Scientists create new building material out of fungus, rice and glass


File 20180619 38811 1vp4mqp.jpg?ixlib=rb 1.1
Fungal bricks have the potential to create safer and more sustainable buildings.
V Anisimov / Shutterstock

Tien Huynh, RMIT University and Mitchell Jones, RMIT University

Would you live in a house made of fungus? It’s not just a rhetorical question: fungi are the key to a new low-carbon, fire-resistant and termite-deterring building material.

This type of material, known as a mycelium composite, uses the Trametes versicolor fungus to combine agricultural and industrial waste to create lightweight but strong bricks. It’s cheaper than synthetic plastics or engineered wood, and reduces the amount of waste that goes to landfill.




Read more:
Affordable, sustainable, high-quality urban housing? It’s not an impossible dream


What a fun guy

Fungal brick prototypes made from rice hulls and glass fines waste.
Tien Huynh, Author provided

Working with our colleagues, we used fungus to bind rice hulls (the thin covering that protects rice grains) and glass fines (discarded, small or contaminated glass). We then baked the mixture to produce a new, natural building material.

Making these fungal bricks is a low-energy and zero-carbon process. Their structure means they can be moulded into many shapes. They are therefore suited to a variety of uses, particularly in the packaging and construction industries.

A staple crop for more than half the world’s population, rice has an annual global consumption of more than 480 million metric tonnes and 20% of this is comprised of rice hulls. In Australia alone, we generate about 600,000 tonnes of glass waste a year. Usually these rice hulls and glass fines are incinerated or sent to landfill. So our new material offers a cost-effective way to reduce waste.

Fire fighter

Fungal bricks make ideal fire-resistant insulation or panelling. The material is more thermally stable than synthetic construction materials such as polystyrene and particleboard, which are derived from petroleum or natural gas.

Rice hulls, glass fines and the mixture of rice, glass and fungus, before baking.
Wikipedia/Tien Huynh, Author provided

This means that fungal bricks burn more slowly and with less heat, and release less smoke and carbon dioxide than their synthetic counterparts. Their widespread use in construction would therefore improve fire safety.

Thousands of fires occur every year and the main causes of fatalities are smoke inhalation and carbon monoxide poisoning. By reducing smoke release, fungal bricks could allow more time for escape or rescue in the event of a fire, thus potentially saving lives.




Read more:
How can we build houses that better withstand bushfires?


Bug battler

Termites are a big issue: more than half of Australia is highly susceptible to termite infestations. These cost homeowners more than A$1.5 billion a year.

Our construction material could provide a solution for combating infestations, as the silica content of rice and glass would make buildings less appetising to termites.




Read more:
Hidden housemates: the termites that eat our homes


The use of these fire-and-termite-resistant materials could simultaneously revolutionise the building industry and improve waste recycling.

Figure 3. Termite infestation zones in Australia.
termitesonline.com.au, Author provided

This is an exciting time to get creative about our waste. With China no longer buying Australia’s recycling – and new rules reducing plastic use in Australian supermarkets – we have the chance to move in line with communities in Japan, Sweden and Scotland that have near-zero waste.

Fungal bricks could be just one example of the creative thinking that will help us get there.


The Conversation


Read more:
The next step in sustainable design: Bringing the weather indoors


Tien Huynh, Senior Lecturer in the School of Sciences, RMIT University and Mitchell Jones, PhD Student, RMIT University

This article was originally published on The Conversation. Read the original article.

Advertisements

Lava in Hawai’i is reaching the ocean, creating new land but also corrosive acid mist


Dave McGarvie, The Open University and Ian Skilling, The University of South Wales

There is something special and awe-inspiring about watching new land form. This is what is now happening in Hawai’i as its Kīlauea volcano erupts. Lava is reaching the ocean and building land while producing spectacular plumes of steam. These eruptions are hugely important for the creation of new land. But they are also dangerous. Where the lava meets the ocean, corrosive acid mist is produced and glass particles are shattered and flung into the air. Volcanic explosions can also hurl lava blocks hundreds of metres and produce waves of scalding hot water.

