Social distancing works – just ask lobsters, ants and vampire bats



Caribbean spiny lobsters normally live in groups, but healthy lobsters avoid members of their own species if they are infected with a deadly virus.
Humberto Ramirez/Getty Images

Dana Hawley, Virginia Tech and Julia Buck, University of North Carolina Wilmington

Social distancing to combat COVID-19 is profoundly impacting society, leaving many people wondering whether it will actually work. As disease ecologists, we know that nature has an answer.

Animals as diverse as monkeys, lobsters, insects and birds can detect and avoid sick members of their species. Why have so many types of animals evolved such sophisticated behaviors in response to disease? Because social distancing helps them survive.

In evolutionary terms, animals that effectively socially distance during an outbreak improve their chances of staying healthy and going on to produce more offspring, which also will socially distance when confronted with disease.

We study the diverse ways in which animals use behaviors to avoid infection, and why behaviors matter for disease spread. While animals have evolved a variety of behaviors that limit infection, the ubiquity of social distancing in group-living animals tells us that this strategy has been favored again and again in animals faced with high risk of contagious disease.

What can we learn about social distancing from other animals, and how are their actions like and unlike what humans are doing now?

Feed the sick, but protect the queen

Social insects are some of the most extreme practitioners of social distancing in nature. Many types of ants live in tight quarters with hundreds or even thousands of close relatives. Much like our day care centers, college dormitories and nursing homes, these colonies can create optimal conditions for spreading contagious diseases.

In response to this risk, ants have evolved the ability to socially distance. When a contagious disease sweeps through their society, both sick and healthy ants rapidly change their behavior in ways that slow disease transmission. Sick ants self-isolate, and healthy ants reduce their interaction with other ants when disease is present in the colony.

Healthy ants even “close rank” around the most vulnerable colony members – the queens and nurses – by keeping them isolated from the foragers that are most likely to introduce germs from outside. Overall, these measures are highly effective at limiting disease spread and keeping colony members alive.

Many other types of animals also choose exactly who to socially distance from, and conversely, when to put themselves at risk. For example, mandrills – a type of monkey – continue to care for sick family members even as they actively avoid sick individuals to whom they are not related. In an evolutionary sense, caring for a sick family member may allow an animal to pass on its genes through that family member’s offspring.

Mandrills live in large groups in the rainforests of equatorial Africa. They will often groom other group members, but actively avoid sick mandrills unless they are close family members.
Eric Kilby/Wikipedia, CC BY-SA

Further, some animals maintain essential social interactions in the face of sickness while foregoing less critical ones. For example, vampire bats continue to provide food for their sick groupmates, but avoid grooming them. This minimizes contagion risk while still preserving forms of social support that are most essential to keeping sick family members alive, such as food sharing.

These nuanced forms of social distancing minimize costs of disease while maintaining the benefits of social living. It should come as no surprise that evolution favors them in many types of animals.

Altruism makes us human

Human behavior in the presence of disease also bears the signature of evolution. This indicates that our hominid ancestors faced many of the same pressures from contagious disease that we are facing today.

Like social ants, we are protecting the most vulnerable members of our society from COVID-19 infection by ensuring that older individuals and those with pre-existing conditions stay away from potentially contagious people. Like monkeys and bats, we also practice nuanced social distancing, reducing non-essential social contacts while still providing essential care for sick family members.

A black garden ant queen (upper left), surrounded by adult ants, larvae (left), eggs (middle) and a cocoon (right).
Pan weterynarz/Wikipedia, CC BY-SA

There also are important differences. For example, in addition to caring for sick family members, humans sometimes increase their own risk by caring for unrelated individuals, such as friends and neighbors. And health care workers go further, actively seeking out and helping precisely those who many of us carefully avoid.

