Melbourne and Adelaide have been Australia’s most vulnerable major cities to killer heatwaves


Thomas Longden, University of Technology Sydney

Melbourne and Adelaide have been most prone to deadly heatwave conditions among Australia’s five largest cities, according to my new research published in Climatic Change.

My study shows that between 2001 and 2015, Melbourne and Adelaide suffered the most exposure to temperatures beyond a crucial threshold of 7.26℃ above the average. Above this threshold, deaths are more likely because people are not acclimatised to the extreme weather.

I estimated that there were 151 deaths in Melbourne and 144 in Adelaide due to extreme heatwaves – those above this 7.26℃ threshold – between 2001 and 2015.

Heatwaves can cause significant numbers of deaths, especially among vulnerable groups of people who are not prepared for or acclimatised to extreme hot temperatures.

Even though Melbourne and Adelaide are located in more temperate areas (in comparison with more northerly cities such as Brisbane), they have been periodically hit by severe heatwaves.




Read more:
We’ve learned a lot about heatwaves, but we’re still just warming up


In my research, I looked at the “Excess Heat Factor”, a measure used by the Bureau of Meteorology as part of its heatwave forecasts. It is the difference between the 3-day average temperature and the 30-day average, and is therefore a measure of how “unusually hot” it is during a heatwave. It captures how much residents are likely to struggle to cope with the heat.

The graphs below show the frequency of excessively hot or cold weather for each of Australia’s major cities from 2001 to 2015. These charts show that most days had temperatures where the 3-day average was 2℃ higher or lower than the 30-day average.

A grey dashed line shows the extreme heat threshold that my study found was associated with higher deaths, relative to moderately warm and cool days.
I then estimated the threshold at which there is a significantly increased risk of deaths.

The death rate (per 100,000 people) that coincides with the extreme heat acclimatisation measure is shown as a black line on each of the graphs. This is an average impact of temperature on death rates, adjusted for different cities’ population sizes and baseline death rates.

Between 2001 and 2015, most of the events above the 7.26℃ extreme heat threshold occurred in Adelaide, Melbourne and Perth. Brisbane and Sydney had fewer days above this threshold.

Figure 1 – Histograms of the Excess Heat Index for major Australian cities between 2001 and 2015.

The importance of acclimatisation

Several previous studies have linked excessive heat to adverse events such as deaths (see here, here and here), and emergency department visits and ambulance call-outs (see here, here and here). But my study is the first to solely focus on the extreme heat index acclimatisation measure, and to identify a temperature threshold in this way. This measure is important, as it identifies the times when residents of cities with different background climates begin to struggle with the heat.

The Bureau of Meteorology does not currently use the 7.26℃ threshold identified in my paper. Doing so may improve predictions of which heatwaves are most likely to turn deadly for significant numbers of people living in our major cities.

Implications for policy

Since the severe heatwaves of 2009, many states and territories have implemented or revised their heatwave response plans, or conducted awareness campaigns to educate people about the health risks. But more can be done to make vulnerable people aware of upcoming heatwave events.

A 2016 review proposed that heatwave response plans and early warning systems should be evaluated and updated at least every five years, to ensure that they remain effective, and to incorporate up-to-date knowledge about population-level vulnerability to heat stress.

While my research has focused on Australia’s five largest cities, this does not mean that extreme heat is any less dangerous in other areas. Nor is the danger limited to prolonged heatwaves – individual hot days can catch people out too. A NSW study found that emergency hospital admissions due to dehydration and other heat-related injuries rose significantly on individual hot days, as well as during hot spells lasting at least three days.

This suggests that we need to develop more complex heat risk management plans, with targeted responses for different health issues based on the longevity of extreme heat events.

Implications for the future

We also need to consider the patterns of extremely hot temperatures that we are likely to encounter in the future. Recent research found that changes in the frequency and duration of heatwaves will be larger in the north of Australia than the south. But the same study also found that “heatwave amplitude” – the intensity of the hottest day of the hottest heatwave – will increase more in southern parts of Australia.

The ConversationThis research suggests that cities south of Brisbane will experience the most severe temperature spikes beyond what their residents are used to dealing with.