At Kīlauea, lava is erupting from a line of vents on the volcano’s flanks, and is moving downslope to the edge of the island, where it enters the ocean. This is a process that has been witnessed many times at Hawai’i and other volcanic islands. And it is through many thousands of such eruptions that volcanic islands like Hawai’i form.

The new lava being added to Hawai’i by this latest Kīlauea eruption replaces older land that is being lost by erosion, and so prolongs the island’s lifespan. In contrast, older islands to the north-west have no active volcanoes, so they are being eroded by the ocean and will eventually disappear beneath the waves. The opposite is happening to the south-east of Hawai’i, where an underwater volcano (Lōʻihi Seamount) is building the foundations of what will eventually become the next volcanic island in this area.

How lava gets to the ocean at Hawai’i

The lava erupting from the current Kīlauea vents has a temperature of roughly 1150 degrees °C, and has a journey of between 4.5km and 5.5km to reach the ocean. As this lava moves swiftly in channels, it loses little heat and so it can enter the ocean at a temperature of over 1000 degrees°C.

When lava meets the sea, new land is formed.
EPA

What happens when lava meets the ocean?

We are witnessing one of the most spectacular sights in nature – billowing white plumes of steam (technically water droplets) as hot lava boils seawater. Although these billowing steam clouds appear harmless, they are dangerous because they contain small glass shards (fragmented lava) and acid mist (from seawater). This acid mist known as “laze” (lava haze) can be hot and corrosive. If anyone goes to near it, they can experience breathing difficulties and irritation of their eyes and skin.

Apart from the laze, the entry of lava into the ocean is usually a gentle process, and when steam is free to expand and move away, there are no violent steam-driven explosions.

But a hidden danger lurks beneath the ocean. The lava entering the sea breaks up into blobs (known as pillows), angular blocks, and smaller fragments of glass that form a steep slope beneath the water. This is called a lava delta.

A newly formed lava delta is an unstable beast, and it can collapse without warning. This can trap water within the hot rock, leading to violent steam-driven explosions that can hurl metre-sized blocks up to 250 metres. Explosions occur because when the water turns to steam it suddenly expands to around 1,700 times its original volume. Waves of scalding water can also injure people who are too close. People have died and been seriously injured during lava delta collapses

So, the ocean entry points where lava and seawater meet are doubly dangerous, and anyone in the area should pay careful attention to official advice on staying away from them.

Pillow Lavas form underneath the ocean.
National Oceanic & Atmospheric Adminstration (NOAA)

What more can we learn from these eruptions?

Once lava deltas have cooled and become stable they represent new land. Studies have revealed that lava deltas have distinctive features, and this has enabled volcanologists to recognise lava deltas in older rocks.

Remarkable examples of lava deltas have been discovered near the top of extinct volcanoes (called tuyas) in Iceland and Antarctica. These deltas can only form in water and the only plausible source of this water in this case is melted ice. This means that these volcanoes had melted water-filled holes up to 1.5km deep in ice sheets, which is an astonishing feat. In fact, these lava deltas are the only remaining evidence of long-vanished ice sheets.

The ConversationIt is a privilege to see these incredible scenes of lava meeting the ocean. The ongoing eruptions form part of the natural process that enables beautiful volcano islands like Hawai’i to exist. But the creation of new land here can also bring danger to those who get too close, whether it be collapsing lava deltas or acid mist.

Dave McGarvie, School of Physical Sciences, The Open University and Ian Skilling, Senior Lecturer (Volcanology), The University of South Wales

This article was originally published on The Conversation. Read the original article.

From drone swarms to tree batteries, new tech is revolutionising ecology and conservation



File 20180508 34006 eyxvq5.jpg?ixlib=rb 1.1
Eyes in the sky: drone footage is becoming a vital tool for monitoring ecosystems.
Deakin Marine Mapping Group

Euan Ritchie, Deakin University and Blake Allan, Deakin University

Understanding Earth’s species and ecosystems is a monumentally challenging scientific pursuit. But with the planet in the grip of its sixth mass extinction event, it has never been a more pressing priority.

