Social plants: in the wild, staghorn ferns grow in colonies to improve water storage for all members


Shutterstock/Florist_Yana

Kevin Burns, Te Herenga Waka — Victoria University of WellingtonSocial colonies are nothing new in the animal kingdom. We know bees, ants and termites live in large colonies, divide labour and co-operate to take care of offspring produced by a single queen.

This behaviour, known as eusociality, has evolved independently in insects, crustaceans (certain species of shrimp) and even some mammals (naked mole rats), but it has never been observed in plants. This suggested plants were somehow less complex than animals.

Our study, published this week, turns our understanding of the evolution of biological complexity on its head. It documents the life history of a remarkable species of fern that grows in the tops of rainforest trees on Lord Howe Island, a small volcanic island in the north Tasman Sea.

Rather than growing as individual ferns in the treetops, the staghorn fern (Platycerium bifurcatum) lives in colonies, in an adaptation to its harsh habitat high above the water and nutrients stored in the soil below.

Individuals differ markedly in size, shape and texture. But they always grow side-by-side within colonies, fitting together like puzzle pieces to form a bucket-like store of water and nutrients available to all colony members.

Many individuals forgo reproduction and instead focus on capturing or storing water to the benefit of other colony members.




Read more:
We found the genes that allowed plants to colonise land 500 million years ago


Life in the tree tops

Staghorn ferns belong to a group of tree-dwelling plants known as epiphytes. Tree canopies are a challenging environment for plants to grow. Without access to soil, epiphytes are regularly exposed to severe water and nutrient stress.

Epiphytes have evolved several ways to mediate the lack of access to water and nutrients. Bromeliads grow cup-shaped leaves, while orchids have specialised root tissues. But staghorn ferns have developed a colony lifestyle to overcome the problem.

Panorama taken on Lord Howe Island
On Lord Howe Island, staghorn ferns grow in colonies.
Author provided

Staghorn ferns can be bought at many garden stores and will grow like any other pot plant. But in the wild on Lord Howe Island, we discovered individual plants collaborate, specialising in different tasks in the construction of the communal water and nutrient store, often at the cost of their own reproduction — just like social insects.

This radically changes our understanding of biological complexity. It suggests major evolutionary transitions towards eusociality can occur in both plants and animals. Plants and beehives aren’t as different as they might seem.

For decades, scientists interested in eusociality argued for a strict definition — many felt the term should be reserved for only a select group of highly co-operative insects.

This perspective led to widespread scepticism about its occurrence in the natural world. Perhaps this is why it was overlooked for so long in one of horticulture’s most popular pot plants.

Evolution of biological complexity

Four billion years ago, life began as simple, self-replicating molecules. Today’s diversity arose from these simple origins towards increasingly complex organisms.

Evolutionary biologists think that biological complexity developed in abrupt, major evolutionary transitions, rather than slow and continuous changes. Such transitions occur when independent entities begin to collaborate, forming new, more complex life forms — such as, for example, when single-celled organisms evolved into multi-cellular organisms.

A microcopic image of one of the first complex multi-cellular plants, algae known as Volvox
Early in the evolution of plants, single-celled algae joined to form more complex structures.
Shutterstock/Lebendkulturen.de

Another example is the transition from unspecialised bacterial (prokaryotic) cells to cells with an enclosed nucleus and specialised organelles that perform particular functions, known as eukaryotic cells.

Co-operation underpins the evolutionary origins of organelles — they likely evolved from free-living ancestors that gave up their independence to live safely within the walls of another cell.




Read more:
The social animals that are inspiring new behaviours for robot swarms


There are eight commonly recognised major evolutionary transitions — and eusociality is the most recent. Eusocial animals differ from others in three fundamental ways:

  • they live in colonies comprised of different generations of adults
  • they subdivide labour into reproductive and non-reproductive groups
  • they care for offspring co-operatively.

Our observations over the past two years on Lord Howe Island found staghorn ferns meet these criteria.

