Mozzie repellent clothing might stop some bites but you’ll still need a cream or spray



File 20181121 161638 1vc338a.jpg?ixlib=rb 1.1
Clothes can offer some protection.
John Jones/Flickr, CC BY

Cameron Webb, University of Sydney

A range of shirts, pants, socks and accessories sold in specialist camping and fishing retailers claim to protect against mosquito bites for various periods.

In regions experiencing a high risk of mosquito-borne disease, insecticide treated school uniforms have been used to help provide extra protection for students.

During the 2016 outbreak of Zika virus in South America, some countries issued insecticide-treated uniforms to athletes travelling to the Olympic Games.

Some academics have even suggested fashion designers be encouraged to design attractive and innovative “mosquito-proof” clothing.




Read more:
The best (and worst) ways to beat mosquito bites


But while the technology has promise, commercially available mosquito-repellent clothing isn’t the answer to all our mozzie problems.

Some items of clothing might offer some protection from mosquito bites, but it’s unclear if they offer enough protection to reduce the risk of disease. And you’ll still need to use repellent on those uncovered body parts.

First came mosquito-proof beds

Bed nets have been used to create a barrier between people and biting mosquitoes for centuries. This was long before we discovered mosquitoes transmitted pathogens that cause fatal and debilitating diseases such as malaria. Preventing nuisance-biting and buzzing was reason alone to sleep under netting.

Bed nets have turned out to be a valuable tool in reducing malaria in many parts of the world. And they offer better protection if you add insecticides.

The insecticide of choice is usually permethrin. This and other closely related synthetic pyrethroids are commonly used for pest control and have been assessed as safe for use by the United States Environmental Protection Authority, the Australian Pesticides and Veterinary Medicines Authority and other regulatory bodies.




Read more:
A vaccine that could block mosquitoes from transmitting malaria


New technologies have also allowed for the development of long-lasting insecticidal bed nets, offering extended protection against mosquito bites, perhaps up to three years, even with repeated washing.

Mosquito repellent clothing

Innovations in clothing that prevent insect bites have primarily come from the United States military. Mosquito-borne disease is a major concern for military around the globe. Much research funding has been invested in strategies to provide the best protection for personnel.

Traditional insect repellents, such as DEET or picaridin, are applied to the skin to prevent mosquitoes from landing and biting.

While permethrin will repel some mosquitoes, treated clothing most effectively works by killing the mosquitoes landing and trying to bite through the fabric.

Clothing treated with permethrin has been shown to protect against mosquitoes and ticks, as well as other biting insects and mites. For these studies, clothing was generally soaked in solutions or sprayed with insecticides to ensure adequate protection.

Clothing made from insecticide impregnated fabrics may help reduce mosquito bites.
Cameron Webb (NSW Health Pathology)

Fabrics factory-treated with insecticides, as used by many military forces, are purported to provide more effective protection. But while some studies suggest clothing made from these fabrics provide protection even after multiple washes, others suggest the “factory-treated” fabrics don’t provide greater levels of protection than “do it yourself” versions.

Overall, the current evidence suggests insecticide-treated clothing may reduce the number of mosquito bites you get, but it doesn’t offer full protection.

More research is needed to determine if insecticide-treated clothing can prevent or reduce rates of mosquito-borne disease.

Better labelling and regulation

All products that claim to provide protection from insect bites must be registered with the Australian Pesticides and Veterinary Medicines Authority. This includes sprays, creams and roll-on formulations of repellents.

Anything labelled as “insect repelling”, including insecticide treated clothing, requires registration. Clothing marketed as simply “protective” (such as hats with netting) doesn’t. This approach reflects the requirements of the US EPA.




Read more:
Curious Kids: When we get bitten by a mosquito, why does it itch so much?


If you’re shopping for insect-repellent clothing, check the label to see if it states that it is registered by the APVMA. You should see a registration number and the insecticide used in the fabric clearly displayed on the clothing’s tag.

While some products will be registered, there are still some concerns about how the efficacy of mosquito bite protection is assessed.