To unlock nature’s secrets, ecologists turn to a variety of scientific instruments and tools. Sometimes we even repurpose household items, with eyebrow-raising results – whether it’s using a tea strainer to house ants, or tackling botfly larvae with a well-aimed dab of nail polish.

But there are many more high-tech options becoming available for studying the natural world. In fact, ecology is on the cusp of a revolution, with new and emerging technologies opening up new possibilities for insights into nature and applications for conserving biodiversity.

Our study, published in the journal Ecosphere, tracks the progress of this technological development. Here we highlight a few examples of these exciting advances.

Tiny tracking sensors

Electronically recording the movement of animals was first made possible by VHF radio telemetry in the 1960s. Since then even more species, especially long-distance migratory animals such as caribou, shearwaters and sea turtles, have been tracked with the help of GPS and other satellite data.

But our understanding of what affects animals’ movement and other behaviours, such as hunting, is being advanced further still by the use of “bio-logging” – equipping the animals themselves with miniature sensors.

Bio-logging is giving us new insight into the lives of animals such as mountain lions.

Many types of miniature sensors have now been developed, including accelerometers, gyroscopes, magnetometers, micro cameras, and barometers. Together, these devices make it possible to track animals’ movements with unprecedented precision. We can also now measure the “physiological cost” of behaviours – that is, whether an animal is working particularly hard to reach a destination, or within a particular location, to capture and consume its prey.

Taken further, placing animal movement paths within spatially accurate 3D-rendered (computer-generated) environments will allow ecologists to examine how individuals respond to each other and their surroundings.

These devices could also help us determine whether animals are changing their behaviour in response to threats such as invasive species or habitat modification. In turn, this could tell us what conservation measures might work best.

Autonomous vehicles

Remotely piloted vehicles, including drones, are now a common feature of our skies, land, and water. Beyond their more typical recreational uses, ecologists are deploying autonomous vehicles to measure environments, observe species, and assess changes through time, all with a degree of detail that was never previously possible.

There are many exciting applications of drones in conservation, including surveying cryptic and difficult to reach wildlife such as orangutans

Coupling autonomous vehicles with sensors (such as thermal imaging) now makes it easier to observe rare, hidden or nocturnal species. It also potentially allows us to catch poachers red-handed, which could help to protect animals like rhinoceros, elephants and pangolins.

3D printing

Despite 3D printing having been pioneered in the 1980s, we are only now beginning to realise the potential uses for ecological research. For instance, it can be used to make cheap, lightweight tracking devices that can be fitted onto animals. Or it can be used to create complex and accurate models of plants, animals or other organisms, for use in behavioural studies.

3D printing is shedding new light on animal behaviour, including mate choice.

Bio-batteries

Keeping electronic equipment running in the field can be a challenge. Conventional batteries have limited life spans, and can contain toxic chemicals. Solar power can help with some of these problems, but not in dimly lit areas, such as deep in the heart of rainforests.

“Bio-batteries” may help to overcome this challenge. They convert naturally occurring sources of chemical energy, such as starch, into electricity using enzymes. “Plugging-in” to trees may allow sensors and other field equipment to be powered cheaply for a long time in places without sun or access to mains electricity.

Combining technologies

All of the technologies described above sit on a continuum from previous (now largely mainstream) technological solutions, to new and innovative ones now being trialled.

Illustrative timeline of new technologies in ecology and environmental science. Source and further details at DOI: 10.1002/ecs2.2163.
Euan Ritchie

Emerging technologies are exciting by themselves, but when combined with one another they can revolutionise ecological research. Here is a modified exerpt from our paper:

Imagine research stations fitted with remote cameras and acoustic recorders equipped with low-power computers for image and animal call recognition, powered by trees via bio-batteries. These devices could use low-power, long-range telemetry both to communicate with each other in a network, potentially tracking animal movement from one location to the next, and to transmit information to a central location. Swarms of drones working together could then be deployed to map the landscape and collect data from a central location wirelessly, without landing. The drones could then land in a location with an internet connection and transfer data into cloud-based storage, accessible from anywhere in the world.