Thomas Longden, Senior Research Fellow, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Advertisements

It’s a savage summer in the Northern Hemisphere – and climate change is slashing the odds of more heatwaves


Andrew King, University of Melbourne and Ben Henley, University of Melbourne

In Australia we know about sweltering summer heat. We all remember the images of burned koala paws, collapsing tennis players and, far more seriously, the tragic events of Black Saturday.

Aussies may scoff at Britain’s idea of a heatwave, but this time it’s the real deal and it’s no laughing matter.

Extreme heat has hit locations throughout the Northern Hemisphere, in places as far apart as Montreal, Glasgow, Tokyo and Lapland. In the past few weeks heat records have tumbled in a wide range of places, most notably:




Read more:
Why hot weather records continue to tumble worldwide


Heat has not been the only problem. Much of northern Europe is experiencing a very persistent drought, with little to no measurable rainfall in months. This has caused the normally lush green fields of England and other European countries to turn brown and even reveal previously hidden archaeological monuments.

There have also been major wildfires in northern England, Sweden and, most recently and devastatingly, Greece. The Greek wildfires came off the back of a very dry winter and spring.

What’s behind the widespread extreme heat?

The jet stream, a high-altitude band of air that pushes weather systems around at lower altitudes, has been weaker than normal. It has also been positioned unusually far to the north, particularly over Europe. This has kept the low-pressure systems that often drive wind and rain over northern Europe at bay.

The jet stream has remained locked in roughly the same position over the Atlantic Ocean and northern Europe for the past couple of months. This has meant that the same weather types have remained over the same locations most of the time.

Weather is typically more transient than it has been recently. Even when we do have blocking high-pressure systems associated with high temperatures in northern Europe, they don’t normally linger as long as this.

Is it driven by climate change?

Although climatologists have made great strides in recent years in the field of event attribution – identifying the human climate fingerprint on particular extreme weather events – it is hard to quantify the role of climate change in an event that is still unfolding.

Until the final numbers are in we won’t be able to tell just how much climate change has altered the likelihood or intensity of these particular heat extremes.

Having said that, we can use past analyses of extreme heat events, together with future climate change projections, to infer whether climate change is playing a role in these events.

We also know that increasing numbers of hot temperature records are being set, and that the increased probability of hot temperature records can indeed be attributed to the human influence on the climate.

In Europe especially, there is already a large body of literature that has looked at the role of human-caused climate change in heat extremes. In fact, the very first event attribution study, led by Peter Stott from the UK Met Office, found that human-caused climate change had at least doubled the likelihood of the infamous European heatwave of 2003.

For all manner of heat extremes in Europe and elsewhere, including in Japan, a clear and discernible link with climate change has been made.

Research has also shown that heat extremes similar to those witnessed over the past month or two are expected to become more common as global temperatures continue to climb. The world has so far had around 1℃ of global warming above pre-industrial levels, but at the global warming limits proposed in the Paris climate agreement, hot summers like that of 2003 in central Europe would be a common occurrence.

At 2℃ of global warming, the higher of the two Paris targets, 2003-like hot summers would very likely happen in most years.

Similarly, we know that heat exposure and heat-induced deaths in Europe will increase with global warming, even if we can limit this warming to the levels agreed in Paris.




Read more:
Yes, the Arctic’s freakishly warm winter is due to humans’ climate influence


But summers have always been hot, haven’t they?

For most parts of the world summers have got warmer, and the hottest summer on record is relatively recent – such as 2003 in parts of central Europe and 2010 in much of eastern Europe. One exception is central England, where the hottest summer remains 1976, although it may be challenged this year.

While extreme hot summers and heatwaves did happen in the past, they were less common. One big difference as far as England is concerned is that its extreme 1976 heatwave was a global outlier, whereas this year’s isn’t.

In 1976 northwestern Europe had higher temperature anomalies than almost anywhere else on the globe. In June 2018 the same region was unusually warm, but so was most of the rest of the Northern Hemisphere.

The ConversationSo while the persistent weather patterns are driving much of the extreme heat we’re seeing across the Northern Hemisphere, we know that human-caused climate change is nudging the temperatures up and increasing the odds of new heat extremes.

