Mercury pollution from decades past may have been re-released by Tasmania’s bushfires



File 20190405 114905 1kz1fq7.jpg?ixlib=rb 1.1
Tasmania’s fires may have released mercury previously absorbed by trees.
AAP Image

Larissa Schneider, Australian National University; Kathryn Allen, University of Melbourne, and Simon Haberle, Australian National University

Tasmania’s bushfires may have resulted in the release of significant amounts of mercury from burnt trees into the atmosphere. Our research shows that industrial mercury pollution from decades past has been locked up in west Tasmanian trees.

Mercury occurs naturally in Earth’s crust. Over the past 200 years, industrial activities have mobilised mercury from the crust and released it into the atmosphere. As a consequence, atmospheric mercury concentrations are now three to four times higher than in the pre-industrialisation era.

Mining is the largest source of the global atmospheric mercury, accounting for 37% of mercury emissions. When Europeans first arrived in Australia, there was, of course, no Environmental Protection Act in place to limit emissions from industrial activities. In western Tasmania, where mining has occurred for more than a century, this meant mercury was being released without control into the local atmosphere until changes in technology, market conditions, and later, regulation, conspired to reduce emissions.




Read more:
Australia emits mercury at double the global average


Because mercury is also very persistent in the environment, past mining activity has generated a reservoir of mercury that could be released to the atmosphere under certain conditions. This is a concern because even small amounts of mercury may be toxic and may cause serious health problems. In particular, mercury can threaten the normal development of a child in utero and early in its life.

Tree rings can reveal past mercury contamination

How much mercury has been released into the Australian environment and when has remained largely unknown. However, in a new study we show how mercury levels in Tasmania have dramatically changed over the past 150 years due to mining practices. Long-lived Huon pine, endemic to western Tasmania, is one of the most efficient bioaccumulators of mercury in the world. This makes it a good proxy for tracking mercury emissions in western Tasmania. If concentrations of mercury in the atmosphere are high in a given year, this can be detected in the annual ring of Huon pine for that year.

Mercury pollution from past mining practices in western Tasmania has left a lasting environmental legacy. The sampled trees contained a significant reservoir of mercury that was taken up during the peak mining period in Queenstown. Changes in mercury concentrations in the annual rings of Huon pine are closely aligned with changes in mining practices in the region.

Increased concentrations coincide with the commencement of pyritic copper smelting in Queenstown in 1896. They peak between 1910 and 1920 when smelting was at its height. In 1922, concentrations begin to decline in parallel with the introduction of a new method to separate and concentrate ores. This method required only one small furnace instead of 11 large ones. In 1934, a new dust-collection apparatus was installed in the smelter’s chimney, coinciding with the further decrease in mercury concentrations in nearby Huon pine.

Temporal tree rings of Huon pine, revealing historical mercury pollution.
Author provided

Toxic elements or compounds taken up by vegetation can also be released back into the local environment. Bushfires that burn trees that have accumulated mercury may release this mercury as vapour, dust or fine ash, potentially exposing people and wildlife to the adverse effects of mercury. It is estimated that bushfires release 210,000kg of mercury into the global atmosphere each year. As these fires become more frequent and ferocious in Australia, mercury concentrations in the atmosphere are likely to increase. Mercury released by bushfires can persist in the atmosphere for a year, allowing for long-distance transportation depending on wind strength and direction. This means that mining activity from over a century ago may have regional implications in the near future. The Tasmanian fires in December-February burned almost 200,000 hectares, including areas around Queenstown.

It is not currently possible to know how much mercury has been released by these recent fires. Our results simply highlight the potential risk and the need to better understand the amount of mercury taken up by vegetation that may one day be released back to the atmosphere via bushfires.

Re-release of historical mercury emissions by bushfires.
Author provided



Read more:
Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


Although there is no simple way to remove bio-accumulated mercury from trees, the history of mercury contamination recorded in tree rings provides important lessons. Decreased uptake of mercury after upgrades to the Queenstown copper smelter operations demonstrates the positive impact that good management decisions can have on the amount of mercury released into the environment.

