Koala-detecting dogs sniff out flaws in Australia’s threatened species protection



Maya the detection dog was part of a team sniffing out koalas.
Marie Colibri/USC

Romane H. Cristescu, University of the Sunshine Coast; Anthony Schultz, University of the Sunshine Coast; Celine Frere, University of the Sunshine Coast; David Schoeman, University of the Sunshine Coast, and Kylie Scales, University of the Sunshine Coast

In a country like Australia – a wealthy, economically and politically stable nation with multiple environmental laws and comparatively effective governance – the public could be forgiven for assuming that environmental laws are effective in protecting threatened species.

But our new research, published recently in Animal Conservation, used koala-detecting dogs to find vulnerable koalas in places developers assumed they wouldn’t live. This highlights the flaws of environmental protections that prioritise efficiency over accuracy.

The dog squad: from left to right, Baxter, Billie-Jean, Bear, Charlie and Maya sniffed out vulnerable koalas to see how many are living in areas due to be developed in Queensland.
Author provided

Environmental impact assessments

Every new infrastructure project must carry out an Environmental Impact Assessment (EIA) to see whether it will affect a threatened species. If this is the case, the logical next step is to try to avoid this by redesigning the project.

But this rarely happens in reality, as we saw recently for the endangered black-throated finch.




Read more:
Adani’s finch plan is approved, just weeks after being sent back to the drawing board


More often, when the EIA suggests an unavoidable impact the response is to identify mitigation and compensation measures, often in the form of “offsets”. These are swathes of comparable habitat assumed to “compensate” the impacted species for the habitat lost to the development.

To take koalas as an example, developers building houses might be required to buy and secure land to compensate for lost habitat. Or a new road might need fencing and underpasses to allow koalas safe passage across (or under) roads.

Koalas can be found in many environments, from the bush to cities.
Detection Dogs for Conservation, University of the Sunshine Coast

These steps are defined in environmental regulations, and depend on the results from the original EIA.




Read more:
Safe passage: we can help save koalas through urban design


An issue of assumptions

With koala numbers still declining, we investigated whether current survey guidelines for EIA were indeed adequate.




Read more:
A report claims koalas are ‘functionally extinct’ – but what does that mean?


For an EIA to be effective, it is fundamental the environmental impact of a future development can be accurately anticipated and therefore appropriately managed. This relies, as a first step, on quantifying how the project will affect threatened species through ecological surveys of presence and extent of threatened species within the project’s footprint.

There are government guidelines to prescribe how these ecological surveys are performed. Every project has time and budget constraints, and therefore survey guidelines seek efficiency in accurately determining species’ presence.

Dr Romane Cristescu performing a koala survey with detection dog Maya.
Marie Colibri

As such, the Australian guidelines recommend focusing survey effort where there is the highest chance of finding a species of concern for the project. This sounded very logical – until we started testing the underlying assumptions.

We used a very accurate survey method – detection dogs – to locate koala droppings, and therefore identify koala habitat, in the entire footprint of proposed projects across Queensland. We did not target our efforts in areas we expected to be successful – therefore leaving out the bias of other surveys.

Unpredictable koalas

We found koalas did not always behave as one would expect. Targeting effort to certain areas, the “likely” koala habitat, to try increase efficiency risked missing koala hotspots.

In particular, the landscape koalas use is intensely modified by human activity. Koalas, like us, love living on the coast and in rich alluvial plains. That means we unexpectedly found them right in the middle of urban areas, along roads that – because they have the final remaining trees in dense agricultural landscapes – are now (counterintuitively) acting as corridors.

This koala was found in a built-up area not captured by traditional surveys.
Detection Dogs for Conservation, University of the Sunshine Coast



Read more:
Koalas can learn to live the city life if we give them the trees and safe spaces they need


Assumptions about where koalas live can massively underestimate the impact of new infrastructure. In one case study, the habitat defined by recommended survey methods was about 50 times smaller than the size of the habitat actually affected.

If surveys miss or underestimate koala habitat while attempting to measure development impact, then we cannot expect to adequately avoid, mitigate or compensate the damage. If the first step fails, the rest of the process is fatally compromised. And this is bad news for koalas, among many other threatened species.

All parts of the landscape are important

What is needed is a paradigm shift. In a world where humans have affected every ecosystem on Earth, we cannot focus on protecting only pristine, high-quality areas for our threatened species. We can no longer afford to rely on assumptions.