Andrew King, ARC DECRA fellow, University of Melbourne and Ben Henley, Research Fellow in Climate and Water Resources, University of Melbourne

This article was originally published on The Conversation. Read the original article.

Red sky at night, shepherd’s delight: the science of beautiful sunsets



File 20180717 44079 1elhry6.jpg?ixlib=rb 1.1
If you live in a place where the weather moves west to east, then an old proverb could help you predict the weather.
TimOve/flickr

Adam Morgan, Australian Bureau of Meteorology

“A red sky at night is a shepherd’s delight! A red sky in the morning is a shepherd’s warning.”

Perhaps this saying came to mind if you caught a spectacular sunrise or sunset recently.

Since biblical times and probably before, proverbs and folklore such as this developed as a way for societies to understand and foretell prevailing weather conditions.

The “red sky” proverb has endured across cultures for centuries, and modern science can explain why this is so.




Read more:
Here’s how a complex low-pressure system sent temperatures plummeting


What causes a red sky at sunrise and sunset?

The Sun is low on the horizon at sunrise and sunset. At these times of the day, sunlight has had to travel through more of the atmosphere to reach us. When light hits the atmosphere it is scattered, particularly when dust, smoke and other particles are in the air.

This scattering affects the blue part of the light spectrum the most. So by the time the sunlight reaches our eyes there is generally more of the red and yellow parts of the spectrum remaining.

Dust and smoke particles commonly build up in the atmosphere beneath high-pressure systems, which are generally associated with dry and settled weather.

If you’ve ever been to Darwin in the Northern Territory during the dry season (the period between May and September), you’ll know glorious red and orange sunsets are an almost daily occurrence.

This makes sense – the sky across the Top End at this time of year is often full of dust particles whipped up off the land by dry southeasterly winds, as well as smoke from bushfires burning through the landscape.

What can red sky tell us about the weather?

In areas of the world where weather systems move routinely from the west to the east, including across southern areas of Australia, the “red sky” proverb often holds true.

A red sky sunrise suggests that an area of high pressure and fine weather, with its trapped dust and other particles, has moved out towards to the east. This allows for an area of lower pressure and deteriorating weather – perhaps a cold front and band of rain – to move in from the west during the day.

On the other hand, a red sky sunset tells us the worst of the weather has now eased, with higher pressure and improving weather approaching from the west for the following day.

Across northern Australia and other areas of the tropics, the “red sky” proverb is an unreliable method to predict the weather. In these regions, weather patterns are often very localised, moving in no particular direction at all, and larger tropical weather systems usually move from east to west.

Red skies and cloud

What often makes red sky sunrises and sunsets even more spectacular is the position of the Sun in the sky, relative to cloud.

When the Sun is low on the horizon, rays of light shine back up onto the underside of cloud high in the sky, reflecting back those bright orange and red colours that make it look as if the sky has turned to fire.

With a red sky sunrise, the eastern sky is more likely to be cloud-free with finer weather, allowing the Sun to shine upon the higher cloud moving in with the deteriorating weather from the west.

With a red sky sunset, it’s the western sky more likely to be clear, with the Sun’s rays shining up onto cloud further east.

So the next time you spot a spectacular sunrise or sunset, keep the “red sky” proverb in mind and you’ll become a pro at forecasting the weather in no time!




Read more:
Too wet? Too cold? Too hot? This is how weather affects the trips we make


The Conversation

Adam Morgan, Senior Meteorologist, Australian Bureau of Meteorology

This article was originally published on The Conversation. Read the original article.

South-East Queensland is droughtier and floodier than we thought



File 20180620 137734 1bzxjzp.jpg?ixlib=rb 1.1
South-East Queensland residents need to prepare for more regular floods, according to new data.
Shutterstock

Jack Coates-Marnane, Griffith University; Joanne Burton, Griffith University; John Tibby, University of Adelaide; Jon Olley, Griffith University; Joseph M. McMahon, Griffith University, and Justine Kemp, Griffith University

New data recording the past 1,500 years of flows in the Brisbane River have revealed that South-East Queensland’s climate – once assumed to be largely stable – is in fact highly variable.