To control mercury emissions globally, the United Nations Environment Programme (UNEP) has developed the Minamata Convention on Mercury. Its primary goal is to protect human health and the environment from the negative effects of mercury. Australia has signed the convention and but has yet to ratify it. Once ratified, Australia would be required to record sources of mercury and quantify emissions, including those from bushfires.

But to do this, the government must first be able to identify environmental reservoirs of mercury. Our study, the first of its kind in the Southern Hemisphere, shows that the long-lived Huon pine can be used to for this purpose. Further work to determine what other tree species record atmospheric emissions of mercury and other toxic elements in other regions of Australia is required.The Conversation

Larissa Schneider, DECRA fellow, Australian National University; Kathryn Allen, Academic, Ecosystem and Forest Sciences, University of Melbourne, and Simon Haberle, Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Could Tassie devils help control feral cats on the mainland? Fossils say yes



File 20190222 195876 1pvj44l.jpg?ixlib=rb 1.1
The Tasmanian devil once thrived on mainland Australia.
Shutterstock/mastersky

Michael Westaway, Griffith University and Gilbert Price, The University of Queensland

The Tasmanian devil – despite its name – once roamed the mainland of Australia. Returning the devil to the mainland may not only help its threatened status but could help control invasive predators such as feral cats and foxes.

The idea of returning devils to the mainland has been raised before.




Read more:
Tasmanian devils reared in captivity show they can thrive in the wild


But now we’ve explored the idea from a palaeontological view. We looked at the fossil record of mainland devils, in a paper published online and in print soon in the journal Biological Conservation.

A well preserved devil mandible (lower jaw) recovered from excavations west of Townsville.
Gilbert Price, Author provided

The fossil record helps us better understand how the devils co-existed on mainland Australia with other wildlife. It also helps us see how these iconic animals may possibly interact with small and medium-sized animals if reintroduced to the mainland in the future.

Back in the wild

Ecologists have reintroduced several apex predators to environments where they were once driven to localised extinction. This has helped restore past ecosystems by providing a clearer ecological balance.

One of the best-known examples is the reintroduction of wolves to Yellowstone National Park in the United States, to check the overgrazing and destruction of habitat by elk.

By reintroducing Tasmanian devils into mainland Australia, can we possibly help restore ecological systems that support devils along with small to medium-sized native mammals?

Native and exotic predators

Tasmanian devils and thylacines (Tasmanian tigers) were displaced across the mainland of Australia sometime after the dingo was introduced from southeast Asia at least 3,500 years ago.

But these iconic Australian predators were still able to survive in Tasmania. The island was created 10,000 years ago by rising sea levels, well before the arrival of dingoes on mainland Australia.

Dingoes have now been eradicated across much of mainland Australia, particularly within the seclusion zone of the dingo fence in the southeast of the continent. The 5,400km fence stretches eastwards across South Australia into New South Wales and to southeast Queensland.

Exotic predators such as foxes and cats now thrive across many parts of Australia, and have devastating impacts on small to medium-sized Australian mammals.

But until recently they have not been able to gain a foothold in Tasmania. Many ecologists believe the presence of the devil has prevented these other animals making their destructive mark on the ecology of Tasmania.

Sadly the situation is changing as a result of the deadly devil facial tumour disease, an infectious cancer that has destroyed many populations of Tasmanian devils. Estimates range up to 90% of some population groups now wiped out.

As a result, feral cats are now moving into former devil habitats and hunting native species on Tasmania.

A fossil window to the past

So what does the fossil record tell us about the past life of the Tasmanian devil in mainland Australia?

The Willandra Lakes World Heritage Area, in southeast Australia, provides an extraordinary archaeological and palaeoecological record of Ice Age Australia.

Recovery of fossils and devil coprolites from eroding bettong burrows at the Willandra Lakes World Heritage Area.
Michael Westaway, Author provided

In the past, skeletal remains buried within the landscape were commonly fossilised. Evidence of small animals that dug burrows (such as burrowing bettongs) and the predators that pursued them in their burrows, are exceptionally well preserved.

Our excavations reveal how devils and other small-to-medium sized mammals and reptiles interacted over more than 20,000 years in this area. Even during the peak arid phase, known as the Last Glacial Maximum, it seems that devils and their prey successfully co-existed.