This might seem like a big, and therefore expensive, ask. Yet ecosystems are a common resource owned by all of us, and those who seek to exploit these commons should bear the cost of demonstrating they understand (and therefore can mitigate) their impact.

The alternative is to risk society having to shoulder the environmental debt, as we have seen with abandoned mines.




Read more:
What should we do with Australia’s 50,000 abandoned mines?


The burden of proof should squarely reside with the proponent of a project to study thoroughly the project impact.

A koala found in the wild while performing an Environmental Impact Assessment.
Detection Dogs for Conservation, University of the Sunshine Coast

This is where the issue lies – proponents of projects are under time and budget constraints that push them to look for efficiencies. In this tug of war, the main losers tend to be the threatened species. We argue that this cannot continue, because for many threatened species, there is no longer much room for mistakes.

The environmental regulations that define survey requirements need to prioritise accuracy over efficiency.

A review of Australian’s primary environmental law, the Environment Protection and Biodiversity Conservation Act is due to begin by October this year. We call on the government to use this opportunity to ensure threatened species are truly protected during development.


The authors would like to gratefully acknowledge the contribution of Dr David Dique and Russell L. Miller to this research and the two original papers this piece is based upon (feature paper and response).The Conversation

Romane H. Cristescu, Posdoc in Ecology, University of the Sunshine Coast; Anthony Schultz, PhD Candidate, University of the Sunshine Coast; Celine Frere, Senior lecturer, University of the Sunshine Coast; David Schoeman, Professor of Global-Change Ecology, University of the Sunshine Coast, and Kylie Scales, Senior lecturer, University of the Sunshine Coast

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Sharks: one in four habitats in remote open ocean threatened by longline fishing



Though they’re protected worldwide, great white sharks encounter longline fishing vessels in half of their range.
Wildestanimal/Shutterstock

David Sims, University of Southampton

Unlike the many species which stalk the shallow, coastal waters that fisheries exploit all year round, pelagic sharks roam the vast open oceans. These are the long-distance travellers of the submarine world and include the world’s largest fish, the whale shark, and also one of the fastest fish in the sea, the shortfin mako shark, capable of swimming at 40mph.

Because these species range far from shore, you might expect them to escape most of the lines and nets that fishing vessels cast. But over the last 50 years, industrial scale fisheries have extended their reach across the world’s oceans and tens of millions of pelagic sharks are now caught every year for their valuable fins and meat.

On average, large pelagic sharks account for over half of all shark species identified in catches worldwide. The toll this has taken on species such as the shortfin mako has prompted calls to introduce catch limits in the high seas – areas of the ocean beyond national jurisdiction where there is little or no management for the majority of shark species.

We wanted to know where the ocean’s shark hotspots are – the places where lots of different species gather – and how much these places are worked by fishing boats. We took up the challenge of finding out where pelagic sharks hang out by satellite tracking their movements with electronic tags. This approach by our international team of over 150 scientists from 26 countries has an important advantage over fishery catch records. Rather than showing where a fishing boat found them, it can precisely map all of the places sharks visit.

Nowhere to hide

For a new study published in Nature we tracked nearly 2,000 sharks from 23 different species, including great whites, blue sharks, shortfin mako and tiger sharks. We were able to map their positions in unprecedented detail and discern the most visited hotspots where sharks feed, breed and rest.

Hotspots were often located in frontal zones – boundaries in the sea between different water masses that can have the best conditions of temperature and nutrients for phytoplankton to bloom, which attracts masses of zooplankton, as well as the fish and squid that sharks eat.

Then we calculated how much these hotspots overlapped with global fleets of large, longline fishing vessels, which we also tracked by satellite. This type of fishing gear is used very widely on the high seas and catches more pelagic sharks than trawls and other gear. Each longline vessel is capable of deploying a 100km long line bearing over 1,000 baited hooks.

We found that even the most remote parts of the ocean that are many miles from land offer pelagic sharks little refuge from industrial-scale fishing fleets. One in four of the places sharks visited each month overlapped with the areas longline fishing vessels operated in.

Sharks such as the North Atlantic blue and the shortfin mako – which fishers also target for their fins and meat – were much more likely to encounter these vessels, with as much as 76% of the places these species visited most in each month overlapping with where longline vessels were fishing. Even internationally protected species such as great whites and porbeagle sharks encountered longline vessels in half of their tracked range.

