the size of Australia. This ice sheet holds more than 90% of the world’s ice, which is enough to raise global mean sea level by 57 metres.

As snow falls and compacts on the ice sheet, the sheet thickens and flows out towards the coast, and then onto the ocean surface. The resulting “ice shelves” (and glacier tongues) buttress three-quarters of the Antarctic coastline. Ice shelves act as a crucial braking system for fast-flowing glaciers on the land, and thus moderate the ice sheet’s contribution to sea-level rise.

In the southern summer of 2002, scientists monitoring the Antarctic Peninsula (the northernmost part of mainland Antarctica) by satellite witnessed a dramatic ice shelf disintegration that was stunning in its abruptness and scale. In just 35 days, 3,250 square km of the Larsen B Ice Shelf (twice the size of Queensland’s Fraser Island) shattered, releasing an estimated 720 billion tonnes of icebergs into the Weddell Sea.

This wasn’t the first such recorded event. In January 1995, roughly 1,500 square km of the nearby Larsen A Ice Shelf suddenly disintegrated after several decades of warming and years of gradual retreat. To the southwest, the Wilkins Ice Shelf suffered a series of strikingly similar disintegration events in 1998, 2008 and 2009 — not only in summer but also in two of the Southern Hemisphere’s coldest months, May and July.

These sudden, large-scale fracturing events removed features that had been stable for centuries – up to 11,500 years in the case of Larsen B. While ice shelf disintegrations don’t directly raise sea level (because the ice shelves are already floating), the removal of shelf ice allows the glaciers behind them to accelerate their discharge of land-based ice into the ocean – and this does raise sea levels. Previous research has shown that the removal of Larsen B caused its tributary glaciers to flow eight times faster in the year following its disintegration.




Read more:
Cold and calculating: what the two different types of ice do to sea levels


The ocean around ice shelves is typically covered by a very different (but equally important) type of ice, called sea ice. This is formed from frozen seawater and is generally no more than a few metres thick. But it stretches far out into the ocean, doubling the area of the Antarctic ice cap when at its maximum extent in winter, and varying in extent throughout the year.

The response of Antarctic sea ice to climate change and variability is complex, and differs between regions. Around the Antarctic Peninsula, in the Bellingshausen and northwestern Weddell seas, it has clearly declined in extent and annual duration since satellite monitoring began in 1979, at a similar rate to the Arctic’s rapidly receding sea ice.

The Southern Ocean is also host to the largest waves on the planet, and these waves are becoming more extreme. Our new study focuses on “long-period” swell waves (with swells that last up to about 20 seconds). These are generated by distant storms and carry huge amounts of energy across the oceans, and can potentially flex the vulnerable outer margins of ice shelves.

The earliest whalers and polar pioneers knew that sea ice can damp these waves — Sir Ernest Shackleton reported it in his iconic book South!. Sea ice thus acts as a “buffer” that protects the Antarctic coastline, and its ice shelves, from destructive ocean swells.

Strikingly, all five of the sudden major ice shelf disintegrations listed above happened during periods when sea ice was abnormally low or even absent in these regions. This means that intense swell waves crashed directly onto the vulnerable ice shelf fronts.

The straw that broke the camel’s back

The Antarctic Peninsula has experienced particularly strong climate warming (roughly 0.5℃ per decade since the late 1940s), which has caused intense surface melting on its ice shelves and exacerbated their structural weaknesses such as fractures. These destabilising processes are the underlying drivers of ice shelf collapse. But they do not explain why the observed disintegrations were so abrupt.

Our new study suggests that the trigger mechanism was swell waves flexing and working weaknesses at the shelf fronts in the absence of sea ice, to the point where they calved away the shelf fronts in the form of long, thin “sliver-bergs”. The removal of these “keystone blocks” in turn led to the catastrophic breakup of the ice shelf interior, which was weakened by years of melt.

Our research thus underlines the complex and interdependent nature of the various types of Antarctic ice – particularly the important role of sea ice in forming a protective “buffer” for shelf ice. While much of the focus so far has been on the possibility of ice shelves melting from below as the sea beneath them warms, our research suggests an important role for sea ice and ocean swells too.

The edge of an ice shelf off the Antarctic Peninsula, with floating sea ice beyond (to the left in this image).
NASA/Maria Jose Vinas

In July 2017 an immense iceberg broke away from the Larsen C Ice Shelf, just south of Larsen B, prompting fears that it could disintegrate like its neighbours.