Visualisation of a future smart research environment, integrating multiple ecological technologies. The red lines indicate data transfer via the Internet of things (IoT), in which multiple technologies are communicating with one another. The gray lines indicate more traditional data transfer. Broken lines indicate data transferred over long distances. (1) Bio-batteries; (2) The Internet of things (IoT); (3) Swarm theory; (4) Long-range low-power telemetry; (5) Solar power; (6) Low-power computer; (7) Data transfer via satellite; and (8) Bioinformatics. Source and further details at DOI: 10.1002/ecs2.2163.
Euan Ritchie

These advancements will not only generate more accurate research data, but should also minimise the disturbance to species and ecosystems in the process.

Not only will this minimise the stress to animals and the inadvertent spread of diseases, but it should also provide a more “natural” picture of how plants, animals and other organisms interact.




Read more:
‘Epic Duck Challenge’ shows drones can outdo people at surveying wildlife


Realising the techno-ecological revolution will require better collaboration across disciplines and industries. Ecologists should ideally also be exposed to relevant technology-based training (such as engineering or IT) and industry placements early in their careers.

The ConversationSeveral initiatives, such as Wildlabs, the Conservation Technology Working Group and TechnEcology, are already addressing these needs. But we are only just at the start of what’s ultimately possible.

Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University and Blake Allan, , Deakin University

This article was originally published on The Conversation. Read the original article.

New Zealand puts an end to new permits for exploration of deep-sea oil and gas reserves



File 20180412 549 1k5k00f.jpg?ixlib=rb 1.1
New Zealand’s government will not grant any new permits for exploration of offshore oil and gas reserves.
from http://www.shutterstock.com, CC BY-SA

James Renwick, Victoria University of Wellington

The New Zealand government’s announcement that it will not issue any new permits for offshore exploration for oil and gas deposits is exciting, and a step in the right direction.

We know that we can’t afford to burn much more oil if we want to meet the Paris Agreement target of keeping global temperature rise this century well below two degrees above pre-industrial levels. Almost all of the already known reserves must stay in the ground, and there is no room to go exploring for more.

Pursuing further reserves would only lead to stranded assets and would waste time and resources in the short term.




Read more:
Why New Zealand should not explore for more natural gas reserves


Moving away from fossil fuels

New Zealand currently has 31 active permits for oil and gas exploration, and 22 of these are offshore. A program set up by the previous government invites bids each year for new onshore and offshore exploration permits. But this year it is restricted to the onshore Taranaki Basin, on the west coast of the North Island.

Complementing the move to shut down the exploration of new deep-sea fossil fuel reserves, the government’s new transport funding plan aims to reduce demand for fossil fuels by putting emphasis on public transport, cycling and walking.

This gets away from the outdated mantra of more roads and more cars that we have seen over the past decade and will tackle the transport sector, which has seen very rapid growth in emissions since 1990. This will help New Zealand onto a low-carbon pathway and promises a more people-focused future.

New Zealand is a small player in global emissions of greenhouse gases but our actions can carry symbolic weight on the world stage. Given our present position of 80% renewable electricity and an abundance of solar, wind, wave and tidal energy, if any country can become zero-carbon, surely New Zealand can. It can only benefit New Zealand – socially, economically and politically – to lead in this crucial race to stabilise the climate.




Read more:
A new approach to emissions trading in a post-Paris climate


Rising emissions

As the government announced its ban on new offshore exploration permits, the latest greenhouse gas inventory was also released, showing some good news. New Zealand’s gross emissions went down slightly from 2015 to 2016.

But gross emissions are up nearly 20% since 1990, and net emissions (actual emissions minus the “sinks” from forestry) are up 54% over that time. The main factors that contributed to the increase were dairy intensification and increased transport and energy emissions.

https://datawrapper.dwcdn.net/OLbQn/2/

Even though agriculture is still the largest source of emissions overall, energy and transport are close behind. We have seen a near-doubling in carbon dioxide emissions from road transport over the past 27 years.