In highly eusocial species, caste membership is permanent and unchanging. But in primitively eusocial species, individuals can alter their behaviour to suit many roles required by the colony. Staghorn ferns probably fit under the latter category.

Our ongoing research will determine the staghorn’s position along this continuum of eusociality. But, for now, we know plants and animals share a similar evolutionary pathway towards greater biological complexity.The Conversation

Kevin Burns, Professor, Te Herenga Waka — Victoria University of Wellington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Gardening improves the health of social housing residents and provides a sense of purpose



File 20180721 142411 mjf8l8.jpg?ixlib=rb 1.1
Gardens bring people together.
Elaine Casap/Unsplash

Tonia Gray, Western Sydney University; Danielle Tracey, Western Sydney University; Kumara Ward, Western Sydney University, and Son Truong, Western Sydney University

Studies indicate spending time in nature brings physical, mental and social benefits. These include stress reduction, improved mood, accelerated healing, attention restoration, productivity and heightened imagination and creativity.

Increased urbanisation has made it more difficult to connect with nature. And members of lower socioeconomic and minority ethnic groups, people over 65 and those living with disability are less likely to visit green spaces. This could be due to inaccessible facilities and safety fears.

A gardening program for disadvantaged groups, running in New South Wales since 1999, has aimed to overcome the inequity in access to green spaces. Called Community Greening, the program has reached almost 100,000 participants and established 627 community and youth-led gardens across the state.




Read more:
The science is in: gardening is good for you


Our independent evaluation explored the program’s impact on new participants and communities in social housing by tracking six new garden sites in 2017. Around 85% of participants told us the program had a positive effect on their health and 91% said it benefited their community. And 73% said they were exercising more and 61% were eating better. One participant said engaging in the program even helped them quit smoking.

These insights have advanced our understanding of how community gardening improves the mental and physical health of Australians living in social housing communities in our cities.

Our study

Trends towards urbanisation and loss of green space have sparked concerns about population health and well-being. This has led to a growing body of research on the impact of community gardens on children and adults.

The Community Greening program is supported by the Royal Botanic Garden Sydney in partnership with Housing New South Wales. Anecdotal feedback gathered by the botanic garden over the past two decades has shown gardening improves well-being and cohesion, fosters a sense of belonging, reduces stress and enhances life skills.

Community Greening provides gardens for people in social housing.

Based on this understanding, Community Greening aims to:

  • improve physical and mental health
  • reduce anti-social behaviour
  • build community cohesion
  • tackle economic disadvantage
  • promote understanding of native food plants
  • conserve the environment
  • provide skills training to enable future employment opportunities
  • share expert knowledge of the garden.

Our research investigated these outcomes in participants, and whether they changed during the course of the program. We collected data using questionnaires over seven months (before and after participation). We also conducted focus group interviews with participants and open-ended questionnaires with staff working at the community sites.




Read more:
Social housing protects against homelessness – but other benefits are less clear


Of the 23 people who completed both questionnaires before and afterwards, 14 were female and nine were male. They had an average age of 59, ranging from 29-83. Fifteen participants were born in Australia while the rest came from Fiji, Iran, Poland, New Zealand, Philippines, Chile, Afghanistan and Mauritius. One participant identified as an Aboriginal and/or Torres Strait Islander and five people (22%) reported English was not their first language.

Initially, 27% reported they had never gardened prior to the program. At the post-test questionnaire, the frequency of attendance improved for many of them. Over 40% gardened once a week and 22% every day.

Gardening benefits

Overall, we found participants felt a sense of agency, community pride and achievement. The gardening program helped encourage change and community development. Some were happy to learn a new hobby.

Community Greening participants found a lot of benefits to gardening.
Research infographic/Screenshot, Author provided

Gardening also served as an opportunity to socialise with neighbours. In previous years within some social housing communities, it was commonplace for residents to simply stay inside their units without interacting with anyone.

