‘Sumbiotude’: a new word in the tiny (but growing) vocabulary for our emotional connection to the environment



Glenn Albrecht, Author provided

Glenn Albrecht, University of Sydney

Aboriginal and Torres Strait Islander readers are advised this article contains references to deceased people.

I am a child of the Anthropocene, born in 1953. I have lived in a period of history also known as the “Great Acceleration” as huge negative change unfolded.

While contemplating these changes, I have sensed, within humanity, a profound sense of emotional isolation. To help overcome the solitude, I have created the idea of sumbiotude, thinking and working in companionship with others, to reconnect to life.

Being alive in this particular era, I have had the privilege of living through the rapid transition from a focus on that which is “obvious to the senses” to our new ways of rendering the invisible, visible.




Read more:
From the bushfires to coronavirus, our old ‘normal’ is gone forever. So what’s next?


I also accept that reality is complex and independent of us and that new insights into nature can come via acts of scientific and conceptual discovery. However, I am always aware that I am walking in the footsteps of the late Big Bill Neidjie of Arnhem Land when in Gagudju Man he suggests:

We walk on earth,

We look after,

like rainbow sitting on top.

But something underneath,

under the ground.

We don’t know.

You don’t know.

At a time of massive biophysical change (heatwaves, wildfire, floods, pandemics), we need to expand our language to understand these changes and to be able to share the emotional upheavals they engender.

I’ve created a “sumbiography” (from the Greek, sumbios, which means living together) to investigate the union of elements in nature and culture that have symbiotically cohered into a view about life – a philosophy of my own.

For others, undertaking a sumbiography has the potential to help them find their own particular view of their emotional connection – or the lack of it – to the Earth.

A sumbiography can reveal just what kind of emotional compass we have with respect to our personal relationship to this living planet.

A new vocabulary

As a philosopher, my response to the encounter with the open cut coal mines of the desolated Upper Hunter region of NSW was to rethink the emotions of attachment to and abandonment of a place that is loved, and to find the right way to express my feelings.

As there was nothing in the English language to help me, I decided to create my own concept – a neologism – to adequately describe the emotional distress at the loss of one’s endemic sense of place.

It took the combination of a lifetime of teaching, thinking and a creative effort shared with my wife, Jillian, before the concept of “solastalgia” entered the world in 2003.




Read more:
The age of solastalgia


Solastalgia, the distressing lived experience of negative environmental change, arose from understanding that the positive side of the lived experience of Earth emotions had to have negative equivalents. Solastalgia marked the beginning of my journey of mental-landscape discovery.

That such a concept did not already exist in the English language was, to me, a sign of just how deeply alienated from our home we – as an Earth-destroying, or “terraphthoric”, culture – had become.

Co-existence with non-human life

My mother played a huge part in my rediscovery and naming of different, more positive, psychoterratic emotions.

In her late seventies, she was struggling: the legacy of tuberculosis had left her breathless and she was having trouble both retaining her independence and continuing as a volunteer guide at Kings Park in Perth. I shopped for her and we ate together most nights.

After a year where I lived close by, she suffered a big, bloody and lonely fall. Following her hospitalisation and recovery, I took her to live with me in the village of Jarrahdale in the Perth Hills.

Our house and block, “Birdland”, had jarrah trees on it and ground orchids; it was visited by kangaroos, possums, quenda (southern brown bandicoot) and many different kinds of birds.

A kangaroo resting at Birdland.
Glenn Albrecht, Author provided

My mother and I thrived there. She reconnected with her own endemic sense of place, and I thinking about the concepts and the associated words needed to account for that sense of reconnection and good Earth emotions.

If the mine-scape of the Upper Hunter and the homogeneity of the city of Perth represented the solastalgic Anthropocene to me, Jarrahdale had offered a lifeline to a different lifestyle and worldview – one where co-existence with non-human life went beyond companion and domesticated animals and a limited number of edible plants.

Adding richness to sumbiography

In loving each other as kin, my mother and I also shared a love of the endemic (endemophilia). This was made manifest in the moments when spider, donkey, enamel or bee orchids were found with almost the same excitement as very first encounters.

These five years with my mother added richness to my sumbiography.

As an adult, I could reunite with my past and feel, beyond solastalgia, positive emotional states residing in me that were also without the corresponding concepts, words and ideas in my language.




Read more:
Caring for community to beat coronavirus echoes Indigenous ideas of a good life


While based at Murdoch University, I began a systematic quest to negate solastalgia and all the other negative Earth emotions to add something new, something “terranascient” or Earth-creating that could join the dialectic of the psychoterratic.

Symbiosis

In 2011, I created the meme of the Symbiocene, which I defined as the next era in human and Earth history where reintegration of the Anthropos (humans) with the Sumbios (symbiotic life) was completed.

In 2013, aged 84, my mother died. Half her ashes were scattered carefully into the Kings Park bush around a huge old gnarly log from a long-dead jarrah tree.

Ground orchids abounded in this place, so too the red and green kangaroo paws. She deserved a presence in that park, as her spirit had graced it for more than 20 years. I imagine she became a copse of pink enamel orchids, glistening in the Perth spring sun.

If humans are kind to the Earth, some of her will also become a new jarrah tree, auburn hair all fiery in its wood grain.

‘Sumbiography’, ‘solastalgia’ and other emotions are discussed in the author’s book, Earth Emotions.
Shutterstock

For the great bulk of human existence, symbiosis was typical of our relationship to the rest of nature, and I wanted to regain the property of what the Greeks called sumbiosis or “companionship”.

Living together

If I live to be 100 years of age, it is my hope that my life will come to exemplify a neologism that is sumbiotude, or the state of living together.

Sumbiotude is the exact opposite of solitude: instead of contemplating life in isolation, sumbiotude involves contemplation and completion of a lifespan with the loving companionship of humans and non-humans.

I will also be happy if my creative, conceptual work can help Generation Symbiocene – which includes my own children, my step-grandchildren and my five-year-old granddaughter – live in a world where positive Earth emotions prevail.