The fossil record (10,000 to 4,000 years ago): This shows the fauna reference condition prior to the arrival of the dingo. (1 Western Quoll, 2 Tasmanian Devil, 3 Thylacine, 4 Bilby, 5 Western Barred Bandicoot, 6 Southern Brown Bandicoot, 7 Burrowing Bettong, 8 Brush Tailed Bettong, 9 Wombat, 10 Nail-Tailed Wallaby, 11 Hare Wallaby, 12 Western and Eastern Grey Kangaroo, 13 Red Kangaroo, 14 Crest Tailed Mulgara, 15 Greater Stick Nest Rat, 16 Hopping Mouse, 17 Fox, 18 Cat, 19 Rabbit)
Toot Toot Design, Author provided
The contemporary record: This shows today’s situation in the Willandra Lakes World Heritage Area. Light grey animals represent those animals that are now locally extinct.
Toot Toot Design, Author provided

The fossil record shows that the range of habitats occupied by devils in the past was far more diverse than today, with populations being found across environments from the central arid core to the northern tropics.

This suggests that devils today should, theoretically, be able to reoccupy a similarly extensive range of habitats.

Former devil range across Australia as revealed by the known fossil record.
Toot Toot Design, Author provided

Better the devil you know

Some ecologists suggest dingoes should be reintroduced into Australian habitats in order to reduce the impact of cats and foxes on native mammals.

One problem is that dingoes also prey on livestock. This is the reason the dingo fence was constructed during the 1880s.

But devils are not active predators of cattle and sheep. So reintroducing a predator that has a much longer evolutionary history with other native mammals in this country would likely receive far less opposition from pastoralists.




Read more:
Deadly disease can ‘hide’ from a Tasmanian devil’s immune system


A reintroduction of devils back to the mainland may be a new approach to consider for controlling the relentless, destructive march of exotic predators and restore crucial elements of Australia’s biodiversity.

It still needs to be demonstrated that devils can suppress the activities of cats and foxes on the mainland, as they seem to have done in Tasmania. Experiments with devils in a range of different settings would help to establish this.

A new research approach involving palaeontologists, conservation biologists and policy makers may help us understand how we can restore biodiversity function in Australia.The Conversation

Michael Westaway, Senior Research Fellow, Australian Research Centre for Human Evolution, Griffith University and Gilbert Price, Lecturer in Palaeontology, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


Nick Earl, University of Melbourne; Peter Love, University of Tasmania; Rebecca Harris, University of Tasmania, and Tomas Remenyi, University of Tasmania

Every year Tasmania is hit by thousands of lightning strikes, which harmlessly hit wet ground. But a huge swathe of the state is now burning as a result of “dry lightning” strikes.

Dry lightning occurs when a storm forms from high temperatures or along a weather front (as usual) but, unlike normal thunderstorms, the rain evaporates before it reaches the ground, so lightning strikes dry vegetation and sparks bushfires.

Dangerous, large fires occur when dry lightning strikes in very dry environments that are full of fuel ready to burn. Cold fronts in Tasmania, which often carry fire-extinguishing rain, have recently been dry, making these fires worse. The fronts draw in strong hot, dry northerly winds, fanning the flames.




Read more:
Fires in Tasmania’s ancient forests are a warning for all of us


Research has found that as climate change creates a drier Tasmania landscape, dry lightning – and therefore these kinds of fires – are likely to increase.

History and detection in Tasmania

Lightning has always started fires across Tasmania. Fire scars and other paleo evidence across Tasmania show large fires are a natural process in some places. However, frequent large, intense fires were rare. Now such fires are being fought almost every year.

Contrary to anecdotal belief, our recent preliminary work suggests that lightning activity has not increased over recent decades. So why do fires started by lightning appear to be increasing?

As temperatures rise, evaporation rates are increasing, but current rainfall rates are about the same. In combination this means the Tasmanian landscape is drying. The landscape is more often primed, waiting for an ignition source such as a dry-lightning strike. In such conditions, it only takes one.

When dry lighting strikes

Lightning struck just such a landscape in late December 2018, starting the Gell River bushfire in southwest Tasmania. This uncontrollable fire burnt about 20,000 hectares in the first half of January and is still burning. These large fires deplete the state’s resources, fatigue our volunteer and professional fire fighters and can have disastrous effects on natural systems.