There is likely to be growing demand for these types of products and experts are calling for internationally accepted guidelines to test these products. Similar guidelines exist for topical repellents.

Finally, keep in mind that while various forms of insecticide-treated clothing will help reduce the number of mosquito bites, they won’t provide a halo of bite-free protection around your whole body.

Remember to apply a topical insect repellent to exposed areas of skin, such as hands and face, to ensure you’re adequately protected from mosquito bites.The Conversation

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Some tropical frogs may be developing resistance to a deadly fungal disease – but now salamanders are at risk



File 20180514 100700 1eavvgx.jpg?ixlib=rb 1.1
Panamanian golden frogs (Atelopus zeteki) are listed as critically endangered, and may be extinct in the wild.
Jeff Kubina, CC BY-SA

Louise Rollins-Smith, Vanderbilt University

My office is filled with colorful images of frogs, toads and salamanders from around the world, some of which I have collected over 40 years as an immunologist and microbiologist, studying amphibian immunity and diseases. These jewels of nature are mostly silent working members of many aquatic ecosystems.

The exception to the silence is when male frogs and toads call to entice females to mate. These noisy creatures are often wonderful little ventriloquists. They can be calling barely inches from your nose, and yet blend so completely into the environment that they are unseen. I have seen tropical frogs in Panama and native frogs of Tennessee perform this trick, seemingly mocking my attempts to capture them.

My current research is focused on interactions between amphibians and two novel chytrid pathogens that are linked to global amphibian declines. One, Batrachochytrium dendrobatidis ( abbreviated as Bd), has caused mass frog dieoffs around the world. Recently my lab group contributed to a study showing that some species of amphibians in Panama that had declined due to Bd infections are recovering. Although the pathogen has not changed, these species appear to have developed better skin defenses than members of the same species had when Bd first appeared.

This is very good news, but those who love amphibians need to remain vigilant and continue to monitor these recovering populations. A second reason for concern is the discovery of a closely related chytrid, Batrachochytrium salamandrivorans (Bsal), which seems to be more harmful to salamanders and newts.

Amphibian chytrid fungus has been detected in at least 52 countries and 516 species worldwide.
USDA Forest Service

Global frog decline

More than a decade ago, an epidemic of a deadly disease called chytridiomycosis swept through amphibian populations in Panama. The infection was caused by a chytrid fungus, Batrachochytrium dendrobatidis. Scientists from a number of universities, working with the Smithsonian Tropical Research Institute in Panama, reported that chytridiomycosis was moving predictably from west to east from Costa Rica across Panama toward Colombia.

I was part of an international group of scientists, funded by the National Science Foundation, who were trying to understand the disease and whether amphibians had effective immune defenses against the fungus. Two members of my lab group traveled to Panama yearly from 2004 through 2008, and were able to look at skin secretions from multiple frog species before and after the epidemic of chytridiomycosis hit.

Many amphibians have granular glands in their skin that synthesize and sequester antimicrobial peptides (AMPs) and other defensive molecules. When the animal is alarmed or injured, the defensive molecules are released to cleanse and protect the skin.

Through mechanisms that remain a mystery, we observed that these skin defenses seemed to improve after the pathogen entered the amphibian communities. Still, many frog populations in this area suffered severe declines. A global assessment published in 2004 showed that 43 percent of amphibian species were declining and 32 percent of species were threatened.

In Panama, Smithsonian scientists operate the largest amphibian conservation facility of its kind in the world.

Signs of resistance

In 2012-2013, my colleagues ventured to some of the same sites in Panama at which amphibians had disappeared. To our great delight, some of the species were partially recovering, at least enough so that they could be found and sampled again.

We wanted to know whether this was happening because the pathogen had become less virulent, or for some other reason, including the possibility that the frogs were developing more effective responses. To find out, we analyzed multiple measures of Bd‘s virulence, including its ability to infect frogs that had never been exposed to it; its rate of growth in culture; whether it had undergone genetic changes that would show loss of some possible virulence characteristics; and its ability to inhibit frogs’ immune cells.