This is an edited extract republished with permission from GriffithReview68: Getting On (Text), ed Ashley Hay griffithreview.comThe Conversation

Glenn Albrecht, Honorary Associate, School of Geosciences, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

I travelled Australia looking for peacock spiders, and collected 7 new species (and named one after the starry night sky)



Heath Warwick, Author provided

Joseph Schubert, Museums Victoria

After I found my first peacock spider in the wild in 2016, I was hooked. Three years later, I was travelling across Australia on a month-long expedition to document and name new species of peacock spiders.

Peacock spiders are a unique group of tiny, colourful, dancing spiders native to Australia. They’re roughly between 2.5 and 6 millimetres, depending on the species. Adult male peacock spiders are usually colourful, while female and juvenile peacock spiders are usually dull brown or grey.




Read more:
The spectacular peacock spider dance and its strange evolutionary roots


Like peacocks, the mature male peacock spiders display their vibrant colours in elegant courtship displays to impress females. They often elevate and wave their third pair of legs and lift their brilliantly coloured abdomens – like dancing.

Maratus laurenae. Male peacock spiders have brilliant colours on their abdomen to attract females.
Author provided

Up until 2011, there were only seven known species of them. But since then, the rate of scientific discovery has skyrocketed with upwards of 80 species being discovered in the last decade.

Thanks to my trip across Australia and the help from citizen scientists, I’ve recently scientifically described and named seven more species from Western Australia, South Australia and Victoria. This brings the total number of peacock spider species known to science up to 86.

Spider hunting: a game of luck

Citizen scientists – other peacock spider enthusiasts – shared photographs and locations of potentially undocumented species with me. I pulled these together to create a list of places in Australia to visit.

I usually find spider hunting to be a relaxing pastime, but this trip was incredibly stressful (albeit amazing).

The thing about peacock spiders is they’re mainly active during spring, which is when they breed. Colourful adult males are difficult – if not impossible – to find at other times of year, as they usually die shortly after the mating season. This meant I had a very short window to find what I needed to, or I had to wait another year.

Classic.

Even when they’re active, they can be difficult to come across unless weather conditions are ideal. Not too cold. Not too rainy. Not too hot. Not too sunny. Not too shady. Not too windy. As you can imagine, it’s largely a game of luck.

The wild west

I arrived in Perth, picked up my hire car and bought a foam mattress that fitted in the back of my car – my bed for half of the trip. I stocked up on tinned food, bread and water, and I headed north in search of these tiny eight-legged gems.

My first destination: Jurien Bay. I spent the whole day under the hot sun searching for a peculiar, scientifically unknown species that Western Australian photographer Su RamMohan had sent me photographs of. I was in the exact spot it had been photographed, but I just couldn’t find it!

I travelled across Denmark, Western Australia.
Author provided

The sun began to lower and I was using up precious time. I made what I now believe was the right decision and abandoned the Jurien Bay species for another time.

I spent days travelling between dramatic coastal landscapes, the rugged inland outback, and old, mysterious woodlands.

Kalbarri Gorge, Western Australia, where Maratus constellatus was found.
Author provided

I hunted tirelessly with my eyes fixed on the ground searching for movement. In a massive change of luck from the beginning of my trip, it seemed conditions were (mostly) on my side.

With the much-appreciated help of some of my field companions from the University of Hamburg and volunteers from the public, a total of five new species were discovered and scientifically named from Western Australia.

The Little Desert

Two days after returning from Western Australia, I headed to the Little Desert National Park in Victoria on a Bush Blitz expedition, joined by several of my colleagues from Museums Victoria.

I’d thought the landscape’s harsh, dry conditions were unsuitable for peacock spiders, as most described species are known to live in temperate regions.

Capturing spiders in a bug net.
Heath Warwick, Author provided

To my surprise, we found a massive diversity of them, including two species with a bigger range than we thought, and the discovery of another species unknown to science.

This is the first time two known species – Maratus robinsoni and Maratus vultus – had been found in Victoria. Previously, they had only been known to live in eastern New South Wales and southern Western Australia respectively.




Read more:
Don’t like spiders? Here are 10 reasons to change your mind


Our findings suggest other known species may have much bigger geographic ranges than we previously thought, and may occur in a much larger variety of habitats.

And our discovery of the unknown species (Maratus inaquosus), along with another collected by another wildlife photographer Nick Volpe from South Australia (Maratus volpei) brought the tally of discoveries to seven.

What’s in a name?

Writing scientific descriptions, documenting, and naming species is a crucial part in conserving our wildlife.




Read more:
Spiders are a treasure trove of scientific wonder


With global extinction rates at an unprecedented high, species conservation is more important than ever. But the only way we can know if we’re losing species is to show and understand they exist in the first place.


  • Maratus azureus: “Deep blue” in Latin, referring to the colour of the male.
Maratus azureus.
Author provided
  • Maratus constellatus: “Starry” in Latin, referring to the markings on the male’s abdomen which look like a starry night sky.
Maratus constellatus.
Author provided
  • Maratus inaquosus: “Dry” or “arid” in Latin, for the dry landscape in Little Desert National Park this species was found in.
Maratus inaquosus
Author provided
  • Maratus laurenae: Named in honour of my partner, Lauren Marcianti, who has supported my research with enthusiasm over the past few years.
Maratus laurenae
Author provided
  • Maratus noggerup: Named after the location where this species was found: Noggerup, Western Australia.
Maratus noggerup
Author provided
  • Maratus suae: Named in honour of photographer Su RamMohan who discovered this species and provided useful information about their locations in Western Australia.
Maratus suae
Author provided
  • Maratus volpei: Named in honour of photographer Nick Volpe who discovered and collected specimens of this species to be examined in my paper.
Maratus volpei
Nick Volpe, Author provided

These names allow us to communicate important information about these animals to other scientists, as well as to build legislation around them in the case there are risks to their conservation status.