With no significant rain falling over Tasmania since mid-December, the island is breaking dry spell records and thousands of dry lightning events have occurred. On January 15 alone over 2,000 lightning strikes sparked more than 60 bushfires.

Most of these were controlled rapidly, a credit to Tasmania’s emergency responders. One of the worst-hit areas was the Tasmanian Wilderness World Heritage Area, where many bushfires continue to burn in inaccessible locations.

This is putting some of Tasmania’s most pristine and valuable places in danger of being lost. The state stands to lose its most remarkable old-growth forests, like Mount Anne, which is home to some of the world’s largest King Billy Pines, a species endemic to Tasmania.

Increasing dry area

Ongoing climate change is making dry spells longer and more frequent, increasing the fire-prone area of Tasmania. Almost the whole state is becoming vulnerable to dry lightning.

Some regions of the west coast of Tasmania used to have very little to no risk of bushfires as they were always damp. However, this is no longer the case, resulting in species coming under threat.

Unlike most of Australia’s vegetation, many of Tasmania’s alpine and subalpine species evolved in the absence of fire and therefore do not recover after being burnt. Endemic species like Pencil Pine, Huon Pine and Deciduous Beech may be wiped out by one fire.

So what does the future hold? Using data from Climate Futures for Tasmania, we can peek into the future. Our models indicate that climate change is highly likely to result in profound changes to the fire climate of Tasmania, especially in the west.

Climate change already playing a role

With a warming climate, the rain-producing low-pressure systems are moving south and many storms that used to hit Tasmania are drifting south, leaving the island drier. This, combined with increasing evaporation rates, result in rapid drying of some areas. Areas that historically rarely experienced fire will become increasingly prone to burn. The drying trend is projected to be particularly profound throughout western Tasmania.

By the end of the century, summer conditions are projected to last eight weeks longer. This drying means that lightning events (and therefore dry lightning) will become an ever-increasing threat and the impact of these events will become more significant.

Higher levels of dryness will mean when bushfires occur the potential for these to burn into the rainforest, peat soils and alpine areas will be significantly increased.




Read more:
How far away was that lightning?


These changes are already happening and will get progressively worse throughout the 21st century. Climate change is no longer a threat of the future: we are experiencing it now.The Conversation

Nick Earl, Postdoctoral associate, School of Earth Sciences, University of Melbourne; Peter Love, Atmospheric Physicist, University of Tasmania; Rebecca Harris, Climate Research Fellow, University of Tasmania, and Tomas Remenyi, Climate Research Fellow, Climate Futures Group, Antarctic Climate and Ecosystems CRC, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Exploring Australia’s ‘other reefs’ south of Tasmania



File 20181217 27779 1tg4cyr.jpg?ixlib=rb 1.1
Solenosmilia coral reef with unidentified solitary yellow corals.
CSIRO

Nic Bax, CSIRO and Alan Williams, CSIRO

Off southern Tasmania, at depths between 700 and 1,500 metres, more than 100 undersea mountains provide rocky pedestals for deep-sea coral reefs.

Unlike shallow tropical corals, deep-sea corals live in a cold environment without sunlight or symbiotic algae. They feed on tiny organisms filtered from passing currents, and protect an assortment of other animals in their intricate structures.

Deep-sea corals are fragile and slow-growing, and vulnerable to human activities such as fishing, mining and climate-related changes in ocean temperatures and acidity.

This week we returned from a month-long research voyage on CSIRO vessel Investigator, part of Australia’s Marine National Facility. We criss-crossed many seamounts in and near the Huon and Tasman Fracture marine parks, which are home to both pristine and previously fished coral reefs. These two parks are part of a larger network of Australian Marine Parks that surround Australia’s coastline and protect our offshore marine environment.

The RV Investigator criss-crossed the Huon and Tasman Fracture marine parks.
CSIRO

The data we collected will answer our two key research questions: what grows where in these environments, and are corals regrowing after more than 20 years of protection?