Many participants said they saw a marked improvement in their health and well-being. One participant remarked:

I suffer with a lot of health problems, and a lot of times I’ve been sitting at home, been depressed and not been happy about my illness, and since I’ve become more involved with the garden it helped me to not worry about my health so much like I used to and it actually improved my eating habits. It has changed my life positively. I don’t have time to feel sorry for myself anymore…

Some described the gardening experience as calming and cathartic – especially those who suffered from depression and anxiety. Some spoke of the positive aspect of having something to do each day and their feelings of achievement.

Another participant said:

Going outside gives me not only physical exercise, but it provides a certain amount of joy in that you’re seeing the benefit of your hard work coming through in healthy plants. Whether it’s vegetables or a conifer, you’re seeing it grow and you’re seeing the benefit…

Additional improvements in social health included a genuine enthusiasm for working in a team, with increased co-operation and social cohesion between staff and tenants. The housing managers and social workers work alongside tenants helping to foster trust, co-operation, social collaboration and healthy relationships.

The ConversationMore importantly, this research has provided validation that Community Greening has aligned with contemporary social-housing priorities. These include supporting health and well-being, nurturing a sense of community, enhancing safety and developing a sense of place.

Tonia Gray, Associate Professor, Centre for Educational Research, Western Sydney University; Danielle Tracey, Associate Professor, Adult and Postgraduate Education, Western Sydney University; Kumara Ward, Lecturer, Early Childhood Education, Western Sydney University, and Son Truong, Senior Lecturer, Secondary Education, Western Sydney University

This article was originally published on The Conversation. Read the original article.

Tweet streams: how social media can help keep tabs on ecosystems’ health



File 20170811 1159 km7y0f
Social media posts, such as this image uploaded to Flickr, can be repurposed for reef health monitoring.
Sarah Ackerman/Flickr/Wikimedia Commons, CC BY

Susanne Becken, Griffith University; Bela Stantic, Griffith University, and Rod Connolly, Griffith University

Social media platforms such as Twitter and Instagram could be a rich source of free information for scientists tasked with monitoring the health of coral reefs and other environmental assets, our new research suggests.

Ecosystems are under pressure all over the world, and monitoring their health is crucial. But scientific monitoring is very expensive, requiring a great deal of expertise, sophisticated instruments, and detailed analysis, often in specialised laboratories.

This expense – and the need to educate and engage the public – have helped to fuel the rise of citizen science, in which non-specialist members of the public help to make observations and compile data.

Our research suggests that the wealth of information posted on social media could be tapped in a similar way. Think of it as citizen science by people who don’t even realise they’re citizen scientists.


Read more: Feeling helpless about the Great Barrier Reef? Here’s one way you can help.


Smartphones and mobile internet connections have made it much easier for citizens to help gather scientific information. Examples of environmental monitoring apps include WilddogScan, Marine Debris Tracker, OakMapper and Journey North, which monitors the movements of Monarch butterflies.

Meanwhile, social media platforms such as Facebook, Twitter, Instagram and Flickr host vast amounts of information. While not posted explicitly for environmental monitoring, social media posts from a place like the Great Barrier Reef can contain useful information about the health (or otherwise) of the environment there.

Picture of health? You can learn a lot from holiday snaps posted online.
Paul Holloway/Wikimedia Commons, CC BY-SA

Twitter is a good resource for this type of “human sensing”, because data are freely available and the short posts are relatively easy to process. This approach could be particularly promising for popular places that are visited by many people.

In our research project, we downloaded almost 300,000 tweets posted from the Great Barrier Reef between July 1, 2016 and March 17, 2017.

After filtering for relevant keywords such as “fish”, “coral”, “turtle” or “bleach”, we cut this down to 13,344 potentially useful tweets. Some 61% of these tweets had geographic coordinates that allow spatial analysis. The heat map below shows the distribution of our tweets across the region.