It’s now clear that much of the world’s fishing activity on the high seas is centred on shark hotspots, which longlines rake for much of the year. Many large sharks, which are already endangered, face a future without refuge from industrial fishing in the places they gather.

High seas marine protected areas

The maps of shark hotspots and longline fishing activity that we created can at least provide a blueprint for where large-scale marine protected areas aimed at conserving sharks could be set. Outside of these, strict quotas could reduce catches.

The United Nations is creating a high seas treaty for protecting ocean biodiversity – negotiations are due to continue in August 2019 in New York. They’ll consider large-scale marine protected areas for the high seas and we’ll suggest where these could be located to best protect pelagic sharks.

Satellite monitoring could give real-time signals of where sharks and other threatened creatures such as turtles and whales are gathering. Tracking where these species roam and where fishers interact with them will help patrol vessels monitor these high-risk zones more efficiently.

Such management action is overdue for many shark populations in the high seas. Take North Atlantic shortfin makos – not only are they overfished
and endangered, but now we know they have no respite from longline fishing during many months of the year in the places they gather most often. Some of these shark hotspots may not exist in the near future if action isn’t taken now to conserve these species and the habitats they depend on.The Conversation

David Sims, Professor of Marine Ecology, University of Southampton

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Here’s how your holiday photos could help save endangered species



Zephyr_p/Shutterstock

Kasim Rafiq, Liverpool John Moores University

Animal populations have declined on average by 60% since 1970, and it’s predicted that around a million species are at risk of extinction. As more of the Earth’s biodiversity disappears and the human population grows, protected landscapes that are set aside to conserve biodiversity are increasingly important. Sadly, many are underfunded – some of Africa’s most treasured wildlife reserves operate in funding deficits of hundreds of millions of dollars.

In unfenced wilderness, scientists rarely have an inventory on the exact numbers of species in an area at a particular time. Instead they make inferences using one of many different survey approaches, including camera traps, track surveys, and drones. These methods can estimate how much and what kind of wildlife is present, but often require large amounts of effort, time and money.

Camera traps are placed in remote locations and activated by movement. They can collect vast quantities of data by taking photographs and videos of passing animals. But this can cost tens of thousands of dollars to run and once in the wild, cameras are at the mercy of curious wildlife.

Track surveys rely on specialist trackers, who aren’t always available and drones, while promising, have restricted access to many tourism areas in Africa. All of this makes wildlife monitoring difficult to carry out and repeat over large areas. Without knowing what’s out there, making conservation decisions based on evidence becomes almost impossible.

Citizen science on Safari

Tourism is one of the fastest growing industries in the world – 42m people visited sub-Saharan Africa in 2018 alone. Many come for the unique wildlife and unknowingly collect valuable conservation data with their phones and cameras. Photographs on social media are already being used to help track the illegal wildlife trade and how often areas of wilderness are visited by tourists.

Despite this, tourists and their guides are still an overlooked source of information. Could your holidays snaps help monitor endangered wildlife? In a recent study, we tested exactly this.

Partnering with a tour operator in Botswana, we approached all guests passing through a safari lodge over three months in the Okavango Delta and asked them if they were interested in contributing their photographs to help with conservation. We provided those interested with a small GPS logger – the type commonly used for tracking pet cats – so that we could see where the images were being taken.

We then collected, processed, and passed the images through computer models to estimate the densities of five large African carnivore species – lions, spotted hyaenas, leopards, African wild dogs and cheetahs. We compared these densities to those from three of the most popular carnivore survey approaches in Africa – camera trapping, track surveys, and call-in stations, which play sounds through a loudspeaker to attract wildlife so they can be counted.

The tourist photographs provided similar estimates to the other approaches and were, in total, cheaper to collect and process. Relying on tourists to help survey wildlife saved up to US$840 per survey season. Even better, it was the only method to detect cheetahs in the area – though so few were sighted that their total density couldn’t be confirmed.

Thousands of wildlife photographs are taken every day, and the study showed that we can use statistical models to cut through the noise and get valuable data for conservation. Still, relying on researchers to visit tourist groups and coordinate their photograph collection would be difficult to replicate across many areas. Luckily, that’s where wildlife tour operators could come in.

