Tasmania’s salmon industry detonates underwater bombs to scare away seals – but at what cost?


Shutterstock

Benjamin J. Richardson, University of TasmaniaAustralians consume a lot of salmon – much of it farmed in Tasmania. But as Richard Flanagan’s new book Toxic shows, concern about the industry’s environmental damage is growing.

With the industry set to double in size by 2030, one dubious industry practice should be intensely scrutinised – the use of so-called “cracker bombs” or seal bombs.

The A$1 billion industry uses the technique to deter seals and protect fish farming operations. Cracker bombs are underwater explosive devices that emit sharp, extremely loud noise impulses. Combined, Tasmania’s three major salmon farm operators have detonated at least 77,000 crackers since 2018.

The industry says the deterrent is necessary, but international research shows the devices pose a significant threat to some marine life. Unless the salmon industry is more strictly controlled, native species will likely be killed or injured as the industry expands.

pile of grey and white fish
Tasmanian salmon farming is a billion-dollar industry.
Shutterstock

Protecting a lucrative industry

Marine farming has been growing rapidly in Tasmania since the 1990s, and Atlantic salmon is Tasmania’s most lucrative fishery‑related industry. The salmon industry comprises three major producers: Huon Aquaculture, Tassal and Petuna.

These companies go to great effort to protect their operations from fur seals, which are protected in Australia with an exemption for the salmon industry.

Seals may attack fish pens in search of food and injure salmon farm divers, though known incidents of harm to divers are extremely rare.

The industry uses a number of seal deterrent devices, the use of which is approved by the government. They include:

  • lead-filled projectiles known as “beanbags”, which are fired from a gun
  • sedation darts fired from a gun
  • explosive charges or “crackers” thrown into the water which detonate under the surface.

In June this year, the ABC reported on government documents showing the three major salmon producers had detonated more than 77,000 crackers since 2018. The documents showed how various seal deterrent methods had led to maiming, death and seal injuries resulting in euthanasia. Blunt-force trauma was a factor in half the reported seal deaths.

A response to this article by the salmon industry can be found below. The industry has previoulsy defended the use of cracker bombs, saying it has a responsibility to protect workers. It says the increased use of seal-proof infrastructure means the use of seal deterrents is declining. If this is true, it’s not yet strongly reflected in the data.




Read more:
Here’s the seafood Australians eat (and what we should be eating)


salmon farm infrastructure in water
Seal deterrents are deployed to protect salmon farm operations.
Shutterstock

Piercing the ocean silence

Given the prevalence of seal bomb use by the salmon industry, it’s worth reviewing the evidence on how they affect seals and other marine life.

A study on the use of the devices in California showed they can cause horrific injuries to seals. The damage includes trauma to bones, soft tissue burns and prolapsed eye balls, as well as death.

And research suggests damage to marine life extends far beyond seals. For example, the devices can disturb porpoises which rely on echolocation to find food, avoid predators and navigate the ocean. Porpoises emit clicks and squeaks – sound which travels through the water and bounces off objects. In 2018, a study found seal bombs could disturb harbour porpoises in California at least 64 kilometres from the detonation site.

There is also a body of research showing how similar types of industrial noise affect marine life. A study in South Africa in 2017 showed how during seismic surveys in search of oil or gas, which produce intense ocean noise, penguins raising chicks often avoided their preferred foraging areas. Whales and fish have also shown similar avoidance behaviour.

The study showed underwater blasts can also kill and injure seabirds such as penguins. And there may be implications from leaving penguin nests unattended and vulnerable to predators, and leaving chicks hungry longer.

Research also shows underwater explosions damage to fish. One study on caged fish reported profound trauma to their ears, including blistering, holes and other damage. Another study cited official reports of dead fish in the vicinity of seal bomb explosions.




Read more:
Climate change is causing tuna to migrate, which could spell catastrophe for the small islands that depend on them


dolphin jumps out of waves
Man-made noise can disturb a variety of marine animals, including porpoises.
Shutterstock

Shining a light

Clearly, more scientific research is needed into how seal bombs affect marine life in the oceans off Tasmania. And regulators should impose far stricter limits on the salmon industry’s use of seal bombs – a call echoed by Tasmania’s Salmon Reform Alliance.

All this is unfolding as federal environment laws fail to protect Australian plant and animal species, including marine wildlife.

And the laws in Tasmania are far from perfect. In 2017, Tasmania’s Finfish Farming Environmental Regulation Act introduced opportunities for better oversight of commercial fisheries. However, as the Environmental Defenders Office (EDO) has noted, the director of Tasmania’s Environment Protection Authority can decide on license applications by salmon farms without the development necessarily undergoing a full environmental assessment.