As our group recently reported, we found that the pathogen had not changed. However, we were able to show that for some species, frog skin secretions we collected from frogs in populations that had persisted were better able to inhibit the fungus in a culture system than those from frogs that had never been exposed to the fungus.

The prospect that some frog species in some places in Panama are recovering in spite of the continuing presence of this virulent pathogen is fantastic news, but it is too soon to celebrate. The recovery process is very slow, and scientists need to continue monitoring the frogs and learn more about their immune defenses. Protecting their habitat, which is threatened by deforestation and water pollution, will also be a key factor for the long-term survival of these unique amphibian species in Panama.

If Bsal fungus spreads to North America, it could wipe out species like this Northern Slimy Salamander (Plethodon glutinosus).
Marshal Hedin, CC BY

Salamanders (and frogs) at risk

On a global scale, Bd is not the only threat. A second pathogenic chytrid fungus called Batrachochytrium salamandrivorans (abbreviated as Bsal) was recently identified in Europe, and has decimated some salamander populations in the Netherlands and Belgium. This sister species probably was accidentally imported into Europe from Asia, and seems to be a greater threat to salamanders than to frogs or toads.

Bsal has not yet been detected in North America. I am part of a new consortium of scientists that has formed a Bsal task force to study whether it could become invasive here, and which species might be most adversely affected.

In January 2016 the U.S. Fish and Wildlife Service listed 201 salamander species as potentially injurious to wildlife because of their their potential to introduce Bsal into the United States. This step made it illegal to import or ship any of these species between the continental United States, the District of Columbia, Hawaii, the Commonwealth of Puerto Rico or any possession of the United States.

The Bsal task force is currently developing a strategic plan that lists the most urgent research needs to prevent accidental introduction and monitor vulnerable populations. In October 2017 a group of scientists and conservation organizations urged the U.S. government to suspend all imports of frogs and salamanders to the United States.

The ConversationIn short, it is too early to relax. There also are many other potential stressors of amphibian populations including climate change, decreasing habitats and disease. Those of us who cherish amphibian diversity will continue to worry for some time to come.

Louise Rollins-Smith, Associate Professor of Pathology, Microbiology and Immunology, Vanderbilt University

This article was originally published on The Conversation. Read the original article.

Tropical thunderstorms are set to grow stronger as the world warms



File 20171016 21986 74bzev.jpg?ixlib=rb 1.1
A supercell thunderstorm in the US state of Oklahoma.
Hamish Ramsay, Author provided

Martin Singh, Monash University

Thunderstorms are set to become more intense throughout the tropics and subtropics this century as a result of climate change, according to new research.

Thunderstorms are among nature’s most spectacular phenomena, producing lightning, heavy rainfall, and sometimes awe-inspiring cloud formations. But they also have a range of important impacts on humans and ecosystems.

For instance, lightning produced by thunderstorms is an important trigger for bushfires globally, while the hailstorm that hit Sydney in April 1999 remains Australia’s costliest ever natural disaster.


Read more: To understand how storms batter Australia, we need a fresh deluge of data


Given the damage caused by thunderstorms in Australia and around the world, it is important to ask whether they will grow in frequency and intensity as the planet warms.

Our main tools for answering such questions are global climate models – mathematical descriptions of the Earth system that attempt to account for the important physical processes governing the climate. But global climate models are not fine-scaled enough to simulate individual thunderstorms, which are typically only a few kilometres across.

But the models can tell us about the ingredients that increase or decrease the power of thunderstorms.

Brewing up a storm

Thunderstorms represent the dramatic release of energy stored in the atmosphere. One measure of this stored energy is called “convective available potential energy”, or CAPE. The higher the CAPE, the more energy is available to power updrafts in clouds. Fast updrafts move ice particles in the cold, upper regions of a thunderstorm rapidly upward and downward through the storm. This helps to separate negatively and positively charged particles in the cloud and eventually leads to lightning strikes.