Altruism isn’t the only behavior that distinguishes human response to disease outbreaks. Other animals must rely on subtle cues to detect illness among group members, but we have cutting-edge technologies that make it possible to detect pathogens rapidly and then isolate and treat sick individuals. And humans can communicate health threats globally in an instant, which allows us to proactively institute behaviors that mitigate disease. That’s a huge evolutionary advantage.

Finally, thanks to virtual platforms, humans can maintain social connections without direct physical contact. This means that unlike other animals, we can practice physical rather than social distancing, which lets us preserve some of the important benefits of group living while minimizing disease risk.

Worth the disruption

The evidence from nature is clear: Social distancing is an effective tool for reducing disease spread. It is also a tool that can be implemented more rapidly and more universally than almost any other. Unlike vaccination and medication, behavioral changes don’t require development or testing.

However, social distancing can also incur significant and sometimes unsustainable costs. Some highly social animals, like banded mongooses, do not avoid group members even when they are visibly sick; the evolutionary costs of social distancing from their relatives may simply be too high. As we are currently experiencing, social distancing also imposes severe costs of many kinds in human societies, and these costs are often borne disproportionately by the most vulnerable people.

Given that social distancing can be costly, why do so many animals do it? In short, because behaviors that protect us from disease ultimately allow us to enjoy social living – a lifestyle that offers myriad benefits, but also carries risks. By implementing social distancing when it’s necessary, humans and other animals can continue to reap the diverse benefits of social living in the long term, while minimizing the costs of potentially deadly diseases when they arise.

Social distancing can be profoundly disruptive to our society, but it can also stop a disease outbreak in its tracks. Just ask ants.

[You need to understand the coronavirus pandemic, and we can help. Read The Conversation’s newsletter.]The Conversation

Dana Hawley, Professor of Biological Sciences, Virginia Tech and Julia Buck, Assistant Professor of Biology, University of North Carolina Wilmington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why bats don’t get get sick from the deadly diseases they carry


Michelle Baker, CSIRO

Bats are a natural host for more than 100 viruses, some of which are lethal to people. These include Middle Eastern Respiratory Syndrome (MERS), Ebola and Hendra virus. These viruses are among the most dangerous pathogens to humans and yet an infected bat does not get sick or show signs of disease from these viruses.

The recent Ebola outbreak in West Africa showed the devastating impact such diseases can have on human populations.

As treatments in the form of therapeutics or vaccines rarely exist for emerging diseases, future outbreaks of disease have the potential to result in similar outcomes.

Understanding disease emergence from wildlife and the mechanisms responsible for the control of pathogens in their natural hosts provides a chance to design new treatments for human disease.

The path to discovery

Until recently, bats were among the least studied groups of mammals, particularly in regard to their immune responses.

But even early studies of virus-infected bats provided clues that there may be differences in the immune responses of bats. It was observed that some bats were capable of clearing viral infection in the absence of an antibody response.

Antibodies are one of the hallmarks of the immune response and allow the host to respond more rapidly to subsequent infection when the same pathogen invades the body. The absence of a detectable antibody response within the bat was striking and drew our attention to the earliest stages of the immune response, called the innate immune system.

The recent sequencing of the first bat genome provided some of the first clues that the innate immune system may be key to the ability of bats to control viral infection. There is intriguing evidence for unique changes in innate immune genes associated with the evolution of flight, and bats are the only mammal capable of sustained flight.

Flight is energetically expensive and results in the production of oxygen radicals. In the research we speculated that bats have made changes to their DNA repair pathways to deal with the toxic oxygen radicals.

A number of innate immune genes intersect with the DNA repair pathways. These genes have also undergone changes, so it appears that the evolution of flight may have had inadvertent consequences for the immune system.

Bat super immunity

In humans and other vertebrates, infection with viruses triggers the induction of special proteins called interferon.

This is one of the first lines of defence following infection. It starts the induction of a variety of genes, known as interferon-stimulated genes. These genes play specific roles in restricting viral replication in infected and neighbouring cells.