Read more:
Explainer: the RV Investigator’s role in marine science


Our eyes on the seafloor

Conducting research in rugged, remote deep-sea environments is expensive and technically challenging. It’s been a test of patience and ingenuity for the 40 ecologists, technicians and marine park managers on board, and the crew who provide electronics, computing and mechanical support.

But now, after four weeks of working around-the-clock shifts, we’re back in the port of Hobart. We have completed 147 transects covering more 200 kilometres in length and amassed more than 60,000 stereo images and some 300 hours of video for analysis.

The deep tow camera system weighs 350 kilos and has four cameras, four lights and a control unit encased in high-strength aluminium housings.
CSIRO

A deep-tow camera system designed and built by CSIRO was our eye on the seafloor. This 350 kilogram system has four cameras, four lights and a control unit encased in high-strength aluminium housings.

An operations planner plots “flight-paths” down the seamounts, adding a one-kilometre run up for the vessel skipper to land the camera on each peak. The skipper navigates swell, wind and current to ensure a steady course for each one-hour transect.

An armoured fibre optic tow cable relays high-quality, real-time video back to the ship. This enables the camera “pilot” in the operations room to manoeuvre the camera system using a small joystick, and keep the view in focus, a mere two metres off the seafloor.

This is an often challenging job, as obstacles like large boulders or sheer rock walls loom out of the darkness with little warning. The greatest rapid ascent, a near-vertical cliff 45m in height, resulted in highly elevated blood pressure and one broken camera light!

Reaching into their world

Live imagery from the camera system was compelling. As well as the main reef-building stony coral Solenosmilia variabilis, we saw hundreds of other animals including feathery solitary soft corals, tulip-shaped glass sponges and crinoids. Their colours ranged from delicate creams and pinks to striking purples, bright yellows and golds.

To understand the make-up of coral communities glimpsed by our cameras, we also used a small net to sample the seafloor animals for identification. For several of the museum taxonomists onboard, this was their first contact with coral and mollusc species they had known, and even named, only from preserved specimens.

A deepwater hippolytid shrimp with large hooked claw, which it uses to clean coral and get food.
CSIRO

We found a raft of undescribed species, as expected in such remote environments. In many cases this is likely to be the only time these species are ever collected. We also found animals living among the corals, hinting at their complex interdependencies. This included brittlestars curled around corals, polychaete worms tunnelling inside corals, and corals growing on shells.

We used an oceanographic profiler to sample the chemical properties of the water to 2,000m. Although further analysis is required, our aim here is to see whether long-term climate change is impacting the living conditions at these depths.

A curious feature of one of the southern seamounts is that it hosts the world’s only known aggregation of deep-water eels. We have sampled these eels twice before and were keen to learn more about this rare phenomenon.

Using an electric big-game fishing rig we landed two egg-laden female eels from a depth of 1,100 metres: a possible first for the record books.

Dave Logan of Parks Australia with an eel landed from more than a kilometre under the sea.
Fraser Johnston/CSIRO

In a side-project, a team of observers recorded 42 seabird species and eight whale and dolphin species. They have one more set of data towards completing the first circum-Australia survey of marine birds and mammals.

More coral pedestals than we realise

An important finding was that living S. variabilis reefs extended between the seamounts on raised ridges down to about 1,450m. This means there is more of this important coral matrix in the Huon and Tasman Fracture marine parks than we previously realised.

In areas that were revisited to assess the regrowth of corals after two decades of protection from fishing, we saw no evidence that the coral communities are recovering. But there were signs that some individual species of corals, featherstars and urchins have re-established a foothold.




Read more:
Sludge, snags, and surreal animals: life aboard a voyage to study the abyss


In coming months we will work through a sub-sample of our deep-sea image library to identify the number and type of organisms in certain areas. This will give us a clear, quantitative picture of where and at what depth different species and communities live in these marine parks, and a foundation for predicting their likely occurrence both in Australia and around the world.