I plan on visiting some more remote parts of Australia in hopes of finding more new peacock spider species. I strongly suspect there’s more work to be done, and more peacock spiders to discover.The Conversation

Joseph Schubert, Entomology/Arachnology Registration Officer, Museums Victoria

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We’ve just discovered two new shark species – but they may already be threatened by fishing



One of the newly discovered sixgilled sawshark species (Pliotrema kajae).
Simon Weigmann, Author provided

Per Berggren, Newcastle University and Andrew Temple, Newcastle University

Finding a species that’s entirely new to science is always exciting, and so we were delighted to be a part of the discovery of two new sixgill sawsharks (called Pliotrema kajae and Pliotrema annae) off the coast of East Africa.

We know very little about sawsharks. Until now, only one sixgill species (Pliotrema warreni) was recognised. But we know sawsharks are carnivores, living on a diet of fish, crustaceans and squid. They use their serrated snouts to kill their prey and, with quick side-to-side slashes, break them up into bite-sized chunks.

The serrated snout of a sixgill sawshark (Pliotrema annae).
Ellen Barrowclift-Mahon/Marine MEGAfauna Lab/Newcastle University., Author provided

Sawsharks look similar to sawfish (which are actually rays), but they are much smaller. Sawsharks grow to around 1.5 metres in length, compared to 7 metres for a sawfish and they also have barbels (fish “whiskers”), which sawfish lack. Sawsharks have gills on the side of their heads, whereas sawfish have them on the underside of their bodies.

A sixgill sawshark (Pliotrema annae) turned on its side, showing gills and barbels.
Ellen Barrowclift-Mahon, Author provided

Together with our colleagues, we discovered these two new sawsharks while researching small-scale fisheries that were operating off the coasts of Madagascar and Zanzibar. While the discovery of these extraordinary and interesting sharks is a wonder in itself, it also highlights how much is still unknown about biodiversity in coastal waters around the world, and how vulnerable it may be to poorly monitored and managed fisheries.

The three known species of sixgill sawshark. The two new species flank the original known species. From left to right: Pliotrema kajae, Pliotrema warreni (juvenile female) and Pliotrema annae (presumed adult female).
Simon Weigmann, Author provided

Fishing in the dark

Despite what their name might suggest, small-scale fisheries employ around 95% of the world’s fishers and are an incredibly important source of food and money, particularly in tropical developing countries. These fisheries usually operate close to the coast in some of the world’s most important biodiversity hotspots, such as coral reefs, mangrove forests and seagrass beds.

For most small-scale fisheries, there is very little information available about their fishing effort – that is, how many fishers there are, and where, when and how they fish, as well as exactly what they catch. Without this, it’s very difficult for governments to develop management programmes that can ensure sustainable fishing and protect the ecosystems and livelihoods of the fishers and the communities that depend on them.

Small-scale fishers of Zanzibar attending their driftnets.
Per Berggren/Marine MEGAfauna Lab/Newcastle University, Author provided

While the small-scale fisheries of East Africa and the nearby islands are not well documented, we do know that there are at least half a million small-scale fishers using upwards of 150,000 boats. That’s a lot of fishing. While each fisher and boat may not catch that many fish each day, with so many operating, it really starts to add up. Many use nets – either driftnets floating at the surface or gillnets, which are anchored close to the sea floor. Both are cheap but not very selective with what they catch. Some use longlines, which are effective at catching big fish, including sharks and rays.




Read more:
Sharks: one in four habitats in remote open ocean threatened by longline fishing


In 2019, our team reported that catch records were massively underreporting the number of sharks and rays caught in East Africa and the nearby islands. With the discovery of two new species here – a global hotspot for shark and ray biodiversity – the need to properly assess the impact of small-scale fisheries on marine life is even more urgent.

Pliotrema kajae, as it might look swimming in the subtropical waters of the western Indian Ocean.
Simon Weigmann, Author provided

How many other unidentified sharks and other species are commonly caught in these fisheries? There is a real risk of species going extinct before they’re even discovered.

Efforts to monitor and manage fisheries in this region, and globally, must be expanded to prevent biodiversity loss and to develop sustainable fisheries. There are simple methods available that can work on small boats where monitoring is currently absent, including using cameras to document what’s caught.

A selection of landed fish – including sharks, tuna and swordfish.
Per Berggren, Author provided

The discovery of two new sixgill sawsharks also demonstrates the value of scientists working with local communities. Without the participation of fishers we may never have found these animals. From simple assessments all the way through to developing methods to alter catches and manage fisheries, it’s our goal to make fisheries sustainable and preserve the long-term future of species like these sawsharks, the ecosystems they live in and the communities that rely on them for generations to come.The Conversation

Per Berggren, Marine MEGAfauna Lab, Newcastle University and Andrew Temple, Postdoctoral Research Associate in Marine Biology, Newcastle University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New tools help communities measure and reduce their emissions locally



John Englart/Flickr, CC BY-SA

Stephen Pollard, University of Melbourne

The slogan “What you can measure, you can manage” has become a guiding principle for local climate action. There’s an accounting standard made for this purpose: the Global Protocol for Community-scale Greenhouse Gas Emission Inventories. Free online CO₂ emissions snapshots for municipalities in Australia, recently launched by Ironbark Sustainability and Beyond Zero Emissions, make the protocol more accessible than ever for local governments and communities that want to know what their emissions are, and what to do about them.




Read more:
In the absence of national leadership, cities are driving climate policy


The Greenhouse Gas Protocol provides a way to measure local greenhouse gas emissions and removals. It is designed to record two elements of local emissions:

  • emissions within a municipal area, such as from cooking with natural gas or driving a car
  • emissions from activities within that area that produce emissions somewhere else, such as using electricity from a coal-fired power station or sending rubbish to landfill.

The method creates a consistent approach to measure emissions in different localities. It lets local governments and communities aggregate their individual commitments to reduce emissions.

The protocol is aligned with the Intergovernmental Panel on Climate Change (IPCC) standards that guide countries’ greenhouse gas inventories. Local accounts can then be nested within national inventories without double counting.




Read more:
Double counting of emissions cuts may undermine Paris climate deal


Australian local governments can do many things to help reduce their community emissions.
Australian Local Government Climate Review 2018, CC BY

By measuring greenhouse gas emissions at the local scale, the protocol supports local governments and communities as important actors in climate governance. Adding local efforts together gives them a stronger voice in national and international arenas. This political pressure is especially important given the inadequacy of countries’ commitments to meet the Paris Agreement targets.