Tweet heat map for the Great Barrier Reef.
Author provided

Twitter is known as place for sharing instantaneous opinions, perceptions and experiences. It is therefore reasonable to assume that if someone posts a tweet about the Great Barrier Reef from Cairns they are talking about a nearby part of the reef, so we can use the tweet’s geocoordinates as indicators of the broad geographic area to which the post is referring. Images associated with such tweets would help to verify this assumption.

Our analysis provides several interesting insights. First, keyword frequencies highlight what aspects of the Great Barrier Reef are most talked about, including activities such as diving (876 mentions of “dive” or “diving”, and 300 of “scuba”), features such as “beaches” (2,909 times), and favoured species such as “coral” (434) and “turtles” (378).

The tweets also reveal what is not talked about. For example, the word “bleach” appeared in only 94 of our sampled tweets. Furthermore, our results highlighted what aspects of the Great Barrier Reef people are most happy with, for example sailing and snorkelling, and which elements had negative connotations (such as the number of tweets expressing concern about dugong populations).

Casting the net wider

Clearly, this pool of data was large enough to undertake some interesting analysis. But generally speaking, the findings are more reflective of people’s experiences than of specific aspects of the environment’s health.

The quality of tweet information with regard to relevant incidents or changes could, however, be improved over time, for example with the help of a designated hashtag system that invites people to post their specific observations.


Read more: Survey: two-thirds of Great Barrier Reef tourists want to ‘see it before it’s gone’.


Similar alert systems and hashtags have been developed for extreme events and emergency situations, for example by the New South Wales Fire Service.

Tweets also often contain photographs – as do Instagram and Flickr posts – which can carry useful information. An image-based system, particularly in cases where photos carry time and location stamps, would help to address the lack of expertise of the person posting the image, because scientists can analyse and interpret the raw images themselves.

The Great Barrier Reef is, of course, already extensively monitored. But social media monitoring could be particularly beneficial in countries where more professional monitoring is unaffordable. Popular destinations in the Pacific or Southeast Asia, for example, could tap into social media to establish systems that simultaneously track visitors’ experiences as well as the health of the environment.

The ConversationWhile it is early days and more proof-of-concept research is needed, the technological possibilities of Big Data, machine learning and Artificial Intelligence will almost certainly make socially shared content a useful data source for a wide range of environmental monitoring in the future.

Susanne Becken, Professor of Sustainable Tourism and Director, Griffith Institute for Tourism, Griffith University; Bela Stantic, Professor, Director of Big data and smart analytics lab, Griffith University, and Rod Connolly, Professor in Marine Science, Griffith University

This article was originally published on The Conversation. Read the original article.

Rapid transition to clean energy will take massive social change


Mark Diesendorf, UNSW Australia

Global climate change, driven by human emissions of greenhouse gases, is already affecting the planet, with more heatwaves, droughts, wildfires and floods, and accelerating sea-level rise.

Devastating impacts on our environment, health, social justice, food production, coastal city infrastructure and economies cannot be avoided if we maintain a slow and steady transition to a zero-carbon society.

According to Stefan Rahmstorf, Head of Earth System Analysis at the Potsdam Institute for Climate Impact Research, we need an emergency response.

A big part of this response needs to be transforming the energy sector, the principal contributor to global warming in Australia and many other developed countries.

Many groups have put forward ideas to transition the energy sector away from carbon. But what are the key ingredients?

Technology is the easy bit

At first glance the solution appears straightforward. Most of the technologies and skills we need – renewable energy, energy efficiency, a new transmission line, railways, cycleways, urban design – are commercially available and affordable. In theory these could be scaled up rapidly.

But in practice there are several big, non-technical barriers. These include politics dominated by vested interests, culture, and institutions (organisational structures, laws, and regulations).

Vested interests include the fossil fuel industry, electricity sector, aluminium smelting, concrete, steel and motor vehicles. Governments that receive taxation revenue and political donations from vested interests are reluctant to act effectively.

To overcome this barrier, we need strong and growing pressure from the climate action movement.

