There’s a looming waste crisis from Australia’s solar energy boom



Rooftop solar has boomed, but soalr panels only last about 20 years. What happens to the waste?
Flickr, CC BY-SA

Rodney Stewart, Griffith University; Hengky Salim, Griffith University, and Oz Sahin, Griffith University

As Australians seek to control rising energy costs and tackle the damaging impacts of climate change, rooftop solar has boomed.

To manage the variability of rooftop solar – broadly, the “no power at night” problem – we will also see a rapid increase in battery storage.

The question is: what will happen to these panels and batteries once they reach the end of their life?

If not addressed, ageing solar panels and batteries will create a mountain of hazardous waste for Australia over the coming decades.

Our research, published recently in the Journal of Cleaner Production, looked at the barriers to managing solar panel waste, and how to improve it.

A potentially toxic problem

Solar panels generally last about 20 years. And lead-acid and lithium-ion batteries, which will be the most common battery storage for solar, last between five and 15 years. Many solar panels have already been retired, but battery waste will start to emerge more significantly in 2025. By 2050 the projected amount of waste from retired solar panels in Australia is over 1,500 kilotonnes (kT).

Mass of end of life solar panels (a) and battery energy storage (b) 2020-2050.
Salim et al. 2019

Solar panels and batteries contain valuable materials such as metals, glass, ruthenium, indium, tellurium, lead and lithium.

Recycling this waste will prevent environmental and human health problems, and save valuable resources for future use.

Product stewardship

Australia has a Product Stewardship Act, which aims to establish a system of shared responsibility for those who make, sell and use a product to ensure that product does not end up harming the environment or people at the end of its life.

In 2016, solar photovoltaic (PV) systems were added to a priority list to be considered for a scheme design. This includes an assessment of voluntary, co-regulatory and regulatory pathways to manage the waste streams.

Sustainability Victoria (on behalf of the Victorian state government and with the support of states and territories) is leading a national investigation into a system of shared responsibility for end-of-life solar photovoltaic systems in Australia. Our research project has supported the assessment process.

Industries play a crucial role in the success of any product stewardship scheme. As we move into assessing and testing possible schemes, Australia’s PV sector (and other stakeholders) will have critical input.

A preferred product scope and stewardship approach will be presented to environment ministers. Scheme design and implementation activities are tentatively set to start in 2020.

Moving towards a circular economy

Federal and state environment ministers recently agreed to update the National Waste Policy to incorporate the principles of a circular economy.

This approach aims to reduce the need for virgin raw materials, extend product life, maintain material quality at the highest level, prioritise reuse, and use renewable energy throughout the process.




Read more:
Explainer: what is the circular economy?


Businesses in Australia currently have little incentive to innovate and improve the recycling rate. By helping implement circular business models such as lease, refurbishment and product-service systems, we can boost recycling, reduce collection costs and prolong tech lifetimes.

Requiring system manufacturers, importers or distributors to source solar panels and batteries designed for the environment makes both economic and environmental sense. By doing so, recyclers will recover more materials and achieve higher recirculation of recovered resources.

Consumers need to be provided with proper guidance and education for responsible end-of-life management of solar panels and batteries.

Immature domestic recycling capability

Now that China is no longer accepting waste for recycling, Australia needs to rapidly develop its domestic recycling industry. This will also spur job creation and contribute to the green economy.

Given Australia is struggling to recycle simple waste, such as cardboard and plastics, in a cost-effective way, we need to question our capability to deal with more complex solar PV and battery waste.

Australia currently has little capacity to recycle both solar panels and batteries.

And even if China were to suddenly start accepting Australia’s waste – an unlikely proposition – we cannot simply export our problem. As a signatory to the Basel Convention, exporting hazardous materials requires permits.

A previous study suggests half of Australia’s scrap metal is exported for overseas processing, which indicates the lack of incentives for domestic recycling.

Even if we build domestic recycling capability for solar panels and batteries, it will be underused while landfills remain available as a low-cost disposal option.

It’s promising that South Australia and the ACT have banned certain e-waste categories from entering landfill, while Victoria will implement an all-encompassing e-waste landfill ban from July 1 2019. This means any end-of-life electrical or electronic device that requires an electromagnetic current to operate must be recycled.

Creating a circular economy for solar and battery waste will need a strong commitment from policymakers and industry. Ideally, we need to prioritise reuse and refurbishment before recycling.

If we combine sensible policies with proactive business strategy and education to promote recycling rates, we can have a reliable and truly sustainable source of renewable energy in this country.