To create thunderstorms that cause damaging wind or hail, often referred to as severe thunderstorms, a second factor is also required. This is called “vertical wind shear”, and it is a measure of the changes in wind speed and direction as you rise through the atmosphere. Vertical wind shear helps to organise thunderstorms so that their updrafts and downdrafts become physically separated. This prevents the downdraft from cutting off the energy source of the thunderstorm, allowing the storm to persist for longer.

By estimating the effect of climate change on these environmental properties, we can estimate the likely effects of climate change on severe thunderstorms.

Stormy forecast

My research, carried out with US colleagues and published today in Proceedings of the National Academy of Sciences, does just that. We examined changes in the energy available to thunderstorms across the tropics and subtropics in 12 global climate models under a “business as usual” scenario for greenhouse gas emissions.

In every model, days with high values of CAPE grew more frequent, and CAPE values rose in response to global warming. This was the case for almost every region of the tropics and subtropics.

These simulations predict that this century will bring a marked increase in the frequency of conditions that favour severe thunderstorms, unless greenhouse emissions can be significantly reduced.

Change in frequency (in days per year) of favourable conditions for severe thunderstorms for 2081-2100, compared with 1981-2000 averaged across 12 climate models under the RCP8.5 greenhouse-gas concentration scenario. Stippling indicates regions where 11 of the 12 models agree on the sign of the change.
CREDIT, Author provided

Previous studies have made similar predictions for severe thunderstorms in eastern Australia and the United States. But ours is the first to study the tropics and subtropics as a whole, a region that is characterised by some of the most powerful thunderstorms on Earth.

What drives the increased energy?

Different climate models, constructed by different research groups around the world, all agree that global warming will increase the energy available to thunderstorms – a prediction underlined by our new research. But we need to understand why this happens, so as to be sure that the effect is real and not a product of faulty model assumptions.

My colleagues and I previously proposed that high levels of CAPE can develop in the tropics as a result of the turbulent mixing that occurs when clouds draw in air from their surroundings. This mixing prevents the atmosphere from dissipating the available energy too quickly. Instead, the energy builds up for longer and is released in less frequent but more intense storms.

As the climate warms, the amount of water vapour required for cloud formation increases. This is the result of a well-known thermodynamic relationship called the Clausius-Clapeyron relation. In a warmer climate this means the difference in the humidity between the clouds and their surroundings becomes larger. As a result, the mixing mechanism becomes more efficient in building up the available energy. This, we argue, accounts for the increase in CAPE seen in our model simulations.

In our new study, we tested this idea in a global climate model by artificially increasing the strength of the mixing between clouds and their surroundings. As expected, this change produced a large increase in the energy available to thunderstorms in our model.


Read more: Australia faces a stormier future thanks to climate change


Another prediction of our hypothesis is that days with both high values of CAPE and heavy precipitation tend to occur when the atmosphere is least humid in its middle levels (at altitudes of a few kilometres). Using real data from weather balloons, we confirmed that this is the case across the tropics and subtropics.

What this means for future thunderstorms

The models predict that the energy available for thunderstorms will increase as the Earth warms. But how much more intense will storms actually become as a result?

The answer to that question is currently uncertain, and answering it is the next job for me, and other researchers around the world.

The ConversationBut it is clear that through our continued greenhouse gas emissions, we are increasing the fuel available to the strongest thunderstorms. Exactly how much stronger our future thunderstorms will ultimately become remains to be seen.

Martin Singh, Lecturer, School of Earth, Atmosphere and Environment, Monash University

This article was originally published on The Conversation. Read the original article.

The world’s tropical zone is expanding, and Australia should be worried



File 20170627 2582 1ozaulj
‘Tropics’ may conjure images of sun-kissed islands, but the expanding tropical zone could bring drought and cyclones further south.
Pedro Fernandes/Flickr, CC BY-SA

Steve Turton, CQUniversity Australia

The Tropics are defined as the area of Earth where the Sun is directly overhead at least once a year — the zone between the Tropics of Cancer and Capricorn.