It is encouraging to see a decrease in emissions from the waste sector. Per head of population, New Zealanders throw away significantly above the OECD average of rubbish, a lot of which is green waste that decomposes and releases methane, another potent but short-lived greenhouse gas.

https://datawrapper.dwcdn.net/1hCga/1/

While New Zealand emits a tiny fraction of the world’s greenhouse gases, on a per-capita basis we are sixth-highest among developed countries. We have as much responsibility as any country to reduce our emissions.

Even though emissions have risen, we are set to meet our national target for 2020 (a 5% reduction on 1990 levels) because of “carry-over” credits from the first Kyoto reporting period from 2008 to 2012. But to live up to more stringent future targets, we need a lot more action than we’ve seen over the last decade. The government plans to introduce zero-carbon legislation that will commit New Zealand to reaching the goal of carbn neutrality by 2050.

The ConversationThis will require serious investment and commitment to renewable technologies, changes in the transport sector, changes to agriculture and land use, and ultimately changes in the way we all live our lives.

James Renwick, Professor, Physical Geography (climate science), Victoria University of Wellington

This article was originally published on The Conversation. Read the original article.

Chile’s New National Parks


The link below is to an article that reports on the creation of massive new national parks in Chile.

For more visit:
https://www.theguardian.com/environment/2018/jan/29/chile-creates-five-national-parks-in-patagonia

Google’s artificial intelligence finds two new exoplanets missed by human eyes


File 20171215 17878 rik7zz.jpg?ixlib=rb 1.1
Artist impression of Kepler-90i, the eighth planet discovered orbiting around Kepler-90.
NASA

Jake Clark, University of Southern Queensland

Two new exoplanets have been discovered thanks to NASA’s collaboration with Google’s artificial intelligence (AI). One of those in today’s announcement is an eighth planet – Kepler-90i – found orbiting the Sun-like star Kepler-90. This makes it the first system discovered with an equal number of planets to our own Solar system.

A mere road trip away, at 2,545 light-years from Earth, Kepler-90i orbits its host star every 14.4 Earth days, with a sizzling surface temperature similar to Venus of 426°C.

The new exoplanets are added to the growing list of known worlds found orbiting other stars.

The Kepler-90 planets have a similar configuration to our solar system with small planets found orbiting close to their star, and the larger planets found farther away.
NASA/Ames Research Center/Wendy Stenzel

This new Solar system rival provides evidence that a similar process occurred within Kepler-90 that formed our very own planetary neighbourhood: small terrestrial worlds close to the host star, and larger gassy planets further away. But to say the system is a twin of our own Solar system is a stretch.


Read more: Exoplanet discovery by an amateur astronomer shows the power of citizen science


The entire Kepler-90 system of eight planets would easily fit within Earth’s orbit of the Sun. All eight planets, bar Kepler-90h, would be too hostile for life, lying outside the so-called habitable zone.

Evidence also suggests that planets within the Kepler-90 system started out farther apart, much like our own Solar system. Some form of migration occurred, dragging this system inwards, producing the orbits we see in Kepler-90 today.

Kepler-90 is a Sun-like star, but all of its eight planets are scrunched into the equivalent distance of Earth to the Sun.
NASA/Ames Research Center/Wendy Stenzel

Google’s collaboration with NASA’s space telescope Kepler mission has now opened up new and exciting opportunities into AI helping with scientific discoveries.

So how exactly did Google’s AI discover these planets? And what sort of future discoveries can this technology provide?

Training AI for exoplanet discoveries

Traditionally, software developers program computers to perform a particular task, from playing your favourite cat video, to determining exoplanetary signals from space based telescopes such as NASA’s Kepler Mission.

These programs are executed to serve a single purpose. Using code intended for cat videos to hunt exoplanets in light curves would lead to some very interesting, yet false, results.

Googles’s AI is programmed rather differently, using machine learning. In machine learning, AI is trained through artificial neural networks – somewhat replicating our brain’s biological neural networks – to perform tasks like reading this article. It then learns from its mistakes, becoming more efficient at its particular task.

Google’s DeepMind AI, AlphaGo, was trained previously to play Go, an extremely complex yet elegant Chinese board game. Last year, AlphaGo defeated Lee Sedol, the world’s best Go player, by four games to one. It simply trained itself by watching thousands of previously played games, then competing against itself.