Our research suggests that four key factors will determine whether it does: extensive flooding and fracturing across the ice shelf; reduced sea ice coverage offshore; extensive fracturing of the ice shelf front; and calving of sliver-bergs.




Read more:
Don’t worry about the huge Antarctic iceberg – worry about the glaciers behind it


If temperatures continue to rise around the Antarctic, ice shelves will become weaker and sea ice less extensive, which would imply an increased likelihood of future disintegrations.

However, the picture is not that clear-cut, as not all remaining ice shelves are likely to respond in the same way to sea ice loss and swell wave impacts. Their response will also depend on their glaciological characteristics, physical setting, and the degree and nature of surface flooding. Some ice shelves may well be capable of surviving prolonged absences of sea ice.

The ConversationIrrespective of these differences, we need to include sea ice and ocean waves in our models of ice sheet behaviour. This will be a key step towards better forecasting the fate of Antarctica’s remaining ice shelves, and how much our seas will rise in response to projected climate change over coming decades. In parallel, our new findings underline the need to better understand and model the mechanisms responsible for recent sea ice trends around Antarctica, to enable prediction of likely future change in the exposure of ice shelves to ocean swells.

Luke Bennetts, Lecturer in applied mathematics, University of Adelaide; Rob Massom, Leader, Sea Ice Group, Antarctica & the Global System program, Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, and Vernon Squire, Deputy Vice-Chancellor Academic, Professor of Applied Mathematics

This article was originally published on The Conversation. Read the original article.

Climate shenanigans at the ends of the Earth: why has sea ice gone haywire?


Nerilie Abram, Australian National University

There is no doubt that 2016 has been a record-breaking year for Earth’s climate.

We will have to wait another couple of months for the final tally, but 2016 will be the hottest year in recorded history globally. Average temperatures are well above 1℃ warmer than a century ago.

Global average temperatures, and “global warming”, often give the impression of a gradual change in Earth’s climate occurring uniformly across the planet. This is far from the truth – particularly at the ends of the Earth. The Arctic and Antarctic are behaving very differently from the global picture.

One particular polar change that has caught the attention of scientists and the media this year has been the state of sea ice. The seasonal growth and decay of sea ice over the Arctic and Southern oceans is one of the most visible changes on Earth.

But in the past few months its seasonal progression has stalled, plunging Earth’s sea ice cover off the charts to the lowest levels on record for November. Explaining what has caused this unexpectedly dramatic downturn in sea ice is a tale of two poles.

Global sea ice area (including Antarctica and the Arctic) by year, 1977-2016. National Snow and Ice Data Centre.
Wipneus/NSIDC

Arctic amplifiers

The northern polar region is an epicentre for change in our warming world.

On average, the Arctic is warming at around twice the global average rate. This is due to several environmental processes in the Arctic that amplify the warming caused by rising atmospheric greenhouse gas levels.

One of these amplifiers is the sea ice itself.

As the climate warms, it’s no surprise that ice melts. What is less obvious is that when bright, white ice melts it is replaced with a dark surface (the ocean or land). Just as a black car parked in the sun will warm up faster than a white one, so the dark surface absorbs more heat from the sun than ice. This extra heat promotes more ice loss, and so the cycle goes.

This can explain the marked long-term decline of Arctic sea ice. But it can’t explain why the past month has seen such a sudden and dramatic change. For this we need to look to the weather.

Arctic climate is characterised by very large natural swings – so much so that in the past few weeks some regions of the Arctic have been a whopping 20℃ warmer than expected for this time of year.

The polar regions are separated from milder equatorial climates by a belt of westerly winds. In the northern hemisphere these winds are commonly referred to as the jet stream.

The strength of the jet stream is related to the north-to-south (cold-to-warm) gradient in northern hemisphere climate. The amplification of warming in the Arctic has reduced this gradient, and some scientists believe that this is allowing the northern jet stream to develop a more meandering path as it travels around the globe.

Jet stream winds in the northern hemisphere, November 11 2016.
Screenshot from Global Forecast System/National Centres for Environmental Information/US National Weather Service.

A weaving jet stream allows warm air to penetrate further northwards over the Arctic (the flip side is that extremely cold polar air can also be pulled south over the northern hemisphere continents, causing extreme cold snaps). This appears to be responsible for the current extremely warm temperatures over the Arctic Ocean, which have caused the normal advance of winter sea ice to stall.