The seamount corals survey involved 10 organisations: CSIRO, the National Environmental Science Program Marine Biodiversity Hub, Australian Museum, Museums Victoria, Tasmanian Museum and Art Gallery, NIWA (NZ), three Australian universities and Parks Australia.The Conversation

Nic Bax, Director, NERP Marine Biodiversity Hub, CSIRO and Alan Williams, Researcher, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tassie devils’ decline has left a feast of carrion for feral cats



File 20181127 76737 frgu15.jpg?ixlib=rb 1.1
Healthy Tasmanian devil populations have cornered the market on carrion.
Menna Elizabeth Jones, Author provided

Calum Cunningham, University of Tasmania; Christopher Johnson, University of Tasmania; Menna Elizabeth Jones, University of Tasmania, and Tracey Hollings, University of Melbourne

The decline of Tasmanian devils is having an unusual knock-on effect: animal carcasses would once have been gobbled up in short order by devils are now taking many days longer to disappear.

We made the discovery, published today in the journal Proceedings of the Royal Society B, by placing carcasses in a range of locations and watching what happened. We found that reduced scavenging by devils results in extra food for less efficient scavengers, such as feral cats.

Tasmanian devils have struggled for two decades against a typically fatal transmissible cancer, called devil facial tumour disease. The disease has caused devil populations to plummet by about 80% on average, and by up to 95% in some areas.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Scavengers are carnivores that feed on dead animals (carrion). Almost all carnivores scavenge to a greater or lesser degree, but the devil is Tasmania’s dominant scavenger. Since the extinction of the Tasmanian tiger, it is also the island’s top predator.

A scavenging experiment

In our study, we put out carcasses of the Tasmanian pademelon (a small wallaby weighing roughly 5kg) in a variety of places, ranging from disease-free areas with large devil populations, to long-diseased areas where devil numbers are very low. We then used motion-sensor cameras to record all scavenger species that fed on the carcasses.

The Carnivores of Tasmania: a Scavenging Experiment.

Unsurprisingly, much less carrion was consumed by devils in areas where devil populations have declined. This has increased the availability of carrion for other species, such as the invasive feral cat, spotted-tailed quoll, and forest raven. All of these species significantly increased their scavenging in places with fewer devils.

Consumption of experimentally placed carcasses.
Proceedings of the Royal Society B

The responses of native scavengers (quolls and ravens) were subtly different to those of feral cats. The amount of feeding by quolls and ravens depended simply on how much of each carcass had already been consumed by devils. Ravens and quolls are smaller and less efficient than devils at consuming carcasses, so they get the chance to feed only when devils have not already monopolised a carcass.




Read more:
Tasmanian devils reared in captivity show they can thrive in the wild


In contrast, feral cats tended to scavenge only at sites where devils were at very low abundance. This suggests that healthy devil populations create a “landscape of fear” that causes cats to avoid carcasses altogether in areas where they are likely to encounter a devil. It seems that the life of a feral cat is now less scary in the absence of devils.

Predator prevalence

By looking at 20 years of bird surveys from BirdLife Australia, we also found that the odds of encountering a raven in Tasmania have more than doubled from 1998 to 2017. However, we were unable to directly link this with devil declines. It is likely the raven population is growing in response to a range of factors that includes land-use change and agricultural intensification, as well as reduced competition with devils.

Other studies have shown that cats have also become more abundant in areas where devils have declined. This highlights the potential for devils to act as a natural biological control on cats. Cats are a major threat to small native animals and are implicated in most Australian mammal extinctions.

Carcass concerns

Although smaller scavengers consumed more carrion as devils declined, they were unable to consume them as rapidly as devils. This has resulted in the accumulation of carcasses that would previously have been quickly and completely eaten by devils.

In places with plenty of devils, carcasses were completely eaten within an average of five days, compared with 13 days in places where devil facial tumour disease is rife. That means carcasses last much longer where devils are rare.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Around 2 million medium-sized animals are killed by vehicles or culled in Tasmania each year, and most are simply left to decompose where they fall. With devils consuming much less carrion, it is likely that carcasses are accumulating across Tasmania. It is unclear how much of a disease risk they pose to wildlife and livestock.

Conserving carnivores

Large carnivores are declining throughout the world, with knock-on effects such as increasing abundance of smaller predators. In recent years, some large carnivores have begun returning to their former ranges, bringing hope that their lost ecological roles may be restored.