Read more:
The good, the bad and the ugly: the nations leading and failing on climate action


Translating local actions to global impacts

Even though the protocol adds weight to local climate commitments, translating these commitments into action can be challenging. Consistent with IPCC standards, the protocol frames greenhouse gases in two important ways.

First, greenhouse gases are measured according to defined “sectors”. These include stationary energy, transportation, waste, industrial processes and product use, and agriculture, forestry and other land uses. These categories are shorthand for the complex and extended systems of infrastructure, resource flows and human activities that produce greenhouse gases.

Municipal boundaries often align poorly with these systems. The data on activity needed to calculate emissions are often patchy or misaligned at the local scale. Local governments and communities rarely have the authority to intervene directly and change these larger systems.

So although the protocol helps to direct attention to local activities and systems that produce emissions, changing those systems and activities is usually more complex.




Read more:
This is why we cannot rely on cities alone to tackle climate change


Second, greenhouse gas emissions are translated, through a set of simple equations established by the IPCC, into a “carbon dioxide equivalent”. These equations are the basis for comparing, aggregating and exchanging greenhouse gas emissions and removals of different types, at different times and in different places.

These calculations are entangled with the claim that “a ton of carbon is everywhere the same”. It forms the basis for regulated and voluntary markets in carbon trading.

However, there are problems with this assumed interchangeability. As Larry Lohmann argues:

While carbon trading encourages ingenuity in inventing measurable ‘equivalences’ between emissions of different types in different places, it does not select for innovations that can initiate or sustain a historical trajectory away from fossil fuels […]

Local carbon accounts aren’t the whole answer

In sum, the Greenhouse Gas Protocol supports the legitimacy and strengthens the voice of local governments and communities in global climate governance.

At the same time, defining emissions by territory and sector does not fully reflect the complexity of the infrastructure systems and human activities that cause emissions. In particular, the protocol can reinforce a framing of carbon as an exchangeable commodity. This poses the risk that choices about whether to reduce or offset emissions could be skewed.

Without suggesting there is no place for territorial carbon accounts, it is important to recognise that how we measure emissions shapes possibilities for how we might manage them.

Alternative approaches such as consumption-based accounts measure greenhouse gas emissions from what is consumed by an individual or within a territory. This draws attention to choices about what we eat and what we buy, and to the social norms and systems of wealth, which are harder to see in territorial accounts.




Read more:
What is ‘ecological economics’ and why do we need to talk about it?


The key point is that no single measure of greenhouse gases can offer a definitive view. As a complement to the protocol, an additional question for local governments and communities to ask when trying to manage greenhouse gases is: “Where do we have the power to effect change, and why does that change matter to us?”The Conversation

Stephen Pollard, PhD Candidate in climate change and sustainability, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Battlefields around the world are finding new purpose as parks and refuges



Antietam National Battlefield, Maryland, site of a savage Civil War battle on Sept. 17, 1862.
NPS

Todd Lookingbill, University of Richmond and Peter Smallwood, University of Richmond

The horrors of war are all too familiar: lives lost, homes destroyed, entire communities forced to flee. Yet as time passes, places that once were sites of death and destruction can become peaceful natural refuges.

One of the deadliest battles fought on U.S. soil, for example, was the Battle of Gettysburg. Tens of thousands of men were killed or wounded in three days of fighting. Over 150 years later, millions of visitors have toured Gettysburg Battlefield.

Across the U.S., 25 national battlefield and military parks have been established to protect battlefield landscapes and memorialize the past. Increasingly, visitors to these sites are attracted as much by their natural beauty as their historical legacy.

Our new book, “Collateral Values: The Natural Capital Created by Landscapes of War,” describes the benefits to society when healthy natural habitats develop on former battlefields and other military landscapes, such as bases and security zones. Environmental scientist Gary Machlis coined the phrase “collateral values” – a spin on the military expression “collateral damage” – to describe the largely unintended and positive consequences of protecting these lands.

These benefits include opportunities for picnicking, hiking and bird watching. More importantly, former military lands can support wildlife conservation, reduce water and air pollution, enhance pollination of natural and agricultural areas and help regulate a warming climate.

Watershed adventure camp at Staunton River Battlefield State Park, Virginia.
Virginia State Parks, CC BY

From battlefields to parks

In addition to federally protected sites, hundreds of battlefields in the U.S. are preserved by states, local governments and nonprofits like the American Battlefield Trust. Collectively, these sites represent an important contribution to the nation’s public lands.

Preserved battlefields include old fort sites, like the 33 that have been designated public lands in Oklahoma and Texas, marking wars fought between European settlers and Native Americans. They also include coastal defense forts built in the first half of the 1800s along the Atlantic and Pacific seaboards. While some battlefield parks are quite large, others are small sites in urban settings.

Internationally, the United Kingdom has an active program to preserve its battlefields, some centuries old. Other Western European countries have preserved World War I and World War II battlefields.

For example, one of the most brutal battles of WWI was fought in Verdun, France. That trench warfare site is now 25,000 acres of regenerated forest that attracts more than a quarter-million visitors annually. It protects a biologically rich landscape, including wetlands, orchids, birds, bats, newts, frogs, toads, insects, mushrooms and “survivor trees” that still bear scars of war.

Landscape in Verdun Forest.
Lamiot, CC BY-SA

Borders: The Iron Curtain

The largest, most ambitious plan in Europe for transforming a military border centers on the Iron Curtain – a line of guard towers, walls, minefields and fences that stretched for thousands of miles, from Norway’s border with the Soviet Union above the Arctic Circle down to the Mediterranean coastal border between Greece and Albania.

Communist Russia and its allies claimed they had to build a system of military barriers to defend against the NATO alliance of Western European countries and the U.S. But keeping their own citizens in was equally as important. Hundreds died trying to escape.

The collapse of the USSR in 1991 ended the Cold War, and the utility of the Iron Curtain and associated military facilities. With the fall of the Berlin Wall that divided the city into halves, a reunified Germany began to develop its section of the Iron Curtain into a system of conservation areas and nature trails, known as the European Green Belt initiative.