However, tropical climates occur within a larger area about 30 degrees either side of the Equator. Earth’s dry subtropical zones lie adjacent to this broad region. It is here that we find the great warm deserts of the world.

Earth’s bulging waistline

Earth’s tropical atmosphere is growing in all directions, leading one commentator to cleverly call this Earth’s “bulging waistline”.

Since 1979, the planet’s waistline been expanding poleward by 56km to 111km per decade in both hemispheres. Future climate projections suggest this expansion is likely to continue, driven largely by human activities – most notably emissions of greenhouse gases and black carbon, as well as warming in the lower atmosphere and the oceans.

If the current rate continues, by 2100 the edge of the new dry subtropical zone would extend from roughly Sydney to Perth.

As these dry subtropical zones shift, droughts will worsen and overall less rain will fall in most warm temperate regions.

Poleward shifts in the average tracks of tropical and extratropical cyclones are already happening. This is likely to continue as the tropics expand further. As extratropical cyclones move, they shift rain away from temperate regions that historically rely upon winter rainfalls for their agriculture and water security.

Researchers have observed that, as climate zones change, animals and plants migrate to keep up. But as biodiversity and ecosystem services are threatened, species that can’t adjust to rapidly changing conditions face extinction.

In some biodiversity hotspots – such as the far southwest of Australia – there are no suitable land areas (only oceans) for ecosystems and species to move into to keep pace with warming and drying trends.

We are already witnessing an expansion of pests and diseases into regions that were previously climatically unsuitable. This suggests that they will attempt to follow any future poleward shifts in climate zones.

I recently drew attention to the anticipated impacts of an expanding tropics for Africa. So what might this might mean for Australia?


IPCC

Australia is vulnerable

Australia’s geographical location makes it highly vulnerable to an expanding tropics. About 60% of the continent lies north of 30°S.

As the edge of the dry subtropical zone continues to creep south, more of southern Australia will be subject to its drying effects.

Meanwhile, the fringes of the north of the continent may experience rainfall and temperature conditions that are more typical of our northern neighbours.

The effects of the expanding tropics are already being felt in southern Australia in the form of declining winter rainfall. This is especially the case in the southwest and — to a lesser extent — the continental southeast.

Future climate change projections for Australia include increasing air and ocean temperatures, rising sea levels, more hot days (over 35℃), declining rainfall in the southern continental areas, and more extreme fire weather events.

For northern Australia, changes in annual rainfall remain uncertain. However, there is a high expectation of more extreme rainfall events, many more hot days and more severe (but less frequent) tropical cyclones and associated storm surges in coastal areas.

Dealing with climate change

Adaptation to climate change will be required across all of Australia. In the south the focus will have to be on adapting to projected drying trends. Other challenges include more frequent droughts, more warm spells and hot days, higher fire weather risk and rising sea levels in coastal areas.

The future growth of the north remains debatable. I have already pointed out the lack of consideration of climate change in the White Paper for the Development of Northern Australia.

The white paper neglects to explain how planned agricultural, mining, tourism and community development will adapt to projected changes in climate over coming decades — particularly, the anticipated very high number of hot days.

For example, Darwin currently averages 47 hot days a year, but under a high carbon emission scenario, the number of hot days could approach 320 per year by 2090. If the north is to survive and thrive as a significant economic region of Australia, it will need effective climate adaptation strategies. This must happen now — not at some distant time in the future.

This requires bipartisan support from all levels of government, and a pan-northern approach to climate adaptation. It will be important to work closely with industry and affected local and Indigenous communities across the north.

These sectors must have access to information and solutions drawn from interdisciplinary, “public good” research. In the face of this urgent need, CSIRO cuts to such research and the defunding of the National Climate Change Adaptation Research Facility should be ringing alarm bells.

The ConversationAs we enter uncharted climate territory, never before has public-good research been more important and relevant.