Until now, we have only had access to 200 years of weather records in South-East Queensland. But our new research used marine sediment cores (dirt from the bottom of the ocean) to reconstruct stream flows and rainfall over past millennia.

This shows that long droughts and regular floods are both prominent features in South-East Queensland’s climate.

This is concerning. Decisions about where we build infrastructure and how we use water have been based on the assumption that our climate – especially rainfall – is relatively stable.




Read more:
Old floods show Brisbane’s next big wet might be closer than we think


Archives of past climates

Natural archives of climate are preserved within things such as tree rings, coral skeletons, ice cores, lake or marine sediments. Examining them lets us extend our climate records back beyond documented history.

We can then undertake water planning in the context of a longer record of climate, instead of our short-term instrumental records.

In this study, we used sediment cores from Moreton Bay (next to the mouth of the Brisbane River) to reconstruct the river’s flow over the past 1,500 years. In these cores we measured various indicators of fresh water to reconstruct a record of streamflow and regional rainfall.

At the turn of the last millennium the region was in the middle of a prolonged dry spell that lasted some six centuries, from roughly the year 600 to 1200. After about 1350 the region became gradually wetter, with peaks revealing a series of extreme floods in the late 1600s and early 1700s. Large floods in the 1700s have also been documented in the upper reaches of the catchment, in the Lockyer Valley.

These broad shifts in regional rainfall and streamflow are linked to drivers of global climates, including hemispheric cooling and the El Niño-Southern Oscillation.




Read more:
Explainer: El Niño and La Niña


A cool La Niña-dominant climate that persisted from roughly 1350 until 1750 caused increased rainfall and reduced evaporation.

In addition, the southward displacement of monsoon troughs at this time may have increased the likelihood of cyclone-related weather systems reaching southern Queensland.

This information helps us contextualise the climate of the last 200 years and gives us some insights into how regional rainfall responds to shifts in global climate.

Wet and dry extremes

Over the past 20 years, South-East Queensland has experienced its fair share of extreme weather events. Severe floods have caused deaths and damaged infrastructure. Flooding cost the Australian economy some A$30 billion in 2011.

Regular droughts may mean South-East Queensland needs to rethink water resource strategies.
Shutterstock

The millennium drought, which in this region was most severe from 2003-08, resulted in widespread water shortages. This prompted major investment in the South-East Queensland Water Grid, a connected network of dams, water treatment plants, reservoirs, pump stations and pipelines.

So far Queensland has coped with everything Mother Nature has thrown at it. But what if extreme floods and droughts became the norm rather than the exception?




Read more:
Floods don’t occur randomly, so why do we still plan as if they do?


Water quality is getting worse

The 2011 and 2013 floods highlighted the vulnerability to these extreme events of Brisbane’s major water treatment facility at Mt Crosby. The drinking water supply to the city in 2013 became too muddy for purification. The 2011 flood was also alarmingly muddy.

Such events also threaten the ecosystem health of downstream waterways, including the iconic Moreton Bay

Our reconstruction found that big floods over the past 1,500 years rivalled the size of floods in recorded history (1893, 1974 and 2011), but the level of sediment in the water of more recent floods seems to be unprecedented.

This indicates that historical and ongoing land-use changes in the Brisbane River catchment are contributing to more abrupt and erosive floods.

This will continue unless better land management techniques are adopted to improve the resilience of catchments to extreme weather events.

What does this mean for the future?

We are learning that over the last millennium natural climate and rainfall have been more variable than previously thought. This means that modern anthropogenic climate change may be exacerbated by a background of already high natural climate variability.

In addition, our water infrastructure has been built based on a narrow understanding of natural climate variability, limited to the last 200 years. This may mean the quantity of reliable long-term freshwater resources in eastern Australia has been overestimated.


The Conversation


Read more:
Droughts & flooding rains: what is due to climate change?


Jack Coates-Marnane, Post-doctoral research fellow, Griffith University; Joanne Burton, Adjunct Research Fellow, Griffith University; John Tibby, Senior Lecturer in Environmental Change, University of Adelaide; Jon Olley, Professor of Water Science, Griffith University; Joseph M. McMahon, PhD candidate, Griffith University, and Justine Kemp, Senior Research Fellow in Geomorphology, Griffith University

This article was originally published on The Conversation. Read the original article.