One great challenge of this project was balancing the values of conserving nature while preserving the tragic historical legacy of conflict. Most efforts to build collateral values on former landscapes must grapple with this trade-off.

Iron Curtain Greenway: Europeans are creating a system of parks and natural areas stretching across the continent, all connected by the greenswards that have grown along the former Iron Curtain.
European Green Belt Association, CC BY

Other militarized borders around the globe are also becoming conservation sites. For example, the Demilitarized Zone between North and South Korea has been strictly off-limits for people for decades, allowing it to grow into the most important, albeit unofficial, biodiversity reserve on the Korean peninsula.

Similarly, forests have grown up in the extensive minefield created along the Iran-Iraq border during those nations’ war in the 1980s. These forests support Asian leopards and other rare wildlife species. There are proposals to formally protect them as nature reserves.

Hope after tragedy

As open space becomes scarce in many parts of the U.S., Civil War battlefield parks have become havens for grassland birds like this grasshopper sparrow.
NPS/Sasha Robinson

The ecosystems of protected areas, such as parks and preserves, provide vital benefits for humans and nature. Unfortunately, the world is in danger of losing at least one-third of its protected areas to development and other threats. Recognizing the collateral values that have developed on protected former battlefields and border zones may help reduce degradation and loss of these lands.

One recent study estimates that nearly 1 million square miles – 5% of the Earth’s dry land surface – is currently designated as military training areas. These zones could be protected with relatively little investment when combined with social, cultural and political goals, such as memorializing historical events, and could become ecologically valuable places.

No one should forget the brutality of the conflicts that gave rise to these landscapes. However, given the scale of threats to natural habitats around the world, conservationists cannot ignore opportunities to cultivate and preserve natural places – even those that arise from the horrors of war.

This article has been updated to provide the correct location of Antietam National Battlefield in Maryland.

Todd Lookingbill is a member of the American Association of Geographers

The association is a funding partner of The Conversation US.

[ Expertise in your inbox. Sign up for The Conversation’s newsletter and get a digest of academic takes on today’s news, every day. ]The Conversation

Todd Lookingbill, Associate Professor of Geography and the Environment, University of Richmond and Peter Smallwood, Associate Professor of Biology, University of Richmond

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Global bank urges cities to invest in new infrastructure to adapt to climate change



Our cities need to adapt to cope with more extreme weather events and other impacts from climate change.
Flickr/Shaun Johnston, CC BY-NC-ND

Elisa Palazzo, UNSW

The impacts of climate change on weather, sea levels, food and water supplies should be seen as an investment opportunity for our cities, says global investment banking firm Goldman Sachs.

In a report out last month the bank says cities need to adapt to become more resilient to climate change and this could “drive one of the largest infrastructure build-outs in history”.

The bank says cities will be on the frontline of any need to adapt because they are home to more than half the world’s population and generate roughly 80% of global GDP.




Read more:
A landmark report confirms Australia is girt by hotter, higher seas. But there’s still time to act


The state of the debate

The report comes at a time when scepticism and wait-and-see approaches are still permeating the debate on climate action globally. The discussion on reducing emissions is dogged by disagreement on targets and actions to be undertaken.

Report cover.
Goldman Sachs

On the contrary, less emphasis has been placed on adapting to global warming, the consequences of which will play out for decades to come even if we meet the goals of the Intergovernmental Panel on Climate Change (IPCC).

Goldman Sachs has already said it acknowledges the scientific consensus that climate change is a reality and human activities are responsible for increasing concentrations of greenhouse gases in Earth’s atmosphere.

Much global attention has focused so far on the need for climate change mitigation and the reduction of CO₂ emissions. But the bank’s latest report addresses the urban adaptation strategies that are urgently required:

Greater resilience will likely require extensive urban planning, with investments in coastal protections, climate-resilient construction, more robust infrastructure, upgraded water and waste-management systems, energy resilience and stronger communications and transportation systems.

It acknowledges mitigation measures are essential to reduce global temperature in the medium and long term. But it argues we need to act immediately to minimise the current and future effects of climate change in urban areas.

The question is, why would a bank endorse such a vision?

Banking on climate change

The bank’s report is a collection of data and analysis on climate change from well-known sources, such as the IPCC, and a detailed list of expected impacts on cities.

For example, higher temperatures, more frequent and intense storms, and rising sea levels could affect economic activity, damage infrastructure and harm vulnerable residents.

Does the report represent a last call to brace for impact? Or is a more nuanced and somehow optimistic view of the process emerging?

In reality, it’s not surprising this call is coming from an international financial institution such as Golden Sachs. This report needs be read in parallel with the environmental policy framework of the bank which is its “commitment to addressing critical environmental issues”.

The latest report identifies urban adaptation responses and initiatives as market solutions and financial opportunities. It clearly points out where investments should be addressed.

The directions outlined range over infrastructural initiatives to measures that require financial investment. Our cities need better coastal protection, more resilient buildings and open spaces, sustainable water and waste management, and upgraded transport systems.

A call for action

There is a positive takeaway emerging from the bank’s viewpoint which is a pragmatic call for action.

This could reinstate a more optimistic view of climate change. It could overcome the wait-and-see approach by moving the discussions beyond mitigation only.

And the report has the merit to outline some major challenges emerging from the need of financing a comprehensive urban adaptation.




Read more:
Design for flooding: how cities can make room for water


First, the need for innovative sources of financing and new ways to support climatic transition.

Secondly, the need to look at equity issues emerging from an adaptation process. For example, should a city strengthen flood defences in the CBD or should it upgrade public housing in flood-prone areas? Given the scale of the aims we need to evaluate carefully where best to invest the limited resources available.

But in this respect, no solutions are proposed.

This report is one of the many financial reports on climate change we have seen recently, about the risks and opportunities for the banking and insurance system. It’s probably the first to acknowledge clearly the need for comprehensive adaptation investments to make our cities more resilient.

But in concentrating on the infrastructure needs for cities, the report seems to miss the big picture.