In our exoplantary case, AI was trained to identify transiting exoplanets, sifting through 15,000 signals from the Kepler exoplanet catalogue. It learned what was and wasn’t a signal caused by an exoplanet eclipsing its host star. These 15,000 signals were previously vetted by NASA scientists prior to the AI’s training, guiding it to a 96% efficiency of detecting known exoplanets.

Researchers then directed their AI network to search in multiplanetary systems for weaker signals. This research culminated in today’s announcement of both Kepler-90i and another Earth-sized exoplanet, Kepler-80g, in a separate planetary system.

Hunting for more exoplanets using AI

Google’s AI has analysed only 10% of the 150,000 stars NASA’s Kepler Mission has been eyeing off across the Milky Way galaxy.

How AI helps in the hunt for other exoplanets.

There’s potential then for sifting through Kepler’s entire catalogue and finding other exoplanetary worlds that have either been skimmed by scientist or haven’t been checked yet, due to Kepler’s rich data set. And that’s exactly what Google’s researchers are planning to do.

Machine learning neural networks have been assisting astronomers for a few years now. But the potential for AI to assist in exoplanetary discoveries will only increase within the next decade.

Beyond Kepler

The Kepler mission has been running since 2009, with observations slowly coming to an end. Within the next 12 months, all of its on-board fuel will be fully depleted, ending what has been, one of the greatest scientific endeavours in modern times.

NASA’s new TESS mission will inundate astronomers with 20,000 exoplanetary candidates in the next two years.
Chet Beals/MIT Lincoln Lab

Kepler’s successor, the Transiting Exoplanet Survey Satellite (TESS) will be launching this coming March.


Read more: A machine astronomer could help us find the unknowns in the universe


TESS is predicted to find 20,000 exoplanet candidates during its two-year mission. To put that into perspective, in the past 25 years, we’ve managed to discover just over 3,500.

This unprecedented inundation of exoplanetary data needs to either be confirmed by other transiting observations or other methods such as ground-based radial velocity measurements.

The ConversationThere just isn’t enough people-power to sift through all of this data. That’s why these machine learning networks are needed, so they can aid astronomers in sifting through big data sets, ultimately assisting in more exoplanetary discoveries. Which begs the question, who exactly gets credit for such a discovery?

Jake Clark, PhD Student, University of Southern Queensland

This article was originally published on The Conversation. Read the original article.

All hail new weather radar technology, which can spot hailstones lurking in thunderstorms


Joshua Soderholm, The University of Queensland; Alain Protat, Australian Bureau of Meteorology; Hamish McGowan, The University of Queensland; Harald Richter, Australian Bureau of Meteorology, and Matthew Mason, The University of Queensland

An Australian spring wouldn’t be complete without thunderstorms and a visit to the Australian Bureau of Meteorology’s weather radar website. But a new type of radar technology is aiming to make weather radar even more useful, by helping to identify those storms that are packing hailstones.

Most storms just bring rain, lightning and thunder. But others can produce hazards including destructive flash flooding, winds, large hail, and even the occasional tornado. For these potentially dangerous storms, the Bureau issues severe thunderstorm warnings.

For metropolitan regions, warnings identify severe storm cells and their likely path and hazards. They provide a predictive “nowcast”, such as forecasts up to three hours before impact for suburbs that are in harm’s way.


Read more: To understand how storms batter Australia, we need a fresh deluge of data


When monitoring thunderstorms, weather radar is the primary tool for forecasters. Weather radar scans the atmosphere at multiple levels, building a 3D picture of thunderstorms, with a 2D version shown on the bureau’s website.

This is particularly important for hail, which forms several kilometres above ground in towering storms where temperatures are well below freezing.

Bureau of Meteorology 60-minute nowcast showing location and projected track of severe thunderstorms in 10-minute steps.
Australian Bureau of Meteorology

In terms of insured losses, hailstorms have caused more insured losses than any other type of severe weather events in Australia. Brisbane’s November 2014 hailstorms cost an estimated A$1.41 billion, while Sydney’s April 1999 hailstorm, at A$4.3 billion, remains the nation’s most costly natural disaster.