Tour operators could help collect tourist images to share with researchers. If the efforts of tourists were paired with AI that could process millions of images quickly, conservationists could have a simple and low-cost method for monitoring wildlife.

Tourist photographs are best suited for monitoring large species that live in areas often visited by tourists – species that tend to have high economic and ecological value. While this method perhaps isn’t as well suited to smaller species, it can still indirectly support their conservation by helping protect the landscapes they live in.

The line between true wilderness and landscapes modified by humans is becoming increasingly blurred, and more people are visiting wildlife in their natural habitats. This isn’t always a good thing, but maybe conservationists can use these travels to their advantage and help conserve some of the most iconic species on our planet.The Conversation

Kasim Rafiq, Postdoctoral Researcher in Wildlife Ecology and Conservation, Liverpool John Moores University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

More than 28,000 species are officially threatened, with more likely to come



A giant guitarfish caught in West Papua is hung from a fishing boat. Guitarfish are in trouble, according to the IUCN Red List.
Conservation International/Abdy Hasan, Author provided

Peter Kyne, Charles Darwin University

More than 28,000 species around the world are threatened, according to the Red List of Threatened Species compiled by the International Union for the Conservation of Nature (IUCN). The list, updated on Thursday night, has assessed the extinction risk of almost 106,000 species and found more than a quarter are in trouble.

While recent headline-grabbing estimates put as many as 1 million species facing extinction, these were based on approximations, whereas the IUCN uses rigorous criteria to assess each species, creating the world-standard guide to biodiversity extinction risk.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


In this update, 105,732 species were ranked from least concern (little to no risk of extinction), to critically endangered (an extremely high risk of extinction) and extinct (the last individual of a species has expired).

This Red List update doesn’t hold a lot of good news. It takes the total number of threatened species to 28,338 (or 27% of those assessed) and logs the extinction of 873 species since the year 1500.

These numbers seem small when thinking about the estimated 1 million species at risk of extinction, but only around 1% of the world’s animals, fungi and plants have been formally assessed on the IUCN Red List. As more species are assessed, the number of threatened species will no doubt grow.

More than 7,000 species from around the world were added to the Red List in this update. This includes 501 Australian species, ranging from dragonflies to fish.

The shortfin eel (Anguilla australis) has been assessed as near threatened due to poor water and river management, land clearing, nutrient run-off, and recurring drought.

The Australian shortfin eel is under threat from drought and land clearing.

Twenty Australian dragonflies were also assessed for the first time, including five species with restricted ranges under threat from habitat loss and degradation. Urban and mining expansion pose serious threats to the western swiftwing (Lathrocordulia metallica), which is only found in Western Australia.

Plight of the rhino rays

I coordinate shark and ray Red List assessments for the IUCN. Of particular concern in this update is the plight of some unique and strange fishes: wedgefishes and giant guitarfishes, collectively known as “rhino rays”.

This group of shark-like rays, which range from Australia to the Eastern Atlantic, are perilously close to extinction. All six giant guitarfishes and nine out of 10 wedgefishes are critically endangered.

Bottlenose wedgefish in Raja Ampat, Indonesia.
Credit: Arnaud Brival

While rhino ray populations are faring comparatively well in Australia, this is not the case throughout their wider Indo-Pacific and, in some cases, Eastern Atlantic ranges, where they are subject to intense and often unregulated exploitation.

The predicament of rhino rays is driven by overfishing for meat and their valuable fins. Their meat is often eaten or traded locally and, along with other sharks, rays and bony fishes, is an important part of coastal livelihoods and food security in tropical countries. Their fins are traded internationally to meet demand for shark fin soup. The “white fins” of rhino rays are highly prized in the trade and can fetch close to US$1,000 per kilogram.




Read more:
Undocumented plant extinctions are a big problem in Australia – here’s why they go unnoticed


This exploitation for a high-value yet small body part places the rhino rays in the company of the rhinoceroses in more than name alone.

Bottlenose wedgefish in the Kota Kinabalu fish market in Malaysia.
Peter Kyne

Two species in particular may be very close to extinction. The clown wedgefish (Rhynchobatus cooki) from the Indo-Malay Archipelago has been seen only once in over 20 years – when a local researcher photographed a dead specimen in a Singapore fish market.