The authors would like to acknowledge the contribution of Michael Dudley from Sustainability Victoria to this article.The Conversation

Rodney Stewart, Professor, Griffith School of Engineering, Griffith University; Hengky Salim, PhD Candidate, Griffith University, and Oz Sahin, Senior Research Fellow, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Are solar panels a middle-class purchase? This survey says yes


File 20180606 137288 19a5k4i.jpg?ixlib=rb 1.1
The latest research suggests that in Australia, rooftop solar photovoltaics are more likely to be adopted by middle-class households.
Author provided

Adam McHugh, Murdoch University

The rate of growth in residential rooftop solar photovoltaics (PV) in Australia since 2008 has been nothing short of breathtaking.

Our new research suggests that the households most likely to join in the solar spree are those that are affluent enough to afford the upfront investment, but not so wealthy that they don’t worry about their future power bills.

Australia now has the highest penetration of residential rooftop PV of any country in the world, with the technology having been installed on one in five freestanding or semi-detached homes. In the market-leading states of Queensland and South Australia this ratio is about one in three, and Western Australia is not far behind, with one in four having PV.

The explosion in rooftop PV uptake since 2008.
Derived from Clean Energy Regulator data. Click image to enlarge.

While PV panels give households more control over their electricity bills, and each new installation helps reduce greenhouse gas emissions, the market’s rapid expansion has posed significant challenges for the management of the electricity system as a whole.




Read more:
The electricity network is changing fast, here’s where we’re heading


Unlike other industries where goods can be warehoused or stockpiled to manage fluctuations in supply and demand, electricity is not yet readily storable. Storage options such as batteries are now commercially available, but haven’t yet reached widespread use. This means that a system operator is required to keep the grid balanced in real time, ideally with just the right amount of capacity and backup to manage shocks in supply or demand.

Securing the right amount of generation capacity for the electricity grid relies on long-term planning, informed by accurate supply and demand forecasts. Too much investment means excessive prices or assets lying idle (or both). Too little means longer, deeper or more frequent blackouts.

But as solar panels spread rapidly through the suburbs, the job of forecasting supply and demand is getting much harder.

This is because the commercial history of residential rooftop PV has been too short, and the pace of change too fast, for a clear uptake trend to be established. Previous attempts to predict the market’s continuing growth have thus entailed a lot of guesswork.

Why do people buy solar panels?

One way to improve our understanding is to talk to consumers directly about their purchasing intentions and decisions. The trick is to find out what prompts householders to take that final step from considering investing in solar panels, to actually buying them.

This was the approach we took with our research, published today in the international journal, Renewable and Sustainable Energy Reviews. We analysed data from a survey of more than 8,000 Queensland households in 2014 and 2015, part of a survey series commissioned by an industry group now known as Energy Queensland.

Comparison of motivational factors between surveyed PV intenders and adopters.
Bondio, Shahnazari & McHugh (2018). Click image to enlarge.

We found that the decision to go solar was driven largely by housholds’ concerns over rising electricity bills and the influence that economic life events have over perceptions of affordability.

But the households that tended to adopt PV were also those that were affluent enough not to be put off by the relatively large upfront cost.

This combination of having access to funds, while at the same time being concerned about future electricity prices, appears to be a broadly middle-class trait.

While the upfront cost of PV can deter lower-income households, this can be overcome by receiving an offer that is too good to refuse, or if concerns about ongoing electricity bills are acute – particularly in the case of retirees.

Electricity price uncertainty is a particular concern for retirees, who typically have a lower income. We found that retirees were more likely than non-retirees to invest in solar panels, all else being equal. Retirees, like many people who invest in solar power, seem to view buying solar panels as being like entering into a long-term contract for electricity supply, in that it provides price certainty over the life of the PV system.

We also found that while the idea of self-sufficiency was important for developing an intention to buy solar panels, this motivation later fell away among households that went ahead and bought them. This could be because householders who buy solar panels, but find themselves still relying significantly on the grid, may conclude that self-sufficiency isn’t achievable after all.

About one-third of those who said they intended to buy solar panels cited environmental concerns as a reason for their interest. Yet this factor did not significantly increase the odds of them going on to adopt the technology. This suggests that when it comes to the crunch, household finances are often the crucial determining factor.




Read more:
WA bathes in sunshine but the poorest households lack solar panels – that needs to change


We also found the chances of adopting solar panels were highest for homes with three or four bedrooms. Smaller homes may face practical limitations regarding roof space, whereas homes with five bedrooms or more are likely to be more valuable, suggesting that these householders may sit above a wealth threshold beyond which they are unconcerned about electricity bills.

But perhaps our most important finding is that analysis of household survey data can be useful to forecasters. Knowing who is adopting rooftop PV – and why – should enable better predictions to be made about the technology’s continuing expansion, including the crucial question of when the market might reach its saturation point.


The ConversationThe research paper can be downloaded here for free until August 1, 2018.

Adam McHugh, Honorary Research Associate, Murdoch University

This article was originally published on The Conversation. Read the original article.