In effect, what we are seeing in the Arctic is the combined effect of long-term climate change and an extreme short-term weather event (which itself is probably becoming more common because of climate change).

The southern story

It’s a different story when we look at the ocean-dominated southern hemisphere.

Antarctic climate records point to a delay in some of the effects of “global warming”. The reasons are still debated, partly because of the much shorter climate records that scientists have to work with in the Antarctic.

But it is likely that the expansive Southern Ocean is an important climate change dampener that is able to “hide” some of the extra heat being absorbed by our planet beneath the ocean surface where we don’t feel it – yet.

Unlike the dramatic declines in Arctic sea ice over recent decades, the sea ice that surrounds Antarctica has been increasing slightly over the past three-and-a-half decades and 2014 set records for the most extensive Antarctic sea ice on record. So the decline in Antarctic sea ice since August this year to record low levels has come as somewhat of a surprise.

Again, the weather may hold part of the answer.

The westerly winds that circle the Southern Ocean (analogous to the northern hemisphere’s jet stream) have strengthened and moved closer to Antarctica over the past few decades. One of the effects of this has been to push sea ice away from the Antarctic continent, making for a more expansive coverage across the surrounding ocean.

But the westerly winds are fickle. They are able to change their path across the Southern Ocean very quickly. And so while the southward march in their average position over many years is clear, predicting their behaviour from month to month remains difficult. This spring the westerly winds have tended to sit closer to Australia and out of reach of Antarctica’s sea ice.

What Antarctica’s sea ice will do in the future is still an open question. Climate models indicate that Antarctica won’t remain protected from global warming forever, but just if and when this might cause Antarctica’s sea ice to replicate the Arctic sea ice loss is still anyone’s guess.

Lessons in the madness

Extreme years, such as 2016, are important as they provide glimpses of what the new normal of our climate system may look like in the not-too-distant future.

But these pointers to where we are going also need to be assessed in terms of where we have come from. For sea ice, logbooks from the age of heroic exploration suggest that the Antarctic system is mostly still operating within its normal bounds.

The same cannot be said for the Arctic. The decline of sea ice there has been likened to a ball bouncing down a bumpy hill – some years it will bounce higher than others, but eventually the ball will reach the bottom.

When it does, the Arctic Ocean will be ice-free in summer. That’s a boon for shipping, but don’t expect to see any polar bears on those Arctic cruises.

The Conversation

Nerilie Abram, ARC Future Fellow, Research School of Earth Sciences; Associate Investigator for the ARC Centre of Excellence for Climate System Science, Australian National University

This article was originally published on The Conversation. Read the original article.

Record high to record low: what on earth is happening to Antarctica’s sea ice?


Nerilie Abram, Australian National University; Matthew England, UNSW Australia, and Tessa Vance, University of Tasmania

2016 continues to be a momentous year for Australia’s climate, on track to be the new hottest year on record.

To our south, Antarctica has also just broken a new climate record, with record low winter sea ice. After a peak of 18.5 million square kilometres in late August, sea ice began retreating about a month ahead of schedule and has been setting daily low records through most of September.

It may not seem unusual in a warming world to hear that Antarctica’s sea ice – the ice that forms each winter as the surface layer of the ocean freezes – is reducing. But this year’s record low comes hot on the heels of record high sea ice just two years ago. Overall, Antarctica’s sea ice has been growing, not shrinking.

So how should we interpret this apparent backflip? In our paper published today in Nature Climate Change we review the latest science on Antarctica’s climate, and why it seems so confusing.

Antarctica’s sea ice has reached a record low this year.
NASA, Author provided

Antarctic surprises

First up, Antarctic climate records are seriously short.

The International Geophysical Year in 1957/58 marked the start of many sustained scientific efforts in Antarctica, including regular weather readings at research bases. These bases are mostly found on the more accessible parts of Antarctica’s coast, and so the network – while incredibly valuable – leaves vast areas of the continent and surrounding oceans without any data.

In the end, it took the arrival of satellite monitoring in the 1979 to deliver surface climate information covering all of Antarctica and the Southern Ocean. What scientists have observed since has been surprising.

Overall, Antarctica’s sea ice zone has expanded. This is most notable in the Ross Sea, and has brought increasing challenges for ship-based access to Antarctica’s coastal research stations. Even with the record low in Antarctic sea ice this year, the overall trend since 1979 is still towards sea ice expansion.