Tasmania’s Marine Farming Planning Act covers salmon farm locations and leases. As the EDO has noted, the public is not notified of some key decisions under the law and has very limited public rights of appeal.

Two relevant public inquiries are underway – a federal inquiry into aquaculture expansion and a Tasmanian parliamentary probe into fin-fish sustainability. Both have heard evidence from community stakeholders, such as the Tasmanian Alliance for Marine Protection and the Tasmanian Conservation Trust, that the Tasmanian salmon industry lacks transparency and provides insufficient opportunities for public input into environmental governance.

The Tasmanian government has thrown its support behind rapid expansion of the salmon industry. But it’s essential that the industry is more tightly regulated, and far more accountable for any environmental damage it creates.




Read more:
Why Indigenous knowledge should be an essential part of how we govern the world’s oceans



In a statement in response to this article, the Tasmanian Salmonid Growers Association, which represents the three producers named above, said:

Around $500 million has been spent on innovative pens by the industry. These pens are designed to minimise risks to wildlife as well as to fish stocks and the employees. We believe that farms should be designed to minimise the threat of seals, but we also understand that non-lethal deterrents are a part of the measures approved by the government for the individual member companies to use. If these deterrents are used it is under strict guidelines, sparingly, and in emergency situations when staff are threatened by these animals, which can be very aggressive.

Tasmania has a strong, highly regulated, longstanding salmon industry of which we should all be proud. The salmon industry will continue its track record of operating at world’s best practice now and into future. Our local people have been working in regional communities for more than 30 years, to bring healthy, nutritious salmon to Australian dinner plates, through innovation and determination.The Conversation

Benjamin J. Richardson, Professor of Environmental Law, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

These underwater photos show Norfolk Island reef life still thrives, from vibrant blue flatworms to soft pink corals



A big coral bommie in the lagoon at Norfolk Island.
John Turbull , Author provided

John Turnbull, UNSW

Environmental scientists see flora, fauna and phenomena the rest of us rarely do. In this new series, we’ve invited them to share their unique photos from the field.


Two weeks ago, I found myself hitting the water on Norfolk Island, complete with a survey reel, slate and camera.

Norfolk Island is a small volcanic outcrop located between New Caledonia and New Zealand, 1,400 kilometres east of Australia’s Gold Coast. It’s surrounded by coral reefs, with a shallow lagoon on the south side that looks out on two smaller islands: Nepean and Phillip.

The island is picturesque, but like marine environments the world over, Norfolk Marine Park is subject to pressures from climate change, fishing pressure, habitat change and pollution.

I was diving in the marine park as a volunteer for Reef Life Survey, a citizen science program where trained SCUBA divers survey marine biodiversity in rocky and coral reefs around the world. We first surveyed Norfolk Island in 2009, then again in 2013, with an eight year hiatus before our return this month.

While the scientific analysis of our data is yet to be done, we can make anecdotal observations to compare this year’s findings with prior records and photographs. This time, our surveys turned up several new sightings and observations.

A wrinkly orange nudibranch nestled in algae
A red-ringed nudibranch (Ardeadoris rubroannulata). This beautiful little mollusc was a couple of centimetres long, nestled on the side of a wall covered in colourful algae. I had to look twice to notice it, but recognised it as a species I had seen before in Sydney. It had previously only been recorded in the Coral Sea, the east coast of Australia and Lord Howe island, so it was nice to get a record of it even further east in the Pacific.
John Turnbull, Author provided

What we saw

Diving under the waves in Norfolk Marine Park takes you into a world of crackling, popping reef sounds through clear blue water, with darting tropical fish, a tapestry of algae and hard and soft corals in pink, green, brown and red.

In these surveys we record fish species including their size and abundance, invertebrates such as urchins and sea stars, and habitat such as coral cover. This allows us to track changes in marine life using standardised scientific methods.

Emily Bay is a sheltered swimming beach at the eastern end of the lagoon, great for snorkelling too thanks to the diverse corals just below the surface.
John Turbull, Author provided
An orange fish near a mound of orange coral
Banded parma are quite territorial — they charge you as you approach their turf. This one is guarding what it regards as its own personal coral clump.
John Turbull, Author provided

Given recent major marine heatwaves and bleaching events in Australia, we were pleased to see healthy corals on many of our survey sites on Norfolk. We even felt there had been increases in coral cover at some sites.

This may be due to Norfolk’s location. The island is further south than most Australian coral reefs, which means it has cooler seas, and it’s surrounded by deeper water. I’m a marine ecologist involved in soft coral monitoring at the University of NSW, so I particularly noticed the wonderful diversity and size of soft corals.