Winter is coming, and it’s looking mighty mild



File 20180531 120502 ay6jq9.jpg?ixlib=rb 1.1
Brrr! It’s cold in here!
Alpha/Flickr, CC BY-SA

Jonathan Pollock, Australian Bureau of Meteorology and Andrew B. Watkins, Australian Bureau of Meteorology

After an exceptionally warm and dry autumn, it’s time to look ahead to see what’s in store for winter. The Bureau of Meteorology’s climate outlooks for winter, issued today, shows above-average temperatures and below-average rainfall are likely across southern Australia. While some of us will relish the prospect of a mild winter, the dry isn’t necessarily good news for everyone.




Read more:
When is it going to snow? Getting a fix on what can make a good season


Warm lead-up to winter

Summer-like conditions continued into early autumn for much of southern Australia, including an exceptional heatwave in early April. Temperatures in autumn were warmer than average across much of the continent. New South Wales, South Australia, Western Australia and Victoria all experienced one of their warmest autumns since at least 1900. Overnight temperatures have also been warmer than average in most parts.

Autumn maximum temperature map.
Bureau of Meterology

Very dry autumn for the southern mainland

For many southern areas autumn wasn’t just warm, it was also extremely dry. New South Wales, Victoria, southwest Western Australia and South Australia all had one of their driest autumns on record.

Many farmers in southern Australia look to the autumn break – the first significant rain event (25mm or more) after summer – to kick off the crop and pasture growing season. The autumn break arrived by mid-May across southern Victoria, eastern New South Wales and southwest coastal Western Australia. However, farmers in northwest Victoria, inland New South Wales, eastern South Australia and much of inland Western Australia didn’t receive an autumn break this year.

One of reasons for the warm and dry autumn in the south was higher than average pressure over southern Australia. The high pressure meant rain bearing cold fronts from the Southern Ocean couldn’t push up into southern Australia.

Autumn rainfall map.
Bureau of Meterology

No strong influence from Pacific or Indian Ocean this winter

So, will this pattern of warm and dry continue? Two of the major drivers of Australia’s climate, the El Niño–Southern Oscillation (ENSO) in the Pacific Ocean, and its equivalent in the Indian Ocean, the Indian Ocean Dipole (IOD), were neutral during autumn, and are likely to remain so throughout winter.




Read more:
Droughts and flooding rains: it takes three oceans to explain Australia’s wild 21st-century weather


Of the eight international climate models surveyed by the Bureau of Meteorology, seven predict winter will see ENSO-neutral sea surface temperatures in the central Pacific, with only one model forecasting a warming to El Niño levels by August.

Models also suggest the Indian Ocean Dipole (IOD) will remain neutral through winter. But there is quite a range of scenarios from the international modelling centres the Bureau assesses. One model is predicting a positive IOD over winter, one model predicting a negative IOD in spring, and the other four are neutral. Typically, when the ENSO and IOD are both neutral there is no strong shift in the outlook towards widespread wetter or drier conditions across most of Australia.




Read more:
Explainer: El Niño and La Niña


Most international model outlooks for the ENSO sea surface temperature index in the central Pacific Ocean (NINO3.4) remain neutral in August.
Model outlooks provided by: BoM (Bureau of Meteorology), CanSIPS (Canadian Seasonal to Interannual Prediction System), ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), Météo France, NASA (National Aeronautics
Most international model outlooks for the IOD sea surface temperature index remain neutral in August.
Model outlooks provided by: BoM (Bureau of Meteorology), CanSIPS (Canadian Seasonal to Interannual Prediction System), ECMWF (European Centre for Medium-Range Weather Forecasts), Météo France, NASA (National Aeronautics and Space Administration), and the

However, when these major drivers are neutral, other factors can have a greater influence on Australian rainfall and temperature patterns. For instance, forecast warmer-than-usual temperatures in the Tasman Sea and the associated lower-than-normal air pressure this winter is likely to contribute to a weakening of westerly winds over southern Australia that would normally draw cold fronts up from the Southern Ocean.