The false shark ray (Rhynchorhina mauritaniensis) is known from only one location in Mauritania in West Africa, and there have been no recent sightings. It’s likely increased fishing has taken a serious toll; the number of small fishing boats in Mauritania has risen from 125 in 1950 to nearly 4,000 in 2005.

This rising level of fishing effort is mirrored in the tropical nations of the Indo-West Pacific where most rhino rays are found.

Effective rhino ray conservation will require a suite of measures working in concert: national species protection, habitat management, bycatch reduction and international trade restrictions. These are not quick and easy solutions; all will be dependent on effective enforcement and compliance.




Read more:
From sharks in seagrass to manatees in mangroves, we’ve found large marine species in some surprising places


The challenges of saving rhino rays illustrate the larger, mammoth task of tackling our current extinction crisis. But the cost of inaction is even larger: precipitous loss of biodiversity and, eventually, the collapse of the ecosystems on which we depend.


This article was co-written by Caroline Pollock, Program Officer for the IUCN’s Red List Unit.The Conversation

Peter Kyne, Senior Research Fellow in conservation biology, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Bizarrely distributed and verging on extinction, this ‘mystic’ tree went unidentified for 17 years



File 20190417 139116 1303ckl.png?ixlib=rb 1.1
Flowers of the mystical Hildegardia australiensis. I.D. Cowie, NT Herbarium.
Author provided (No reuse)

Gregory John Leach, Charles Darwin University

Sign up to the Beating Around the Bush newsletter here, and suggest a plant we should cover at batb@theconversation.edu.au.


Almost 30 years ago, the specimen of a weird tree collected in the southern part of Kakadu National Park was packed in my luggage. It was on its way to the mecca of botanical knowledge in London, the Royal Botanic Gardens Kew.

But what was it?

With unusual inflated winged fruits, it flummoxed local botanists who had not seen anything like it before. To crack the tree’s identity, it needed more than the limited resources of the Darwin Herbarium.

Later, we discovered a fragmentary specimen hidden in a small box at the end of a little-visited collection vault in the Darwin Herbarium. And it had been sitting there quietly since 1974.

Most of the specimens inside this box just irritate botanists as being somewhat intractable to identify. It’s known as the “GOK” box, standing for “God Only Knows”.

Together with the resources of Kew Gardens, the species was finally connected with a genus and recognised as a new species.

A year later, it was named Hildegardia australiensis.



The Conversation

Mysterious global distribution

The species is the only Australian representative for an international genus, Hildegardia. Under Northern Territory legislation, it’s listed as “near threatened”, due to its small numbers and limited distribution.

The genus Hildegardia was named in 1832 by Austrian botanists Schott and Endlicher. They named it after Hildegard, the 11th-century German abbess and mystic, the “Sybil of the Rhine”.

The genus retains some of this mystical and elusive nature. It’s rare with small isolated populations, traits that seem to dominate for all bar one of the species in the genus.

Twelve species of Hildegardia are recognised: one from Cuba, three from Africa, four from Madagascar and one each from India, the Philippines, Indonesia and Australia.

This bizarre global distribution is even more unusual in that almost the entire generic lineage seems to be verging on extinction.

The Australian species fits this pattern of small fragmented populations and, despite being a reasonably sized tree at up to 10 metres tall, remained unknown until 1991.

Rarely seen and hard to find

Generally, Hildegardia species are tall, deciduous trees of well-drained areas, often growing on rocky hills.

Their trunks have a smooth, thin bark, which smells unpleasant and exudes a gum when wounded. Most species have heart-shaped leaves and bear a profusion of orange-red flowers when leafless. These are followed by strange, winged fruits with one or two seeds.

Hildegardia australiensis would have to be one of the most rarely seen trees in Australia in its natural habitat. It is native to the margins of the western Arnhem Land Plateau with scattered populations on limestone and sandstone scree slopes.

These are all difficult locations to visit, so if you really want to see it, a helicopter is recommended. Fortunately it is easy to grow and has found its way into limited cultivation.

Several trees have been in the Darwin Botanic Gardens since the early ’90s and a few are known to have been planted in some of the urban parks in greater Darwin. The plantings have been more to showcase a rare and odd-looking tree rather than any great ornamental value.

Growing on ‘sickness country’

In the NT the tree is so poorly known that it has no common name other than the default generic name of Hildegardia.

It appears to have no recorded Indigenous uses, which is perhaps not surprising as much of its distribution is in “sickness country”.