There are numerous examples of nonviolent social change movements the climate movement can learn from. Examples include the Indian freedom struggle led by Gandhi; the African-American civil rights movement led by Martin Luther King Jr; the Philippine People Power Revolution; and the unsuccessful Burmese uprising of 1988-90.

Several authors, including Australian climate scientist Matthew England, point out that nations made rapid socio-economic changes during wartime and that such an approach could be relevant to rapid climate mitigation.

Learning from war

UNSW PhD candidate Laurence Delina has investigated the rapid, large, socio-economic changes made by several countries just before and during World War 2.

He found that we can learn from wartime experience in changing the labour force and finance.

However, he also pointed out the limitations of the wartime metaphor for rapid climate mitigation:

  • Governments may need extraordinary emergency powers to implement rapid mitigation, but these are unlikely to be invoked unless there is support from a large majority of the electorate.

  • While such support is almost guaranteed when a country is engaged in a defensive war, it seems unlikely for climate action in countries with powerful vested interests in greenhouse gas emissions.

  • Vested interests and genuinely concerned people will exert pressure on governments to direct their policies and resources predominantly towards adaptation measures such as sea walls, and dangerous quick fixes such as geoengineering. While adaptation must not be neglected, mitigation, especially by transforming the energy sector, should be primary.

Unfortunately it’s much easier to make war than to address the global climate crisis rapidly and effectively. Indeed many governments of “democratic” countries, including Australia, make war without parliamentary approval.

Follow the leaders!

According to Climate Action Tracker, the 158 climate pledges submitted to the United Nations by December 8 2015 would result in around 2.7℃ of warming in 2100 – and that’s provided that all governments meet their pledge.

Nevertheless, inspiring case studies from individual countries, states and cities could lead the way to a better global outcome.

Iceland, with its huge hydroelectric and geothermal resources, already has 100% renewable electricity and 87% renewable heat.

Denmark, with no hydro, is on track to achieve its target of 100% renewable electricity and heat by 2035.

Germany, with modest hydro, is heading for at least 80% renewable electricity by 2050, but is behind with its renewable heat and transport programs.

It’s easier for small regions to reach 100% renewable electricity, provided that they trade electricity with their neighbours. The north German states of Mecklenburg-Vorpommern and Schleswig-Holstein are generating more than 100% net of their electricity from renewables.

The Australian Capital Territory is on track to achieve its 100% renewable electricity target by 2020. There are also many towns and cities on programs towards the 100% goal.

If the climate action movement can build its strength and influence, it may be possible for the state of Tasmania to achieve 100% renewable energy (electricity, heat and transport) and for South Australia to reach 100% renewable electricity, both within a decade.

But the eastern mainland states, which depend heavily on coal for electricity, will need to build new renewable energy manufacturing industries and to train a labour force that includes many more highly trained engineers, electricians, systems designers, IT specialists and plumbers, among others.

Changes will be needed to the National Electricity Market rules, or at least to rewrite the National Electricity Objective to highlight renewable energy, a slow task that must obtain the agreement of federal, state and territory governments.

Australia has the advantage of huge renewable energy resources, sufficient to create a substantial export industry, but the disadvantage of a declining manufacturing sector.

There are already substantial job opportunities in renewable energy, both globally and in Australia. These can be further expanded by manufacturing components of the technologies, especially those that are expensive to ship between continents, such as large wind turbine blades, bulk insulation and big mirrors.

Transport will take longer to transform than electricity generation and heat. Electric vehicle manufacturing is in the early stage of expansion and rail transport infrastructure cannot be built overnight, especially in car-dependent cities.

For air transport and long-distance road transport, the only short-term solution is biofuels, which have environmental and resource constraints.

How long would it take?

The timescale for the transition to 100% renewable energy – electricity, heat and transport – depends on each country or region and the commitment of its governments.

Scenario studies (see also here), while valuable for exploring technological strategies for change, are not predictions. Their results depend upon assumptions about the non-technical strategies I have discussed. They cannot predict the timing of changes.

Governments need to agree on a strategy for transitioning that focuses not just on the energy sector, but includes industry, technology, labour, financial institutions, governance and the community.