Healthy brown coral garden
This photo shows the structure corals provide for fish and other animals to shelter in. They are the foundation for the whole tropical marine community. The corals here are a healthy brown — which comes from the symbiotic algae in their tissues – with no signs of bleaching.
John Turbull, Author provided
Soft pink coral
The soft corals on Norfolk Island are some of the largest I’ve seen. Their structure is made up of soft tissue, often inflated by water pressure, rather than hard skeleton.
John Turbull, Author provided
Close-up of white, wrinkly coral
Hard corals come in a diversity of shapes and sizes, including this massive form growing on the side of rock wall.
John Turbull, Author provided

I noticed generally low numbers of large fish such as morwong and sharks on our survey sites. Some classes of invertebrate were also rare on this year’s surveys, particularly sea shell animals like tritons and whelks.

Urchins, on the other hand, were common, particularly the red urchin. Some sites also had numerous black long-spined urchins and large sea lamingtons.

These invertebrate observations follow patterns we see in eastern and southern Australia, where there are declines in the numbers of many invertebrate species, and increases in urchin barrens — regions where urchin populations grow unchecked.

The expansion of urchin barrens can threaten biodiversity in a region, as large numbers of a single species of urchin can out-compete multiple species of other invertebrates, over-graze algae and reduce habitat suitable for fish.

Red urchin beside coral
The abundant red urchin competes for space with other invertebrates, such as this one encrusting hard coral.
John Turbull, Author provided
Fat, black and white urchins beneath a coral mound
Lamingtons are an Australian cake (although there are claims they were invented in NZ!) and I love this descriptive common name for the Tripneustes gratilla urchin. The sea lamingtons on Norfolk appear particularly fat and happy, as they cluster in sheltered grooves during the day to avoid predators. They can also be different colours — I’ve seen them on the east coast of Australia in orange and cream, even with stripes.
John Turbull, Author provided
Two spindly shrimp beneath coral
A pair of banded cleaner shrimp, which grow to 9cm long. They advertise their fish cleaning services with their distinct banding and white antennae.
John Turbull, Author provided

A highlight of any survey dive is when you find an animal you suspect may not have been recorded at a location before, and I had several of those on this trip.

I recorded first sightings for Reef Life Survey of blue mao mao, convict surgeonfish, the blue band glidergoby, sergeant major (a damselfish), chestnut blenny, Susan’s flatworm, red-ringed nudibranch, fine-net peristernia and an undescribed weedfish.

While some of these sightings are yet to be confirmed by specialists, they gave a buzz of excitement each night as we searched the records to confirm our suspicions of a new find.

A school of large blu fish
This big school of drummer circled us for several minutes on our first survey dive at Nepean Island. If you look closely you can see one of the fish is different, in the top right. This is one of a few blue mao mao circulating in the school – and a first sighting for Reef Life Survey at Norfolk. You might also notice another species in the school, the darker spotted sawtail down the bottom of the photo.
John Turbull, Author provided
A vibrant blue ribbon-like worm with an orange stripe
Susan’s flatworm is a colourful invertebrate listed as living only in the Indian Ocean and Indonesia. This sighting from Norfolk Island is a new record in the Pacific Ocean. When I first saw this little worm at the end of a survey, I wondered if it was anything special. Just as well I took the photo anyway!
John Turbull, Author provided

Recruiting the locals

Other highlights for me included the warm welcome we received from the local community on Norfolk and the great turnout we had at our community seminar. Everyone I spoke to was supportive and encouraging when they heard we were on the island as volunteers doing surveys, and several people expressed interest in getting involved.

This is great news, as the best outcome is for local people to be trained to conduct their own local surveys.

An underwater SCUBA selfie
Tyson, Sal, Jamie, Toni and me taking an underwater selfie on the west side of Phillip Island, 10 metres below the surface. It’s harder than on land, with your fins off the ground, everyone moving and bubbles to deal with.
John Turbull, Author provided

Ideally we will return for comprehensive surveys of our 17 sites every two years or so, allowing us to plot trends over time. Only then can we hope to understand what is really happening in our marine environment, and make evidence-based conservation decisions. Having a skilled local team would make this easier and more likely to happen.

In any case, our 2021 surveys in Norfolk Marine Park, conducted by our team of five dedicated volunteers and supported by many others, give us one more essential point in time in the Norfolk series, and gave me some great memories to boot.

You can view my full photo album from the Norfolk Island survey here.




Read more:
Photos from the field: zooming in on Australia’s hidden world of exquisite mites, snails and beetles


The Conversation


John Turnbull, Postdoctoral research associate, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Deep impact: grey seals clap underwater to communicate



Ben Burville, Author provided

David Hocking, Monash University; Ben Burville, Newcastle University, and Felix Georg Marx, Te Papa Tongarewa

Have you ever clapped your hands to get someone’s attention? The resulting “crack!” sound is hard to ignore, rising above and penetrating through any background noise.