Carnivores are declining for many reasons, but an underlying cause is that humans do not necessarily appreciate their pivotal role in the health of entire ecosystems. One way to change this is to recognise the beneficial services they provide.




Read more:
Tasmanian devils are evolving rapidly to fight their deadly cancer


Our research highlights one of these benefits. It supports arguments that we should help the devil population recover, not just for their own sake but for other species too, including those threatened by feral cats.

The devil seems to be solving the disease problem itself, rapidly evolving resistance to facial tumours. Any management plan will need to help this process, and not hinder it. Potentially, returning devils to mainland Australia could provide similar benefit to wildlife threatened by feral predators.The Conversation

Calum Cunningham, PhD candidate, University of Tasmania, University of Tasmania; Christopher Johnson, Professor of Wildlife Conservation and ARC Australian Professorial Fellow, University of Tasmania; Menna Elizabeth Jones, Associate professor, University of Tasmania, and Tracey Hollings, Senior Scientist, Ecological Modelling at Arthur Rylah Institute for Environmental Research, and Honorary Research Fellow, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Unconformity festival embraces the power and peculiarity of Tasmania’s wild west



File 20181101 78447 cnxw89.jpg?ixlib=rb 1.1
Tasdance’s Junjeiri Ballun – Gurul Gaureima, part of The Unconformity festival, performed Indigenous history in Queenstown’s Queen River.
The Unconformity festival

Asher Warren, University of Tasmania

Of the many festivals dotted across the island state of Tasmania, The Unconformity is particularly well named. It is an inherently unique event, responsive to the particularities of the western town of Queenstown’s unique geology, ecology and culture.

Queenstown is nestled in Tasmania’s mountainous West Coast Range, between Mt Owen and Mt Lyell, with an infamous reputation for inclement weather. And it is remote: at least three hours of winding drive from both Hobart and Launceston.

On a sunny day, the views are spectacular; some for their natural beauty, others for the demonstrable effects of over a century of mining, smelting and clearing. However, after three days of immersion in the town and the festival, I began to feel that Queenstown was somehow better evoked by the moments when the clouds hung low, only to occasionally break open, revealing unexpected and surprising views.

A central ethos of The Unconformity is the curatorial commitment to site-specific and locally engaged work. Many of the works are unique to the location and the people of Queenstown, and developed by artists through multiple visits to the town.
Note must be made of the exceptional diversity of gallery-based works, including Lucy Bleach’s enigmatic Variations on an Energetic Field and the overwhelming scale of Raymond Arnold’s survey, 100 Etchings/35 Years in Tasmania. But I was particularly struck by the use of performance within this festival, as a model for engaging with the place that is “Queenie”.

Queenstown’s bare hills were denuded by over a century of mining.
Shutterstock

The power of listening

The pedestrian bridge over the town’s Queen River became a makeshift stall for audiences wearing headphones for Tasdance’s Junjeiri Ballun – Gurul Gaureima (Shallow Water, Deep Stories). Using the banks and the river itself, the bodies of five dancers explored the Indigenous history of the area and this waterway, which mine tailings and effluent once turned silvery grey and which remains, despite the remedial work to date, stained a remarkable shade of orange.

Tasdance’s Junjeiri Ballun – Gurul Gaureima.
The Unconformity festival

Across the bridge, Prospect brought Dylan Sherridan’s deft and thoughtful engagement with sound together with Sam Routledge’s knack for engaging dramaturgical structures. Using hacked metal detectors, and again wearing headphones, prospectors walked through Passion Park, searching for sonic treasures. The dynamic score was a delight, and the uneven experience for participants (some struck it richer than others) an interesting counterpoint to the otherwise even distributions created by works for headphones.

Another work experienced with headphones, A Score to Scratch the Surface (Opening Scene) by momo doto (Tom Blake and Dominique Chen), offers a markedly different take on the roaming soundscape.

Beginning in the dress circle of the 1933 Paragon Theatre, looking out at the projection screen, we hear an assemblage of recordings taken in and around Queenstown. Curious sonic artefacts are woven with brief snippets of conversations with locals, which slip in and out. The audience of three is ushered out of the theatre, into a car, and driven on a meandering tour of the town by a local resident. These stories, like the sites on this particular tour, don’t cry out for attention, forcing the ear and the eye to search for details. It’s a subtle and meditative work, which engages deftly with diverse reflections on the value of Queenstown’s natural resources.