Everyone should be included in developing this process, apart from dyed-in-the-wool vested interests. This process could draw upon the strengths of the former Ecologically Sustainable Development process while avoiding its shortcomings.

The task is by no means easy. What we need is a strategic plan and to implement it rapidly.

The Conversation

Mark Diesendorf, Associate Professor, Interdisciplinary Environmental Studies, UNSW, UNSW Australia

This article was originally published on The Conversation. Read the original article.

How Al Gore is using social media to try to change the conversation on climate change


Gigaom

Climate change has a serious communication problem. Will Al Gore be the one to help fix it?

These two lines of thought simultaneously ran through my head as I dialed into a phone interview last week with the former Vice President, who earlier that week had confirmed that he once tried unsuccessfully to buy Twitter and merge it with Current TV (first reported in Nick Bilton’s book). Naturally Gore and his team behind environmental social media effort The Climate Reality Project had an agenda for the interview: to tell me about their third annual 24 Hours of Reality, a live online broadcast that kicks off this Tuesday and which over a 24-hour-period will showcase the local effects of extreme weather and carbon pollution across six continents.

Gore, who’s as congenial as he is media-trained in a phone interview on the topic of climate change, launched the first…

View original post 730 more words

Estuarine Crocodiles: Crocodile Society


The link below is to an article that looks at life within the Estuarine Crocodile social system.

For more visit:
http://www.australiangeographic.com.au/journal/alpha-boss-crocs-rule-crocodile-society.htm

Site is Moving House


There are some massive changes happening at kevinswilderness.com – it will soon not even be called that. The name of the site will be called simply ‘Kevin’s Wilderness and Travels and will be hosted on WordPress.com. The domain name will probably be disposed of, by simply letting it slip off into history.

The move has come about because of the dramatic rise in hosting costs – which jumped greatly after the hosting company was sold to another. It did concern me at the time that a major price rise would be on the way. So the rise has arrived as expected and I’m now moving on. I love the WordPress.com platform, so the move won’t upset me too much at all. Being able to have ‘kevinswilderness’ in the site name has been a great bonus also, as it will mean that previous site visitors won’t find it
too difficult to remember.

WordPress.com offers the opportunity for so much more social interaction with visitors to the site – especially through comments being available on every page hosted there. Expect more photos and videos at the new site, with these to be hosted at Flickr and YouTube respectively. There should also be opportunities for chatting on site (via a widget or a link to Pip.io), forums, etc. The move is an exciting one for furthering the capability and usefulness of the site.

Work is already well under way and I am hoping that the move will provide new stimulus to improve the site, as well as add new features along the way. The social network hosted at Grou.ps will become a more important associated site and I am hoping to try and promote that more and more. I may however look at some other bushwalking/camping social networks that are out there too – perhaps they will provide a better enhancement to the site. Time will tell.

Please visit the new site and add it to your bookmarks/favourites – the old site has only a month or two to go before it ends forever.

The site is moving across to WordPress.com at the following address:

http://kevinswilderness.wordpress.com/

AUSTRALIA: THE NORTH MARINE REGION


Peter Garrett, Australia’s Minister for the Environment, Heritage and the Arts, today released a report on the biodiversity, ecosystems and social and economic uses of the oceans of northern Australia. The report entitled ‘The North Marine Bioregional Profile,’ brings together and explores the available knowledge of the Arafura and eastern Timor Seas, from the Northern Territory/Western Australia border to Torres Strait, including the Gulf of Carpentaria.

The report is expected to assist the government to better understand and protect our marine environment, conserve biodiversity and determine the priorities in our marine conservation efforts. It will also assist industry to better plan and manage their activities in the region.

A Marine Bioregional Plan for the region covered in the report is expected to be handed down in 2010. In total there will be five plans covering Australia’s marine regions.

View The North Marine Bioregional Profile at:
http://www.environment.gov.au/coasts/mbp/north/index.html