There is still a need to understand how more integrated actions will include the social and environmental dimensions of adapting to climate change to create more sustainable and equitable cities.The Conversation

Elisa Palazzo, Senior Lecturer, Faculty of Built Environment, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia is the runaway global leader in building new renewable energy


Matthew Stocks, Australian National University; Andrew Blakers, Australian National University, and Ken Baldwin, Australian National University

In Australia, renewable energy is growing at a per capita rate ten times faster than the world average. Between 2018 and 2020, Australia will install more than 16 gigawatts of wind and solar, an average rate of 220 watts per person per year.

This is nearly three times faster than the next fastest country, Germany. Australia is demonstrating to the world how rapidly an industrialised country with a fossil-fuel-dominated electricity system can transition towards low-carbon, renewable power generation.

Renewable energy capacity installations per capita.
International capacity data for 2018 from the International Renewable Energy Agency. Australian data from the Clean Energy Regulator., Author provided

When the Clean Energy Regulator accredited Tasmania’s 148.5 megawatt (MW) Cattle Hill Wind Farm in August, Australia met its Renewable Energy Target well ahead of schedule.




Read more:
Australia has met its renewable energy target. But don’t pop the champagne


We have analysed data from the regulator which tracks large- and small-scale renewable energy generation (including credible future projects), and found the record-high installation rates of 2018 will continue through 2019 and 2020.

Record renewable energy installation rates

While other analyses have pointed out that investment dollars in renewable energy fell in 2019, actual generation capacity has risen. Reductions in building costs may be contributing, as less investment will buy you more capacity.

Last year was a record year for renewable energy installations, with 5.1 gigawatts (GW) accredited in 2018, far exceeding the previous record of 2.2GW in 2017.

The increase was driven by the dramatic rise of large-scale solar farms, which comprised half of the new-build capacity accredited in 2018. There was a tenfold increase in solar farm construction from 2017.

We have projected the remaining builds for 2019 and those for 2020, based on data from the Clean Energy Regulator for public firm announcements for projects.

A project is considered firm if it has a power purchase agreement (PPA, a contract to sell the energy generated), has reached financial close, or is under construction. We assume six months for financial close and start of construction after a long-term supply contract is signed, and 12 or 18 months for solar farm or wind farm construction, respectively.

This year is on track to be another record year, with 6.5GW projected to be complete by the end of 2019.

The increase is largely attributable to a significant increase in the number of wind farms approaching completion. Rooftop solar has also increased, with current installation rates putting Australia on track for 1.9GW in 2019, also a new record.

This is attributed to the continued cost reductions in rooftop solar, with less than A$1,000 per kilowatt now considered routine and payback periods of the order of two to seven years.

Current (solid) and forecast (hashed) installations of renewable electricity capacity in Australia.
Author provided

Looking ahead to 2020, almost 6GW of large-scale projects are expected to be completed, comprising 2.5GW of solar farms and 3.5GW of wind. Around the end of 2020, this additional generation would deliver the old Renewable Energy Target of 41,000 gigawatt hours (GWh) per annum. That target was legislated in 2009 by the Rudd Labor government but reduced to 33,000GWh by the Abbott Coalition government in 2015.

Maintaining the pipeline

There are strong prospects for continued high installation rates of renewables. Currently available renewable energy contracts are routinely offering less than A$50 per MWh. Long-term contracts for future energy supply have an average price of more than A$58 per MWh. This is a very reasonable profit margin, suggesting a strong economic case for continued installations. Wind and solar prices are likely to decline further throughout the 2020s.

State governments programs are also supporting renewable electricity growth. The ACT has completed contracts for 100% renewable electricity. Victoria and Queensland both have renewable energy targets of 50% renewable electricity by 2030. South Australia is expecting to reach 100% by 2025.

The main impediment to continued renewables growth is transmission. Transmission constraints have resulted in bottlenecks in moving electricity from some wind and solar farms to cities.

Tasmania’s strong wind resource requires a new connection to the mainland to unlock more projects. The limitations of current planning frameworks for this transition were recognised in Chief Scientist Alan Finkel’s review of the National Electricity Market, with strong recommendations to overcome these problems and, in particular, to strengthen the role of the Australian Energy Market Operator.




Read more:
Here’s how a 100% renewable energy future can create jobs and even save the gas industry


Now we need state and federal governments to unlock or directly support transmission expansion. For example, the Queensland government has committed to supporting new transmission to unlock solar and wind projects in the far north, including the Genex/Kidston 250MW pumped hydro storage system. The New South Wales government will expedite planning approval for an interconnector between that state and South Australia, defining it as “critical infrastructure”.

These investments are key to Australia maintaining its renewable energy leadership into the next decade.The Conversation

Matthew Stocks, Research Fellow, ANU College of Engineering and Computer Science, Australian National University; Andrew Blakers, Professor of Engineering, Australian National University, and Ken Baldwin, Director, Energy Change Institute, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Heatwaves and flash floods: yes, this is Britain’s ‘new normal’


Hayley J. Fowler, Newcastle University

“It’s hard to believe, isn’t it, that we had a heatwave just last week?”

Those words were spoken by a BBC news presenter, in front of graphic images of fire service rescues, as heavy rain caused floods and landslides which closed many roads and railway lines. In recent days there have dramatic floods across the north of England, particularly around Manchester, the Peak District and Yorkshire.

For me, this is personal, as I am from the worst affected area. I went to high school where people spent the night in their Civic Hall. Three miles away from where I grew up, a dam holding back Toddbrook Reservoir has been at risk of collapse and the town of Whaley Bridge was evacuated. But I’m not surprised that we are seeing flash flooding and I expect it to get worse in the future.

I am a professor at Newcastle University, where I lead a large research group focused on understanding changes to intense rainfall events and flash floods. Over the past eight years we’ve been working closely with colleagues at the UK Met Office to develop new very high-resolution climate models that can simulate these very intense summer storms and therefore predict what might happen in a warming climate.

Our models tell us that by 2080 summers in the UK will be much hotter and drier. Heatwaves will be more common. In fact a report released by the Met Office on the same day as the latest flash floods tells us that heatwaves are already happening more often. When Cambridge recently hit 38.7℃, the UK became one of 12 countries to break its national temperature record this year.