The surface ocean around Antarctica has also mostly been cooling. This cooling masks a much more ominous change deeper down in the ocean, particularly near the West Antarctic Ice Sheet and the Totten glacier in East Antarctica. In these regions, worrying rates of subsurface ocean warming have been detected up against the base of ice sheets. There are real fears that subsurface melting could destabilise ice sheets, accelerating future global sea level rise.

In the atmosphere we see that some parts of the Antarctic Peninsula and West Antarctica are experiencing rapid warming, despite average Antarctic temperatures not changing that much yet.

In a rapidly warming world these Antarctic climate trends are – at face value – counterintuitive. They also go against many of our climate model simulations, which, for example, predict that Antarctica’s sea ice should be in decline.


Jan Lieser, Author provided

Winds of change

The problem we face in Antarctica is that the climate varies hugely from year to year, as typified by the enormous swing in Antarctica sea ice over the past two years.

This means 37 years of Antarctic surface measurements are simply not enough to detect the signal of human-caused climate change. Climate models tell us we may need to monitor Antarctica closely until 2100 before we can confidently identify the expected long-term decline of Antarctica’s sea ice.

In short, Antarctica’s climate remains a puzzle, and we are currently trying to see the picture with most of the pieces still missing.

But one piece of the puzzle is clear. Across all lines of evidence a picture of dramatically changing Southern Ocean westerly winds has emerged. Rising greenhouse gases and ozone depletion are forcing the westerlies closer to Antarctica, and robbing southern parts of Australia of vital winter rain.

The changing westerlies may also help explain the seemingly unusual changes happening elsewhere in Antarctica.

The expansion of sea ice, particularly in the Ross Sea, may be due to the strengthened westerlies pushing colder Antarctic surface water northwards. And stronger westerlies may isolate Antarctica from the warmer subtropics, inhibiting continent-scale warming. These plausible explanations remain difficult to prove with the records currently available to scientists.

Australia’s unique climate position

The combination of Antarctica’s dynamic climate system, its short observational records, and its potential to cause costly heatwaves, drought and sea-level rise in Australia, mean that we can’t afford to stifle fundamental research in our own backyard.

Our efforts to better understand, measure and predict Antarctic climate were threatened this year by funding cuts to Australia’s iconic climate research facilities at the CSIRO. CSIRO has provided the backbone of Australia’s Southern Ocean measurements. As our new paper shows, the job is far from done.

A recent move to close Macquarie Island research station to year-round personnel would also have seriously impacted the continuity of weather observations in a region where our records are still far too short. Thankfully, this decision has since been reversed.

But it isn’t all bad news. In 2016, the federal government announced new long-term funding in Antarctic logistics, arresting the persistent decline in funding of Antarctic and Southern Ocean research.

The nearly A$2 billion in new investment includes a new Australian icebreaking ship to replace the ageing Aurora Australis. This will bring a greater capacity for Southern Ocean research and the capability to push further into Antarctica’s sea ice zone.

Whatever the long-term trends in sea ice hold it is certain that the large year-to-year swings of Antarctica’s climate will continue to make this a challenging but critical environment for research.

The Conversation

Nerilie Abram, Senior Research Fellow, Research School of Earth Sciences; Associate Investigator for the ARC Centre of Excellence for Climate System Science, Australian National University; Matthew England, Australian Research Council Laureate Fellow; Deputy Director of the Climate Change Research Centre (CCRC); Chief Investigator in the ARC Centre of Excellence in Climate System Science, UNSW Australia, and Tessa Vance, Palaeoclimatologist, Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Arctic Sea Ice Levels Are at the Lowest Ever Recorded


TIME

Arctic sea ice levels last winter recorded their lowest peak since satellite monitoring began in 1979, U.S. scientists said Thursday.

According to the University of Colorado’s Snow and Ice Data Center, Arctic ice levels crowned on Feb. 25 with a maximum extent of 14.54 million sq. km — 130,000 sq. km less than the previous record low set in 2011, and 1.1 million sq. km lower than the 1981-2010 recorded average.

The drop was also widespread, with below-average ice levels recorded everywhere except for the Labrador Sea between Greenland and Canada and the Davis Strait slightly further north.

The data center did say that a late season surge in ice growth is still conceivable, but unlikely to match the winter’s high-point. Meaning this year’s Feb. 25 peak date was two weeks earlier than the average. The earliest ice-level maximum was in 1996, reaching its ceiling only one day earlier on…

View original post 29 more words