Now imagine trying to do it underwater – you would be unlikely to achieve quite the same impact.

Amazingly, new footage released this week in the journal Marine Mammal Science shows breeding grey seals doing just that: they clap at each other to warn off competitors and attract potential mates.

Grey seal clapping underwater. Filmed by Ben Burville as part of Project Grypus.

Why is this unusual?

Like their land-living relatives, marine mammals primarily communicate vocally – think of dolphin whistles or the famous song of humpback whales. Grey seals are no exception, and in fact can be surprisingly versatile.

Besides the bizarre “rup” and “rupe” calls these seals normally make in the wild (see the video below), some captive animals have even been trained to perform the Star Wars theme tune!

But vocals are only half the story. Many marine mammals also produce percussive sounds, such as by slapping the water with their flippers or tails. Normally this happens at the surface, and only involves one flipper at a time.

What makes grey seals different is that – like humans – they literally clap their forelimbs together, and they do it entirely underwater.




Read more:
Sharp claws helped ancient seals conquer the oceans


The behaviour that took 17 years to film

Recording the claps was far from easy, and took no less than 17 years of scuba diving by “seal diver” and marine biologist Ben Burville.

Seal diver Ben Burville with one of his dive buddies – a wild grey seal off the Farne Islands, UK.
Photo provided by Ben Burville.

Ben was no stranger to the clapping sound itself. For years, he had heard it when diving with grey seals during their breeding season. Similar noises had also been detected by researchers using underwater microphones, but had been mistaken for a vocal signal.

It wasn’t until he actually saw a big male clapping together its paw-like flippers that Ben finally identified the true source of the sound. Yet the claps were quick and difficult to film; by the time he pointed his camera, things had usually moved on.

Years passed until finally, in October 2017, Ben caught the behaviour on film while diving near the Farne Islands, UK. A male grey seal performed seven claps right in front of him while his camera was rolling.

Grey seals use their short paw-like forelimbs to make loud clapping sounds underwater.
Filmed by Ben Burville. Illustrations by David Hocking.

Why do grey seals clap?

At first, the discovery might not seem that surprising. After all, seals are famous for performing this behaviour in zoos and aquaria. However, there is a crucial difference: whereas captive animals (usually fur seals or sea lions) have been trained to clap for our entertainment, grey seals do so in the wild and of their own accord.

So why do they do it?

Imagine being in a noisy room, with everyone around you chatting away. Getting attention can be difficult, unless you make a statement. That’s exactly what a clap is: a sharp, loud noise that rises above the background chatter.

Usually it’s males that do the clapping – sometimes by themselves, and sometimes at each other. Depending on the context, the claps may help ward off competitors and/or attract potential mates.

Similar functions underlie display behaviour in many other species. Think of a chest-beating male gorilla, for example. Like seal claps, those chest beats carry two messages: “I am strong, stay away”, and “I am strong, my genes are good.”

Male gorillas beat their chest as a show of strength to competitors and potential mates.

Do other marine mammals clap?

The short answer seems to be no, or at least not as far as we know. Clapping seems to be a genuinely novel behaviour that evolved in seals only once. Perhaps larger species such as sea lions are prevented from doing it by increased water resistance.

Australian sea lions have long flipper-like forelimbs that may create too much drag to clap effectively underwater.
Photo by David Hocking

Of course, it is also possible that some other species also clap, but haven’t done so in front of a camera.




Read more:
When mammals took to water they needed a few tricks to eat their underwater prey


Even if clapping were unique to grey seals, it seems the sharp signal it generates is important for many marine mammals. Several dolphins, whales and seals produce similar sounds via tail or flipper slaps, or even gunshot-like vocalisations. The oceans are a noisy place, after all, and it can be important to stand out in a crowd.

Wild harbour seal slapping the water to create a loud noise – possibly to scare fish out of hiding so that they can be caught.

What should we learn from this?

Clapping seals show us just how much we still don’t know about the remarkable mammals in our oceans. Clapping seems to be an important social behaviour, hence anything that disturbs it may impact breeding success and survival.

Human noise pollution is known to interfere with other forms of marine mammal communication, including whale song. Loud industrial noises could conceivably disturb grey seals (and other species that rely on acoustic signals) in similar ways.

But if we do not know a behaviour exists, we cannot easily act to protect it.

Understanding the animals around us better can therefore help us to protect them and their way of life.The Conversation


Photo by Ben Burville

David Hocking, Postdoctoral fellow, Monash University; Ben Burville, Visiting Researcher – Marine Biology, Newcastle University, and Felix Georg Marx, Curator Vertebrates, Te Papa Tongarewa

This article is republished from The Conversation under a Creative Commons license. Read the original article.