Read more:
The BOM outlook for the weather over the next three months is ‘neutral’ – here’s what that really means


So, what’s the outlook for winter?

As a result of the weakened westerly winds, below-average winter rainfall is likely for western parts of Western Australia, and for most of New South Wales extending across the border into southern Queensland and northern Victoria. For most other parts, the outlook is neutral, meaning roughly equal chances of above- or below-average rainfall.

The outlook for June is looking particularly dry across most of the southern mainland.

The likely reduction in cold fronts, and clearer skies over much of the continent means warmer-than-average temperatures are favoured across southern Australia, with the strongest likelihood (about 80%) in the southeast.

The model suggests there is also an above-normal likelihood of winter “mildwaves” – periods of very mild weather – along Australia’s southeast coast.




Read more:
Winter heatwaves are nice … as extreme weather events go


So, what does this all mean? For farmers and those working in the agricultural sectors, the warmer temperatures mean soils will stay warm longer. This is likely to keep the crop and pasture growing window open a little longer before the cold of winter. Dry conditions are likely to mean a slow and possibly late start to the growing season, potentially pushing the crop harvest later into the warmer months of 2018, when heatwaves can become a problem.

What does this mean for the snow season?

For skiers, a later start to the season becomes more likely with a warm and dry June expected. On the other hand, neutral ENSO conditions typically bring snow cover that’s a little deeper than average by mid-season.

This is a contrast to strong El Niño or La Niña phases, which both typically mean less snow than usual, but for different reasons. El Niño phases mean less rainfall and warmer days during the snow season. La Niña years usually have more rain, but temperatures can be too high for snow to form.

This has happened more often in recent decades because of climate change. Historically, neutral years have had more consistent good snow depths than either El Niño or La Niña years, so late winter should be a good time to hit the slopes.


The ConversationFor more details on the long-range forecast for winter, visit our Climate Outlooks website and subscribe to Climate Outlooks to stay on top of what’s happening with the climate. A complete set of Climate Summaries covering May and autumn 2018 will be available on 1 June.

Jonathan Pollock, Climatologist, Australian Bureau of Meteorology and Andrew B. Watkins, Manager of Long-range Forecast Services, Australian Bureau of Meteorology

This article was originally published on The Conversation. Read the original article.

Ocean heat waves and weaker winds will keep Australia warm for a while yet


Jonathan Pollock, Australian Bureau of Meteorology; Andrew B. Watkins, Australian Bureau of Meteorology, and Catherine Ganter, Australian Bureau of Meteorology

The Australian Bureau of Meteorology’s latest climate outlook, issued today, suggests the above-average warmth of April is likely to extend into May, and for parts of the south, potentially into winter.

The outlooks for May temperatures show that both days and nights are likely to be warmer than average for much of Australia. Only northeast Queensland is likely to miss out on warmer temperatures, with no strong push there towards warmer or cooler conditions.

The unseasonable warmth, which has broken records in Adelaide and Sydney, appears to be driven by high ocean temperatures, and weaker westerly winds and much lower than average soil moisture across southern Australia.


Bureau of Meteorology

The rainfall outlook for May is mixed, but generally shows no strong shift towards a wetter or drier month for most of Australia.




Read more:
Winter heatwaves are nice … as extreme weather events go


By June the tendency for warmer than normal days may start to wane. This easing of the outlook for above average temperatures as we head into winter is reflected in the full May-July outlook, with only some parts of southern Australia likely to be warmer than average. Southern parts of Western Australia and South Australia have a moderate chance of warmer than average daytime temperatures, with stronger odds over southern Victoria.

The full May to July outlook shows a more balanced picture, with southern Australia more likely to experience higher than average temperatures.
Bureau of Meteorology

Odds don’t favour a strong push towards a particularly wet or dry three months for much of Australia, apart from some areas in the far southeast.

What’s behind the warmth?

The El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are two of Australia’s major climate drivers. ENSO is currently in a neutral phase, meaning its neither El Niño nor La Niña. Our outlooks suggest it is likely to stay neutral leading into winter.