Humans and other mammals have a large family of interferons, including multiple interferon-alpha genes and a single interferon-beta gene. People have 17 type I interferons, including 13 interferon-alpha genes.

Analysis published today of the interferon region of the Australian black flying fox reveals that bats have fewer interferon genes than any other mammal sequenced to date. They have only ten interferon genes, three of which are interferon-alpha genes.

This is surprising given that bats have this unique ability to control viral infections that are lethal in people and yet they can do this with a lower number of interferons.

Although interferons are essential for clearing infection, their expression is also tightly regulated. This is to avoid over-activation of the immune system, which can have negative consequences for the host.

The expression of interferon-alpha and interferon-beta proteins, which account for the majority of the antiviral response generated following viral infection, is normally undetectable in the absence of infection. It is rapidly induced following detection of a pathogen.

Yet we again see a difference in bats. The three interferon-alpha genes are continuously expressed in bat tissues and cells in the absence of any detectable pathogen. Bats appear to use fewer interferon-alpha genes to efficiently perform the functions of as many as 13 interferon-alpha genes in other species. And they have a system that is constantly ready to respond to infection.

Continual activation of the interferon response in other species can lead to over-activation of the immune response. This frequently contributes to the detrimental effects associated with viral infection, including tissue damage. In contrast, bats appear able to tolerate constant interferon activation and are continually primed for viral infection.

The bat approach in others

We are familiar with the important role bats play in the ecosystem as pollinators and insect controllers. They are now demonstrating their worth in potentially helping to protect people from infectious diseases.

The ability of bats to tolerate a constant level of interferon expression is poorly understood at the moment. But the identification of the unique expression pattern of interferons in bats is a first step in identifying new ways of controlling viruses in humans and other species.

If we can redirect other species’ immune responses to behave in a similar manner to that of bats, then the high death rate associated with diseases such as Ebola could be a thing of the past.


Peng Zhou was a co-author of this article. He’s a researcher in pathogen discovery and antiviral immunity, formerly employed at Duke–National University of Singapore Medical School and CSIRO.

The Conversation

Michelle Baker, Research scientist, CSIRO

This article was originally published on The Conversation. Read the original article.

Microbes: the tiny sentinels that can help us diagnose sick oceans


Katherine Dafforn, UNSW Australia; Emma Johnston, UNSW Australia; Inke Falkner, and Melanie Sun, UNSW Australia

Microbes – bacteria and other single-celled organisms – may be tiny, but they come in huge numbers and we rely on them for clean water, the air we breathe and the food we eat.

They are nature’s powerhouses but they have often been ignored. We previously lacked the capacity to appreciate truly their diversity, from micro-scales right up to entire oceans.

Recent advancements in genetic sequencing have revealed this diversity, and our research, published in Frontiers in Aquatic Microbiology this week, shows how we can use this information to understand human impacts on an unseen world – making microbes the new sentinels of the sea.

A sea of microbes

The great majority of bacteria and other microbes are extremely beneficial, performing vital roles such as recycling nutrients.

The number of bacteria on Earth is estimated at 5×10³⁰ (or 5 nonillion, if you prefer), and many of them live in the ocean. There are 5 million bacteria in every teaspoon of seawater, and more bacteria in the ocean than stars in the known universe.

Guess how many microbes?
Victor Morozov/Wikimedia Commons, FAL

There are yet more bacteria in the world’s soils and sediments, with estimates of between 100 million and 1 billion bacteria per teaspoon. These sediments are vital for recycling nitrogen, particularly in coastal sediments closest to human populations. Without bacteria and other microbes, sediments would turn into unsightly, pungent piles of waste.

Microbial services are not limited to recycling. Many microbes, including cyanobacteria, function like tiny plants by using sunlight to produce oxygen and sugars. Due to their extraordinary number in the world’s oceans, the amount of oxygen these organisms produce is equal to that of all plants on land.