This is country with uranium deposits and was avoided by the traditional owners. Rock art showing figures with swollen joints has been interpreted as showing radiation poisoning.

But it does have one claim to fame. A heated debate between conservationists and miners was sparked during a proposed development of the Coronation Hill gold, platinum and palladium mine in Kakadu National Park.

The main population of H. australiensis is only a stone’s throw from Coronation Hill and the species became one of the key identified biodiversity assets that could have been threatened by development of the mine.

The area around Coronation Hill, or Guratba in the local Jawoyn language, is also of considerable spiritual significance to the Jawoyn traditional landowners and forms part of the identified “sickness country”. A creation deity, Bula, rests and lays dormant under the sickness country and should not be disturbed.

Eventually, these concerns culminated in the Hawke government decision on June 17 1991 to no longer allow the mine development.




Read more:
The Price of God at Coronation Hill


So are the seeds edible?

While there appears to be no known uses of the Australian species, the tree may have hidden potential.

The closely related trees Sterculia and Brachychiton are well known as bush tucker plants and good sources of fibre. The local Top End species Sterculia quadrifida, for instance, is commonly known as the Peanut Tree and is a highly favoured bush tucker plant.

The fibre potential of H. australiensis is being explored by internationally acclaimed Darwin-based papermaker, Winsome Jobling. Cyclone Marcus whipped through Darwin in 2018 and one of the casualties was a planted tree of H. australiensis in the Darwin Botanic Gardens.

Thankfully, material was salvaged. Winsome has material stored in her freezer awaiting extraction and processing to see what the fibre potential is.

H. barteri, an African species in the Hildegardia genus, has a broad distribution through half-a-dozen African countries. And the West African locals have a number of uses for it, from eating the seeds to using the bark as fibre for ropes. But we don’t know just yet if the flesh or seed in the Australian species is edible.

Whether the Australian species might also harbour such useful properties still awaits some testing and research. Fortunately, with the creation deity Bula watching over the natural populations, the species, unlike many of its close relatives, appears secure in the wild.


Sign up to Beating Around the Bush, a series that profiles native plants: part gardening column, part dispatches from country, entirely Australian.The Conversation

Gregory John Leach, Honorary Fellow at Menzies School of Health Research, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

For the first time we’ve looked at every threatened bird in Australia side-by-side



File 20181126 140522 1v2gsvv.jpg?ixlib=rb 1.1
Success with conservation of Kangaroo Island’s Glossy Black-Cockatoos can now be compared with other bird conservation efforts around the country.
Ian Sanderson/Flickr, CC BY-NC-SA

Stephen Garnett, Charles Darwin University; Alienor Chauvenet, Griffith University; April Reside, The University of Queensland; Brendan Wintle, University of Melbourne; David Lindenmayer, Australian National University; David M Watson, Charles Sturt University; Elisa Bayraktarov, The University of Queensland; Hayley Geyle, Charles Darwin University; Hugh Possingham, The University of Queensland; Ian Leiper, Charles Darwin University; James Watson, The University of Queensland; Jim Radford, La Trobe University; John Woinarski, Charles Darwin University; Les Christidis, Southern Cross University; Martine Maron, The University of Queensland; Molly K Grace, University of Oxford; Paul McDonald, University of New England, and Sarah Legge, Australian National University

Glossy Black-Cockatoos used to be common on South Australia’s Kangaroo Island until possums started eating their eggs and chicks. After volunteers helped protect nest hollows and erect safe nest boxes, the population more than doubled.

But how do you measure such success? How do you compare cockatoo nest protection with any other investment in conservation?

Unfortunately, we have few ways to compare and track the different efforts many people may be making to help conserve our natural treasures.

That’s why a group of us from a dozen Australian universities along with scientists and private researchers around the world have created metrics of progress for both our understanding of how to manage threats of different intensity, and how well that management has been implemented. We also provide guidance on what still needs doing before a threat no longer needs active management.

For the first time, we looked at every threatened bird in Australia to see how well – or not – they are managed. Hopefully, we can use this to avoid compounding our disastrous recent track record of extinctions in Australia.




Read more:
For whom the bell tolls: cats kill more than a million Australian birds every day


The state of Australian birds

What we did differently was collect the same data across different species, which meant we could compare conservation efforts across all bids.