Read more:
Explainer: El Niño and La Niña


The IOD is also neutral, and most models suggest it will remain so over the coming months.

But given it is harder to forecast ENSO and the IOD in autumn compared to other times of the year, climatologists will be monitoring Indian and Pacific Ocean temperature patterns closely as we edge towards winter.

With near-average temperature patterns in the tropical oceans to our east and west, there is no strong shift in the outlook towards widespread wetter or drier conditions for Australia.

Rainfall during May is expected to remain essentially average.
Bureau of Meteorology

However, for temperatures it’s a little different. Sure ENSO and the IOD are playing a minor role right now, but other factors are coming into play.




Read more:
The BOM outlook for the weather over the next three months is ‘neutral’ – here’s what that really means


Ocean heat waves

Ocean temperatures in the Tasman Sea and around New Zealand are much warmer than average – in fact at record levels in the past few months – and are expected to remain warm over the coming months. These warm sea temperatures are associated with a large area of lower than usual air pressure to Australia’s east, which is likely to weaken the westerly winds that normally bring cooler air to southern Australia in autumn and winter.

Another factor in the current and forecast warmth is the very much below average soil moisture across southern Australia. With little moisture available to evaporate and cool the air, and the soils themselves not able to store as much heat, the air above the ground heats more rapidly in the daytime.


Bureau of Meteorology

In addition to our natural climate drivers, Australian climate patterns are being influenced by the long-term trend in global air and ocean temperatures. Winter maximum temperatures have increased by 1℃ over the past century, with three of the top five warmest winters in the past 108 years occurring since 2009. Oceans around Australia have warmed by slightly more, with four of our top five warmest years since 2010.

The ConversationSo while the normal big two drivers of our climate remain benign, it would actually be wrong to assume there will be a quick return to more average temperatures. The outlook released today suggests we may have to wait at least another month until service returns to normal for much of the country.

Jonathan Pollock, Climatologist, Australian Bureau of Meteorology; Andrew B. Watkins, Manager of Long-range Forecast Services, Australian Bureau of Meteorology, and Catherine Ganter, Senior Climatologist, Australian Bureau of Meteorology

This article was originally published on The Conversation. Read the original article.

Australia’s 2017 environment scorecard: like a broken record, high temperatures further stress our ecosystems



File 20180407 5587 1mogxms.png?ixlib=rb 1.1
It was a hot year for many Australians.
ABCNews/David McMeekin

Albert Van Dijk, Australian National University and Madeleine Cahill, CSIRO

While rainfall conditions were generally good across Australia in 2017, record-breaking temperatures stressed our ecosystems on land and sea, according to our annual environmental scorecard. Unfortunately, it looks like those records will be broken again next year – and again in the years after that.

Indicators of Australia’s environment in 2017 compared to the previous year. Similar to national economic indicators they provide a summary, but also hide regional variations, complex interactions and long-term context.

National Scorecard

Our terrestrial environment has done relatively well in 2017, mainly thanks to good rainfall and leftover soil moisture from the year before. However, such a short summary for a country the size of a continent is bound to hide large regional differences. 2017 was no exception.

Western Australia and the Northern Territory received good rains, with vegetation growth, river flows and wetland area all coming in above average. By contrast, Queensland and particularly New South Wales saw a reversal of the previous year’s gains.

Environmental Condition Score in 2017 by state and territory. The large number is the score for 2017, the smaller number the change from the previous year.
Based on data on http://www.ausenv.online

Climate change is here to stay

There was good news and bad news for our atmosphere in 2017. Humanity’s collective action to fix the hole in the ozone layer is proving successful. The hole is the smallest it has been since 1988.

On the other hand, global carbon dioxide concentrations rose again, by 0.5%. While this was less than in the previous two years, it was still far from enough to stop accelerating global warming.

Globally, 2017 was the second-warmest year on record after 2016. It was the third-warmest year for Australia, and the hottest year on record in southern Queensland. These statistics are all the more remarkable because 2017 was not an El Niño year, during which high temperatures more commonly occur.

The world’s oceans were the hottest they’ve been since measurements started. Sea levels rose by 6.4mm, and sea ice cover at the poles reached another record low. In short, our planet is warming.