Steve Turton, Adjunct Professor of Environmental Geography, CQUniversity Australia

This article was originally published on The Conversation. Read the original article.

How to tackle the rising tide of poaching in Australia’s tropical seas


Steven Purcell, Southern Cross University and Hampus Eriksson, University of Wollongong

High-value marine species in waters off northern Australia are at increasing risk of poaching by foreign fishing crews, according to figures from the Australian Fisheries Management Authority. The number of foreign fishing boats caught in Australian waters increased from six in 2014–15 to 20 in 2015–16.

These fishers have evidently come to poach species that fetch high prices and have been overfished elsewhere in the Asia-Pacific region. They seek “lootable resources” – species that are attractive to the black market because they are expensive, easy to catch and weakly regulated.

Among the species being targeted are sea cucumbers, giant clams, turtles and sharks (specifically their fins).

Many of these species are listed as vulnerable or endangered by the International Union for Conservation of Nature (IUCN). Some are even protected from trade by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).

A long history of poaching

The apprehended vessels have been primarily from Vietnam and Indonesia. Last month, a Vietnamese fishing vessel stopped inside the Conservation Park Zone of the Coral Sea Commonwealth Marine Reserve was found to be carrying 3 tonnes of partially processed sea cucumbers. Dried sea cucumber, called bêche-de-mer, can fetch more than A$300 per kg when sold in China.

The Timor and Arafura Seas have long histories of illegal, unreported and unregulated fishing due to regional fishery expansion and displacement. Some scientists believe the tensions in the South China Sea are pushing Southeast Asian fishermen into Australian waters. It is also possible that Indonesia’s stricter fisheries policy is shifting fishing patterns in the region.

But apart from economic loss as resources are poached from Australian waters, what are the impacts? A new review shows that species such as sea cucumber can play crucial roles in boosting the health of coral reef systems. This is important at a time when reefs are facing intense stress from climate change and coastal development.

Nine species of sea cucumbers from Australian waters were recently declared threatened with extinction globally by the IUCN. Removal of some marine fauna might degrade the resilience of coral reef ecosystems to broad-scale stressors.

What can be done?

In June, Immigration and Border Protection Minister Peter Dutton said: “Preventing illegal fishers from plundering Australia’s well-managed fisheries is every bit as important as stopping the people smugglers and illegal arrivals.”

Although the Australian Border Force has the capacity to apprehend illegal fishing boats, much of the poaching happens on distant coral reefs. One problem is that illegal fishing boats can plunder lootable resources and get out of Australian waters before Border Force can reach them. So while regulation might be well enforced on reefs within the Great Barrier Reef, for instance, offshore reefs are comparably weakly regulated.

But stronger monitoring and enforcement might not be the only solution anyway. My team’s research, which involved interviewing sea cucumber fishers from Fiji, Kiribati, Tonga and New Caledonia, suggests that they see themselves as having few other livelihood options besides fishing. This means that even if their fishery collapsed or was closed down by authorities, they would simply move elsewhere or fish a different species.

Many fishers from Southeast Asia have doubtless been lured to poaching in Australian waters by similar issues. Curbing the rise in poaching therefore requires not only continued enforcement but also, crucially, foreign aid investment that can help these fishers to diversify their livelihoods.

Australia recently reshaped its foreign aid policy to focus predominantly on delivering “economic growth and poverty reduction”. Organisations such as the Australian Centre for International Agricultural Research (ACIAR) are investing in overseas research and development projects to provide more income-generating opportunities in fisheries and aquaculture. Support to Southeast Asian countries makes up 49% of the budget for fisheries and aquaculture projects.

Australia’s approach to reducing poaching of threatened resources should therefore be multifaceted. Helping foreign fishers deal with their own problems of overfishing by giving them more options to earn a living will ultimately help to tackle the root cause of marine poaching.

The Conversation

Steven Purcell, Senior Rearch Fellow in Fisheries Ecology, Southern Cross University and Hampus Eriksson, Senior research fellow, University of Wollongong

This article was originally published on The Conversation. Read the original article.