Marine sentinels

Until recently, finding out just how many different types of microbes there are was relatively difficult. How do you identify and study millions of different organisms that are not visible to the naked eye?

Bacteria, for example, had to be grown in the laboratory in large colonies to be seen. But only 1-3% of bacteria can be cultured successfully.

Advances in genetics together with the development of molecular tools have allowed researchers to investigate marine bacteria in their natural environment. Microbial communities can now be grouped by the role they play in ecosystems and how these groups respond to environmental gradients.

We can use these new tools to measure ecosystem health, which is crucial to managing human impacts on our coastlines, particularly in estuaries. Early studies have found shifts in bacterial community composition to be good indicators of contaminants

Different areas of harbours, such as Sydney Harbour, have distinct bacterial communities. These patterns may be driven by circulation. The outer harbour, which is flushed with seawater on every tidal cycle, is dominated by photosynthetic cyanobacteria. The upper harbour, with less flushing and more runoff, is dominated by soil-related bacteria and those adapted to nutrient-rich environments.

In our waterways, pollutants such as metals bind to fine particles and settle as sediment. This exposes sediment-dwelling organisms to a multitude of toxic products. What effect do these toxic substances have on sediment microbes?

Recent evidence from a large survey of eight estuaries suggests that microbes are far more sensitive to contaminants than larger animals and plants. This survey also revealed that toxic substances were linked to changes in community structure and a reduction in community diversity. This is especially alarming given that a diversity of microbes is essential to nutrient recycling.

Diagnosing wounded seas

It would be great if we could use particular microbes to diagnose human impacts. For instance, certain microbes can indicate water quality.

A technique called metagenomics is revealing the true depth of microbial diversity by pooling DNA sequences from all the species in a sample. It then works backwards to construct a genetic overview of the entire community.

However, while metagenomics can give us important information about the identity of microbes in a community, it can’t tell us what they are doing or how their functions change in response to environmental stressors and human activities.

Metatranscriptomics takes the sequencing approach one step further and characterises gene expression in a microbial community, which can be linked to crucial ecosystem services such as nutrient cycling.

Similar to their use for diagnosis of ailments in humans, molecular tools are being used to diagnose human impacts on earth by observing changes in microbes across polluted and unpolluted environments. They can even detect very small amounts of toxic substances. Because of their diversity, they can potentially be used to detect a wide range of human impacts.

This allows us to identify environmental impacts early, potentially limiting greater loss in larger organisms.

With the new tools to “see” microbes and their importance, we are now perfectly poised to advance our understanding of how microbes are responding to environmental change. They are sentinels of our increasingly human-affected waterways.

The Conversation

Katherine Dafforn, Senior Research Associate in Marine Ecology, UNSW Australia; Emma Johnston, Professor of Marine Ecology and Ecotoxicology, Director Sydney Harbour Research Program, UNSW Australia; Inke Falkner, Community Outreach Coordinator for Sydney Harbour Research Program, Sydney Institute of Marine Science, and Melanie Sun, PhD Candidate – Environmental Research, UNSW Australia

This article was originally published on The Conversation. Read the original article.

Uluru: Not On


A little while back I posted about a planned trip to Uluru in the near future – sadly I have had to cancel the trip because I am concerned about my run of poor health. I have basically been sick since November last year and had pneumonia 4 times during this time. So the trip will be postponed for a year to ensure I recover fully.

Sick Again


Hi all – I have been trying to keep the Blog going in recent days despite being ill again – however, as I continue to get worse it is probably wise to have a complete break for the rest of the week and get as much sleep as I can.

I have had pneumonia 3 times since November last year (twice in November and once last month) and have come down sick again. Thought I was improving over the last couple of days but have once again developed the ‘shiver me timbers (chills and fever)’ tonight. So I plan to be away from the keyboard for the rest of the week in a bid to finally get over all of this illness. I apologise for the interruption to Blog posts in the mean time.