As artist Tom Blake explained to me, the work was built slowly, over a number of visits to the town: “We were fortunate to have a development period that provided an opportunity to visit and revisit places and people over an extended period. We wanted to avoid being a flash in the pan – dropping by to make a work, then disappearing into the night.”

A Score to Scratch the Surface gestures toward the surprising paradoxes of Queenstown. It’s a place of riches, of devastation and resilience. With the mines closed since a tragic accident in 2013, and uncertainty about their reopening, the town sits in an uneasy limbo and faces difficult decisions. The challenges of regeneration – economically, environmentally and culturally – loom large. There are no easy answers, but the festival offers an opportunity to listen, to share and to understand something of this complexity.

Lucy Bleach’s Variations On An Energetic Field (Variation 3)
The Unconformity

While not explicitly noted as a theme for the festival, the act of listening seemed to be a particular focus. This was most explicit in Jill Orr’s durational performance Listening (made in collaboration with sound artist Richie Cyngler), staged in an old limestone quarry on the edge of town. This work asked audience members to record three wishes, while Orr, with characteristically otherworldly endurance, stood still and listened as these wishes were broadcast by loudspeakers and echoed around the quarry.

In the Medical Union building, Babel, directed by Glen Murray, allowed audiences to roam freely, exploring a panoply of other languages. While a remarkably simple conceit, the experience of wandering and listening to the diverse cast of performers was surprisingly compelling.

Starting with a bang

On a grander scale, the festival opened on Friday with Tectonica, a collaboration between Ian Pidd, Martyn Coutts and Dylan Sheridan, which closed down the main intersection to host a nine-tonne rock and some “bloody big speaker stacks”. The tremendous, visceral soundscape condensed some 500 million-odd years of geological activity into an hour of epic, quadrophonic sound and, in the distance, an ominous red fissure opened up in the mountainside. Not content to lie dormant, the speakers rumbled sporadically throughout the weekend, felt and heard throughout the small town.

Tectonica a display created by artists Martyn Coutts, Ian Pidd and Dylan Sheridan.
Unconformity festival

The Falls, by Halcyon Macleod and Finegan Kruckemeyer, tells a story of young love, separation and return. It is a moving work, quite literally, as the audience dons headphones and climbs aboard a bus. The narrative of the play unfolds from a series of perspectives while journeying from one end of the Queen River – the Horsetail Falls – to the other, its confluence with the King River. It’s an ambitious and expansive work – and neatly staged – but at times the poetry of the script seemed to overextend, attempting to translate the narrative and connection to this site perhaps beyond its specifics.

An ominous red fissure opens in Tectonica.
Unconformity

Local works

For all the innovative contemporary work in this festival, and the influx of city slickers who pour in from Hobart (vying for the title of Australia’s new centre of hip) and the mainland, it would be all too easy to alienate the locals. But the festival does a remarkable job of keeping the West Coasters not only in the frame, but at the centre. While there was a palpable but subtle sense of reservation on the Friday night, by the closing Sunday the town seemed to reach a comfortable equilibrium.

Around noon on Sunday, after the ute muster took off and before the marquee football match on Queenstown’s notorious gravel oval, the bloody big speaker stacks gave a last hurrah and belted out a locally curated playlist of AC/DC’s greatest hits. An homage to the band’s 1976 performance in the town, the music slowly drew a crowd. It grew, as more joined in and danced around, and on, the rock left in the centre of the intersection.

This festival, which began as the Queenstown Heritage and Arts Festival, and more recently reimagined as The Unconformity, has carved out a unique position in Tasmania and in Australia’s cultural landscape. It will next run in 2020, and its growing esteem and success raise an important question about growth and sustainability. One of the key features of this festival is its scale, which allows it to balance the influx of visitors and locals; they meet, rather than being overwhelmed.

Under proud West Coaster Travis Tiddy’s direction, however, the festival will hopefully approach its growth with the same focus and thoughtful reflection on place that made the 2018 version such a memorable success.The Conversation

Asher Warren, Lecturer, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.