The world is warming. But although UK average summer rainfall is predicted to decrease, our models tell us that when it does rain it will be more intense than has been the case. Flash flooding in the UK is generally caused by intense rainstorms, where more than 30mm falls in an hour. Climate models predict these will happen five times more often by 2080.

Part of the reason for this is the simple fact that warmer air can hold more moisture. But that’s too simple: the availability of moisture also increases in areas close to warm oceans – warmer sea surface temperatures cause more moisture to be evaporated into the atmosphere, providing additional fuel for these intense storms. And here’s the scary bit: the Atlantic Ocean provides a vast source of moisture for storms in the UK.

But that’s not the whole story. Heavy, short rain storms are intensifying more rapidly than would be expected with global warming (what we call the Clausius-Clapeyron relationship). Research also suggests that more intense storms can themselves grow bigger, and with both the intensity of the rainfall and the spatial footprint of the storm increasing, the total rainfall in an “event” could double.

What’s more, the larger storms seem to have an ability to draw in more moisture from the surrounding area and become even more intense: the additional energy (heating) fuelling the uplift of air within the storm’s core draws in even more moisture from the surface, allowing them to grow even larger, with more potential for flooding. These also provide the perfect ingredients for large hail storms.

So, it is entirely consistent that we might expect both more heatwaves and more intense summer thunderstorms in a warmer climate. We also know which areas of the country are already susceptible to these flash floods from our analysis of historical records of flooding. Newspapers have reported on the dramatic impacts of these floods for centuries and this has allowed my team to reconstruct a flash-flooding history of the UK.

Certain parts of the country are highly vulnerable as their rivers respond quickly to rainstorms. These rivers tend to be found in steep, upland catchments underlain by non-permeable rocks, mainly in the north and west of the UK. High-risk catchments also include urban areas where the ground is also non-permeable, for entirely different reasons.

Many of the towns reported to have suffered “biblical” flooding recently have suffered repeated flooding through history, but perhaps not within living memory. For example, Whaley Bridge is mentioned twice in the flood chronologies for events in June 1872 and July 1881:

On 19th [June 1872] the Goyt was 12 to 14 feet above its normal level. At Whaley Bridge houses near the river were completely flooded and people were taken into the chapel and inns … in Macclesfield a woman and child were drowned when the river Bollin overflowed. Two reservoirs burst in the vicinity.

This rich archive of knowledge, including the prevalence of flooding in certain towns, even specific roads, is something we should draw upon in planning both the emergency response to these flash floods and for reducing their future impact. We can learn a lot from the past in how to manage the greater risks of flooding the future will bring.The Conversation

Hayley J. Fowler, Professor of Climate Change Impacts, Newcastle University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New research could lead to a pregnancy test for endangered marsupials



Knew you were coming: a koala cub on the back of the mother.
Shutterstock/PARFENOV

Oliver Griffith, University of Melbourne

Many women realise they are pregnant before they’ve even done the test – perhaps feeling a touch of nausea, or tender, larger-than-usual breasts.

For a long time, biologists had thought most marsupials lacked a way to recognise a pregnancy.

But new research published today shows a marsupial mum knows – in a biological sense – when she’s carrying a young one before they make their journey to the pouch.




Read more:
All female mammals have a clitoris – we’re starting to work out what that means for their sex lives


This knowledge changes how we think pregnancy evolved in mammals. It may also help in breeding programs for threatened or endangered marsupials by contributing to new technologies such as a marsupial pregnancy test.

Marsupials do things differently

When people think of marsupials – animals that mostly rear their young in a pouch (although not all marsupials have a pouch) – kangaroos and koalas tend to spring to mind. But marsupials come in a range of shapes and sizes.

A red-necked wallaby with a joey.
Pixabay/sandid

Australia has about 250 species of marsupials, including wombats, possums, sugar gliders, the extinct Tasmanian tiger, and several endangered species such as the Tasmanian devil.

In addition to Australia’s marsupial diversity, there are also 120 marsupial species in South America – most of which are opossums – and just one species in North America, the Virginia opossum.

One thing all marsupials have in common is they give birth to very small, almost embryonic, young.

An opossum with two day old young.
Oliver Griffith, Author provided

Because marsupial pregnancy passes so quickly (12-40 days, depending on the species), and marsupial young are so small and underdeveloped at birth, biologists had thought the biological changes required to support the fetus through a pregnancy happened as a follow on from releasing an egg (ovulation), rather than a response to the presence of a fetus.

Marsupial pregnancy is quick

One way to explore the question of whether it is an egg or a fetus that tells the marsupial female to be ready for pregnancy is to look at the uterus and the placenta.

In marsupials, just like in humans, embryos develop inside the uterus where they are nourished by a placenta.

Previously, biologists thought all of the physiological changes required for pregnancy in marsupials were regulated by hormones produced in the ovary after ovulation.

If this hypothesis is right, then the uterus of pregnant opossums should look the same as the uterus of opossums that ovulate but don’t have the opportunity to mate with a male.

To test this hypothesis, my colleagues at Yale’s Systems Biology Institute and I examined reproduction in the grey short-tailed opossum.

Grey short tailed opossum with young.
Oliver Griffith

Signs of pregnancy

We looked at two groups of opossums: females that were exposed to male pheromones to induce ovulation, and females that were put with males so they could mate and become pregnant.

We then used microscopy and molecular techniques to compare females from the two groups. Contrary to the current dogma, we found that the uterus in pregnancy looked very different to those females that did not mate.

In particular, we found the blood vessels that bring blood from the mother to the placenta interface were only present in pregnancy. We also noticed that the machinery responsible for nutrient transport (nutrient transporting molecules) from the mother to the fetus was only produced in pregnancy.

While hormones may be regulating some aspects of maternal physiology, the mother is certainly detecting the presence of embryos and responding in a way that shows she is recognising pregnancy.

How this knowledge can help others

Given that recognition of pregnancy has now been found in both eutherian (formerly known as placental) mammals like ourselves and marsupials with the more ancestral reproductive characters, it appears likely that recognition of pregnancy is a common feature of all live bearing mammals.