The mallee emu-wren is unique to Australia and endangered due to habitat loss.
Nik Borrow/Flickr

When we applied these metrics to Australia’s 238 threatened bird species, the results were both encouraging and daunting. The good news is that we understand how to reduce the impact of about 52% of the threats – although of course that means we know little about how to deal with the other 48%.

But the situation is decidedly worse when we consider how effectively we are putting that research into practice. Only 43% of threats are being managed in any way at all – and just a third of the worst threats – and we are achieving good outcomes for just 20%.

But at least we now know where we are. We can celebrate what we have accomplished, appreciate how much needs doing, and direct our efforts where they will have the greatest benefit.

The threats to our birds

Introduced mammals, particularly cats, have been (and continue to be) a significant threat to Australian birds. Although we have successfully eradicated feral animals on many islands, saving many species, they remain a grave threat on the mainland.

The effect of climate change is becoming the top priority threat for the future. About half of all threatened birds are likely to be affected by increases in drought, fire, heat or sea level. Given the policy prevarication at a global level, targeted research is essential if birds are to be helped to cope.

By looking at multiple species, we can also identify what helps successful conservation. Monitoring, for instance, has a big impact on threat alleviation – better monitored species receive more attention.

The orange-bellied parrot is amongst Australia’s most critically endangered birds.
sompreaw/Shutterstock

There is also – unsurprisingly – a strong connection between knowledge of how to manage a threat and successful application of that knowledge. Often policy people want instant action, but our work suggests that action before knowledge will squander money.

Where to from here?

So what can we use this analysis for? One use is helping species close to extinction.

Using the same approach for multiple species groups, it is apparent that, while birds and mammals are in a parlous state, the most threatened fish are far worse off. We can also identify some clear priorities for action.

Finally, we must acknowledge this work emerged not from a government research grant, but from a non-government organisation (NGO). BirdLife Australia needed an overview of the country’s performance with threatened birds and was able to draw on the volunteered skills of biologists and mathematicians from around the country, and then the world.




Read more:
Australia relies on volunteers to monitor its endangered species


Indeed, one of the future projects will be using the new assessment tool to see just how much of the conservation action around the country is being driven by volunteers, from the many people who contributed their knowledge and skills to this paper through to those keeping glossy black-cockatoo chicks safe on Kangaroo Island.The Conversation

Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University; Alienor Chauvenet, Lecturer, Griffith University; April Reside, Researcher, Centre for Biodiversity and Conservation Science, The University of Queensland; Brendan Wintle, Professor Conservation Ecology, University of Melbourne; David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University; David M Watson, Professor in Ecology, Charles Sturt University; Elisa Bayraktarov, Postdoctoral Research Fellow in Conservation Biology, The University of Queensland; Hayley Geyle, Research Assistant, Charles Darwin University; Hugh Possingham, Professor, The University of Queensland; Ian Leiper, Geospatial Scientist, Charles Darwin University; James Watson, Professor, The University of Queensland; Jim Radford, Principal Research Fellow, Research Centre for Future Landscapes, La Trobe University; John Woinarski, Professor (conservation biology), Charles Darwin University; Les Christidis, Professor, Southern Cross University; Martine Maron, ARC Future Fellow and Associate Professor of Environmental Management, The University of Queensland; Molly K Grace, Postdoctoral Fellow in Zoology, University of Oxford; Paul McDonald, Associate professor, University of New England, and Sarah Legge, Associate Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A sperm race to help save one of New Zealand’s threatened birds, the sugar-lapping hihi



File 20180409 5575 1mnx75q.jpg?ixlib=rb 1.1
A male hihi on a flowering flax bush.
Mhairi McCready, CC BY-SA

Helen Taylor

It’s likely you’ve never heard of a hihi, let alone seen one in the wild. Also known as stitchbirds, these colourful little critters are a true taonga, or treasure. They’re only found in New Zealand, and currently restricted to just seven sanctuary sites.

Without the caché of kiwi or kākāpō, hihi have gone largely ignored by conservation fans and also, crucially, by funders. Researchers have been interested in these sunny little birds for decades because of their crazy mating system and high-octane lifestyle.

A major part of hihi research goes into figuring out ways to make more hihi and get them in more places. Now, we’re combining research on hihi sperm with a major fundraising effort to try to turn this bird’s fortunes around.