Breaking the ice

Nonetheless, accurately detecting and estimating hail size from weather radar remains a challenge for scientists. This challenge stems from the diversity of hail. Hailstones can be large or small, densely or sparsely distributed, mixed with rain, or any combination of the above.

Conventional radars measure the scattering of the radar beams as they pass through precipitation. However, a few large hailstones can look the same as lots of small ones, making it hard to determine hailstones’ size.

A new type of radar technology called “dual-polarisation” or “dual-pol” can solve this problem. Rather than using a single radar beam, dual-pol uses two simultaneous beams aligned horizontally and vertically. When these beams scatter off precipitation, they provide relative measures of horizontal and vertical size.

Therefore, an observer can see the difference between flatter shapes of rain droplets and the rounder shapes of hailstones. Dual-pol can also more accurately measure the size and density of rain droplets, and whether it’s a mixture or just rain.

Together, these capabilities mean that dual-pol is a game-changer for hail detection, size estimation and nowcasting.

Into the eye of the storm

Dual-pol information is now streaming from the recently upgraded operational radars in Adelaide, Melbourne, Sydney and Brisbane. It allows forecasters to detect hail earlier and with more confidence.

However, more work is needed to accurately estimate hail size using dual-pol. The ideal place for such research is undoubtedly southeast Queensland, the hail capital of the east coast.

When it comes to thunderstorm hazards, nothing is closer to reality than scientific observations from within the storm. In the past, this approach was considered too costly, risky and demanding. Instead, researchers resorted to models or historical reports.

The Atmospheric Observations Research Group at the University of Queensland (UQ) has developed a unique capacity in Australia to deploy mobile weather instrumentation for severe weather research. In partnership with the UQ Wind Research Laboratory, Guy Carpenter and staff in the Bureau of Meteorology’s Brisbane office, the Storms Hazards Testbed has been established to advance the nowcasting of hail and wind hazards.

Over the next two to three years, the testbed will take a mobile weather radar, meteorological balloons, wind measurement towers and hail size sensors into and around severe thunderstorms. Data from these instruments provide high-resolution case studies and ground-truth verification data for hazards observed by the Bureau’s dual-pol radar.

Since the start of October, we have intercepted and sampled five hailstorms. If you see a convoy of UQ vehicles heading for ominous dark clouds, head in the opposite direction and follow us on Facebook instead.

UQ mobile radar deployed for thunderstorm monitoring.
Kathryn Turner

Unfortunately, the UQ storm-chasing team can’t get to every severe thunderstorm, so we need your help! The project needs citizen scientists in southeast Queensland to report hail through #UQhail. Keep a ruler or object for scale (coins are great) handy and, when a hailstorm has safely passed, measure the largest hailstone.

Submit reports via uqhail.com, email, Facebook or Twitter. We greatly appreciate photos with a ruler or reference object and approximate location of the hail.

How to report for uqhail.

Combining measurements, hail reports and the Bureau of Meteorology’s dual-pol weather radar data, we are working towards developing algorithms that will allow hail to be forecast more accurately. This will provide greater confidence in warnings and those vital extra few minutes when cars can be moved out of harm’s way, reducing the impact of storms.


Read more: Tropical thunderstorms are set to grow stronger as the world warms


Advanced techniques developed from storm-chasing and citizen science data will be applied across the Australian dual-pol radar network in Sydney, Melbourne and Adelaide.

The ConversationWho knows, in the future if the Bureau’s weather radar shows a thunderstorm heading your way, your reports might even have helped to develop that forecast.

Joshua Soderholm, Research scientist, The University of Queensland; Alain Protat, Principal Research Scientist, Australian Bureau of Meteorology; Hamish McGowan, Professor, The University of Queensland; Harald Richter, Senior Research Scientist, Australian Bureau of Meteorology, and Matthew Mason, Lecturer in Civil Engineering, The University of Queensland

This article was originally published on The Conversation. Read the original article.