Read more:
Climate change’s signature was writ large on Australia’s crazy summer of 2017


The main events

Last year broke the most high-temperature records since 2009, which was at the height of the Millennium Drought – the worst drought since European settlement.

Queensland and northern New South Wales were affected most, with summer heatwaves in February and a second round of bleaching on the Great Barrier Reef. In March, Cyclone Debbie rammed into the Great Barrier Reef and the Queensland coast, bringing torrential rains and widespread flooding in its wake. The cyclone helped cool down the shallow reef waters but also ravaged delicate corals in its path, stirred up sediment and caused rivers to flush more damaging sediment and nutrients out to sea.

Winter was dry and the warmest on record and September also set heat records. Experts predicted the risk of a bad summer fire season, which did not happen, thanks to a combination of mild weather and well-timed rainfall. Nationally though, the number and size of fires were still above average, mainly due to good growing conditions in WA’s arid rangelands.

Tree growth hides loss of forests

Perhaps the most recognisable impact on our terrestrial ecosystems is the disappearance of mature vegetation after fire, drought or land clearing. We should have good data on such important changes, but we don’t.

Australia is large and poorly surveyed, so national mapping relies on satellite image interpretation. We used machine-learning algorithms to update national forest maps with more recent satellite images. These updated maps estimate a nationwide increase in forest area of 510,000ha, roughly the size of Kangaroo Island.

However, this increase is the difference between much larger gains and losses. Most of the forest increases occurred in dry woodlands in NSW and Queensland, most likely due to regrowth after a relatively wet 2016.

Unfortunately, these numbers do not paint a clear picture of the state of our ecosystems. Far more is lost from removing a hectare of dense native forest than is gained from a hectare of regrowth or new planting.

The current national mapping is insufficient to make these distinctions. We now have the satellite mapping data and technologies to do a better job. This should be a priority if we are to understand how our environment is changing and meet our international commitments.

Australia’s Environment Explorer (http://www.ausenv.online) provides summaries of environmental condition by location or region. This example shows local government areas where vegetation cover in 2017 was above average (blue colours) or below average (red colours).

Slow changes can still be deadly

While our climate is clearly changing, it is less clear how rising temperatures are impacting on our ecosystems. Many of our species are well adapted to heat, so the effects of slowly rising temperatures may go unnoticed until it is too late.

Temperatures in excess of 42℃ can kill large numbers of flying foxes, and this happened again in 2017. We know this because they roost together in their thousands and we can count the corpses under the trees.

What heat stress does to other species is far less known. There is evidence of koalas and some large birds suffering from hot days, but we barely understand how increasing temperatures may be chipping away at the cornerstones of our ecosystems: plants, bacteria, fungi, insects and other uncharismatic creatures.

At sea, we can see the impact of high sea temperatures through coral bleaching, visible even from space. Sea surface temperatures also reached record highs off the coast of southeast Australia for the second year in a row.

On top of the steady rise of ocean temperature, sea level and acidity, the East Australian Current is strengthening and reaching ever further into the Tasman Sea. The current carries tropical reef species to Sydney and yellowtail kingfish to Tasmania. The warmer water also ravages the remaining kelp forests and stresses Tasmania’s abalone, oyster and salmon industries.

The future is already here

Last year made it abundantly clear that climate change is here now, and here to stay. We will be seeing new heat records for years to come and, sadly, some species and ecosystems are unlikely to survive the onslaught.

But there are still things we can do to limit the damage. Reducing carbon emissions will still help limit future warming. Avoiding the destruction of native ecosystems should be a no-brainer.

That isn’t just about clearing farm land, which is often singled out. Australia’s population has grown by 31% since 2000. We’re adding the equivalent of a city the size of Canberra every year.

The ConversationEach of us uses space, infrastructure and resources and produces waste at levels far above the global average. If we want our land and oceans to support our privileged lifestyle in future, we have to learn to tread more lightly, and learn it fast.

Albert Van Dijk, Professor, Water and Landscape Dynamics, Fenner School of Environment & Society, Australian National University and Madeleine Cahill, Oceanographer, CSIRO

This article was originally published on The Conversation. Read the original article.