Researchers are studying sperm quality to figure out what contributes to the low breeding success of the hihi, or stitchbird.

A taonga in trouble

The story of hihi is a sadly familiar one for New Zealand. They were widespread across the country’s North Island, but then humans arrived. Forest clearance and introduced mammalian predators were bad news for most of New Zealand’s native wildlife, including hihi. By 1880, hihi had been reduced to just one population on Hauturu (Little Barrier Island).

Over the past 25 years or so, conservation managers and researchers have established six new hihi populations in predator free sanctuary sites around the North Island, and numbers are on the rise, but hihi are not out of the woods yet.

At each site except for Hauturu, hihi rely on supplementary sugar-water feeding. They use the energy from the sugar water to hunt insects – their real food. On Hauturu, they get their sugar from plant nectar, but no other site in New Zealand seems to have the diverse, old growth forest that hihi need.

Catching hihi on Tiritiri Matangi, one of the island sanctuaries where they survive, to get a sperm sample.
Mhairi McCready, CC BY

Experiments have shown that when the supplementary sugar is removed, hihi numbers go into decline. The absence of decent forest isn’t the only problem for this little sugar addict though.

Small populations and dodgy sperm

The hihi’s drastic decrease in numbers after human arrival is known as a population bottleneck. When a species experiences a bottleneck, we typically see a reduction in genetic variation and an increase in mating between relatives (inbreeding).

Inbreeding can negatively affect reproduction and survival. One characteristic that seems particularly sensitive to the negative effects of inbreeding is male fertility.

Inbreeding causes dodgy sperm (and dodgy pollen) across a wide range of mammals, insects and plants. However, no one has ever really looked into how it affects sperm quality in birds.

Hihi sperm seen under a microscope.
Helen Taylor, CC BY

We know that New Zealand’s birds have relatively high rates of hatching failure. We know that hihi egg hatching rates and chick survival are negatively affected by inbreeding. But we don’t know whether this hatching failure is a result of poor male fertility, developmental problems, or a bit of both. That’s where my research comes in.

Studying bird sperm in the wild

I’m looking for links between inbreeding and sperm quality in native New Zealand birds, including the hihi. To measure bird sperm quality, we look at three things: sperm swimming speed, sperm length and the proportion of sperm with abnormalities (two heads/no tail etc.).

Getting this data from wild birds is challenging for a number of reasons.

First, you need to get the sperm. This is actually the easiest part, especially with hihi. Their mating system is so competitive that males are usually jam-packed with sperm during the mating season.

In most bird species (including hihi), males don’t have a penis. They have an opening called a cloaca, just like the female. During mating season, the area around the male’s cloaca swells as it fills up with semen. By gently massaging this swelling, I can cause a small amount of semen to pool on the surface of the cloaca and, voila! I have my sperm sample.

Massaging a male hihi to extract sperm.
Mhairi McCready, CC BY

The next challenge is measuring sperm swimming speed. Everything else can be done back at the lab, but speed has to be measured there and then and sperm have to be kept at a constant temperature, or they die. We need to run a microscope, camera and laptop to film the sperm and measure the speed. And I’m usually on a remote island or in the middle of the bush.

Working in the mobile sperm lab.
Robyn White, CC BY

To overcome these issues, I’ve designed a mobile sperm lab that runs off a small generator so I can take it pretty much anywhere. It houses my sperm speed measuring set up, plus some heat pads to keep anything that touches the sperm at a constant temperature.

The pièce de résistance is my specially designed in-bra sperm sample tube holder, which keeps samples warm against my skin before they get to the microscope.

The great hihi sperm race

In October 2017, I took my mobile sperm lab to four hihi sites: Hauturu, Trititiri Matangi, Bushy Park Sanctuary, and Zealandia.

I collected sperm and DNA samples from 128 males and am currently analysing the data to investigate the connection between sperm quality and inbreeding in this species.

At the same time, we’re attempting to address the major lack of funding for hihi conservation by encouraging people to bet on which of my 128 males will have the fastest sperm.

The ConversationThis innovative fundraiser has grabbed a fair few headlines in New Zealand and overseas, and we’ve seen bets coming in from all over the world. The race runs until April 22, 2018. To get involved, visit www.hihispermrace.nz and place your bets!

Helen Taylor, Research fellow in conservation genetics

This article was originally published on The Conversation. Read the original article.