Read more:
Sexual aggression key to spread of deadly tumours in Tasmanian devils


But this knowledge does more than satisfy our curiosity. It could lead to new technologies to better manage marsupial conservation. Several marsupials face threats in the wild, and captive breeding programs are an important way to secure the future of several species.

Two Tasmanian devils.
Pixabay/pen_ash

One such species is the Tasmanian devil, which faces extinction from a dangerous contagious cancer. Captive breeding programs may be one of the only mechanisms to ensure the species survives.

But management can be made more difficult when we don’t know which animals are pregnant. Our research shows that maternal signals are produced in response to the presence of developing embryos. With a bit more research, it may be possible to test for these signals directly.

New reproductive technologies are likely crucial for improving outcomes of conservation programs, and this work shows, that to do this we first need a better understanding of the biology of the animals we are trying to save.The Conversation

Oliver Griffith, ARC DECRA Fellow, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Cannibalism helps fire ants invade new territory



File 20190321 93060 ig0v8t.jpg?ixlib=rb 1.1
Fire ant stings can be deadly to people who have an allergic reaction to their venom.
Forest and Kim Starr/Flickr, CC BY-SA

Pauline Lenancker, James Cook University and Lori Lach, James Cook University

Tropical fire ants (Solenopsis geminata), originally from central and South America, are a highly aggressive, invasive ecological pest. Our new research has shed light on how they successfully establish new colonies.

An allergic reaction to painful tropical fire ant bites.
Pauline Lenancker, Author provided

While we don’t know exactly how widespread tropical fire ants are in Australia, they are well established around Darwin and Katherine, as well as on Christmas Island and Ashmore Reef. Disturbing one of their nests will result in many workers inflicting painful stings on the intruder, and can trigger an allergic reaction in some people.

When invasive ants move to a new region, the pioneers may be one or a few colonies. Because these pioneers are isolated, they often inbreed, which causes genetic problems in their offspring. But our new research, published in Scientific Reports, reveals how tropical fire ants use cannibalism to survive and spread, despite their low genetic diversity.




Read more:
Eradicating fire ants is still possible, but we have to choose now


Sons and daughters

Founding new colonies is how fire ants spread. Queens fly off to start their own colonies just after they have mated. It is a perilous journey – they need to avoid predators and find a good spot to start laying eggs. If queens do not quickly rear daughters that can forage, called workers, they will starve to death.

Queens can lay two different types of eggs: fertilised eggs, which will develop into workers, and unfertilised eggs, which will develop into males. Therefore, female workers have two copies of each gene (diploid), while males have a single copy of each gene (haploid). However, when an ant queen and her mate are closely related, a flaw in the sex determination system of ants causes half of the fertilised eggs to develop into diploid males instead of workers.

The role of males is only to mate with queens – they do not forage, and they die after they have mated. Queens founding a colony have no interest in producing males, because males will not feed them. What’s more, diploid males are often sterile, and their larvae are larger than worker larvae. Therefore, queens can waste precious resources feeding fat useless sons instead of workers.

We wanted to find out how common diploid males are in field colonies, and how queens could successfully start colonies despite them. Understanding how tropical fire ants spread, we hope, can help us stop them expanding their range.

Abandoned and eaten

Our field sampling of tropical fire ant colonies around Darwin revealed eight out of ten colonies produced diploid males.

We collected 1,187 queens that had just mated, and assigned them to start colonies on their own or with other queens.

We observed that in 34% of colonies producing diploid males, diploid male larvae were placed in the colony trash pile by the queens instead of being kept with the worker larvae. It is usual for ants to keep dead individuals away from the rest of the colony, but when we looked at some of these abandoned larvae under a microscope, we realised they were still alive.




Read more:
Curious Kids: do ants have blood?


Queens not only abandoned their sterile sons, they ate them. Three-quarters of the 109 sterile male larvae disappeared from the colonies within 12 days of when we first observed them. Because the queens were the only adult ants present in the colony, this means the queens were eating their diploid males or feeding them to their worker larvae.

This cannibalistic behaviour allowed the queens to redirect nutrients towards themselves or productive members of their colony. Diploid male larvae require more food than worker larvae to develop, so we expected queens from diploid male producing colonies to lose more weight than queens from colonies that only produced workers, but we found that was not the case. Queens with diploid males lost less weight or as much weight as queens from regular colonies, probably because they ate their sterile sons.

We also found queens who worked together in groups to start a colony reared more workers. Therefore, queens in groups would likely have a better chance of survival even if they produced sterile males. But in 6% of colonies, queens did not tolerate having housemates and dismembered other queens.

A queen dismembered by a tetchy rival.
Pauline Lenancker, Author provided

For tropical fire ants, cannibalising sterile sons and cooperative brood rearing among queens are two behavioural mechanisms for avoiding inbreeding costs. A third possible mechanism for the queens is to “sleep around”.

Promiscuity would increase the chance of mating with a genetically different male, and reduce the likelihood of producing diploid sons.

Queens only mate right before starting their colony and store the sperm in an organ called the spermatheca. We genetically analysed sperm from the spermatheca of 40 queens, but found no evidence queens had mated with more than one male.

Tropical fire ants are currently established on Ashmore Reef, a protected Australian Marine Park which is an important breeding site for seabirds and turtles. The invasive ant threatens this sanctuary by attacking seabird and turtle hatchlings. Accidental spreading of tropical fire ants to suitable habitats in the Northern Territory, Queensland and Western Australia would threaten invaluable ecosystems as well as our health and lifestyles.




Read more:
How we wiped out the invasive African big-headed ant from Lord Howe Island


The current eradication program for the closely related red imported fire ant (Solenopsis invicta) in Queensland has been granted A$411 million over ten years, and failure to eradicate red imported fire ants could cost Australia A$1.65 billion per year in damaged crops, livestock harmed and people treated. The more we learn about invasive ant biology, the closer we are to new methods of preventing their spread.The Conversation

Pauline Lenancker, PhD student in biology and ecology, James Cook University and Lori Lach, Associate Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.