We found a secret history of megadroughts written in tree rings. The wheatbelt’s future may be drier than we thought


An almost-dry dam, surrounded by wheat fields, in WA’s wheatbelt region.
Shutterstock

Alison O’Donnell, The University of Western Australia; Edward Cook, Columbia University, and Pauline Grierson, The University of Western AustraliaDrought over the last two decades has dealt a heavy blow to the wheatbelt of Western Australia, the country’s most productive grain-growing region. Since 2000, winter rainfall has plummeted by almost 20% and shifted grain-growing areas towards the coast.

Our recent research, however, found these dry conditions are nothing out of the ordinary for the region.

In fact, after analysing rings in centuries-old tree trunks, we found the region has seen far worse “megadroughts” over the last 700 years. Australia’s instrumental climate records only cover the last 120 or so years (at best), which means these historic droughts may not have previously been known to science.

Our research also found the 20th century was the wettest of the last seven centuries in the wheatbelt. This is important, because it means scientists have likely been underestimating the actual risk of drought – and this will be exacerbated by climate change.

What we can learn from ancient trees

We estimate the risk of extreme climate events, such as droughts, cyclones and floods, based on what we know from instrumental climate records from weather stations. Extending climate records by hundreds or even thousands of years means scientists would be able to get a much better understanding of climate variability and the risk of extreme events.

_Callitris_ trees overlooking a salt lake
Callitris trees overlooking a salt lake. We pulled a column of wood from these tree trunks to investigate past climate changes in the region.
Alison O’Donnell, Author provided

Thankfully we can do just that in many parts of the world using proxy records — things like tree rings, corals, stalagmites and ice cores in Antarctica. These record evidence of past climate conditions as they grow.

For example, trees typically create a new layer of growth (“growth ring”) around their trunks, just beneath the bark, each year. The amount of growth generally depends on how much rain falls in the year. The more it rains, the more growth and the wider the ring.

Tree rings of Callitris columellaris.
Alison O’Donnell, Author provided

We used growth rings of native cypress trees (Callitris columellaris) near a large salt lake at the eastern edge the wheatbelt region. These trees can live for up to 1,000 years, perhaps even longer.

We can examine the growth rings of living trees without cutting them down by carefully drilling a small hole into the trunk and extracting a column (“core”) of wood about the size of a drinking straw. By measuring the ring widths, we developed a timeline of tree growth and used this to work out how much rain fell in each year of a tree’s life.

This method allowed us to reconstruct the last 668 years of autumn-winter rainfall in the wheatbelt.

A tree trunk with a blue scientific instrument attached
A tree borer – a hollow drill used to extract ‘cores’ of wood from tree trunks.
Alison O’Donnell, Author provided

A history of megadroughts

One of the most pressing questions for the wheatbelt is whether the decline in autumn-winter rainfall observed in recent decades is unusual or extreme. Our extended record of rainfall lets us answer this question.

Yes, rainfall since 2000 was below the 668-year average — but it was not extremely low.

The last two decades may seem particularly bad because our expectations of rainfall in the wheatbelt are likely based on memories of higher rainfall. But this frequent wet weather has actually been the anomaly. Our tree rings revealed the 20th century was wetter than any other in the last 700 years, with 12% more rain in the autumn-winter seasons on average than the 19th century.




Read more:
500 years of drought and flood: trees and corals reveal Australia’s climate history


Before the 20th century, the wheatbelt saw five droughts that were longer and more severe than any we’ve experienced in living memory, or have recorded in instrumental records. This includes two dry periods in the late 18th and 19th centuries that persisted for more than 30 years, making them “megadroughts”.

While the most recent dry period has persisted for almost two decades so far, rainfall during this period is at least 10% higher than it was in the two historical megadroughts.

This suggests prolonged droughts are a natural and relatively common feature of the wheatbelt’s climate.

An aerial view of the tree-ring site, home to trees that can live up to 1,000 years.
Hannah Etchells, Author provided

So how does human-caused climate change play into this?

It’s likely both natural climate variability and human-caused climate change contributed to the wheatbelt’s recent decline in rainfall. Unfortunately, it’s also likely their combined influence will lead to even less rainfall in the near future.

What happens now?

Our findings have important implications for assessing the risk of drought. It’s now clear we need to look beyond these instrumental records to more accurately estimate the risk of droughts for the wheatbelt.

But currently, proxy climate records like tree rings aren’t generally used in drought risk models, as there aren’t many of them in the regions scientists want to research.

Improving risk estimates leads to better informed decisions around preparing for and managing the effects of droughts and future natural disasters.




Read more:
To help drought-affected farmers, we need to support them in good times as well as bad


Our findings are a confronting prospect for the future of farming in the wheatbelt.

Australian farmers have shown tremendous innovation in their ability to adapt in the face of drought, with many shifting from livestock to crops. This resilience will be critical as farmers face a drier, more difficult future.The Conversation

Alison O’Donnell, Research Fellow in Dendroclimatology, The University of Western Australia; Edward Cook, Ewing Lamont Research Professor, Director Of Tree-Ring Lab, Columbia University, and Pauline Grierson, Director, West Australian Biogeochemistry Centre, The University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The budget should have been a road to Australia’s low-emissions future. Instead, it’s a flight of fancy


Shutterstock

John Quiggin, The University of QueenslandLooking at other nations around the world, the path to cutting greenhouse gas emissions seems clear.

First, develop wind and solar energy and battery storage to replace coal- and gas-fired electricity. Then, replace petrol and diesel cars with electric vehicles running off carbon-free sources. Finally, replace traditionally made steel, cement and other industries with low-carbon alternatives.

In this global context, the climate policies announced in Tuesday’s federal budget are a long-odds bet on a radically different approach. In place of the approaches adopted elsewhere, the Morrison government is betting heavily on alternatives that have failed previous tests, such as carbon capture and storage. And it’s blatantly ignoring internationally proven technology, such as electric vehicles.

The government could have followed the lead of our international peers and backed Australia’s clean energy sector to create jobs and stimulate the post-pandemic economy. Instead, it’s sending the nation on a fool’s errand.

Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg shake hands
Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg should have used the budget to create jobs in the clean economy.
Mick Tsikas/AAP

Carbon-capture folly

The Morrison government is taking a “technology, not taxes” approach to emissions reduction. Rather than adopt a policy such as a carbon price – broadly considered the most effective and efficient way to cut emissions – the government has instead pinned its hopes on a low-emissions technology plan.

That means increased public spending on research and development, to accelerate the commercialisation of low emissions technologies. The problems with this approach are most obvious in relation to carbon capture and storage (CCS).

The budget contains A$263.7 million to fund new carbon capture and storage projects. This technology promises to capture some – but to date, not all – carbon dioxide at the point of emission, and then inject it underground. It would allow continued fossil fuel use with fewer emissions, but the process is complex and expensive.

In fact, recent research found of 39 carbon-capture projects examined in the United States, more than 80% ended in failure.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


The government’s CCS funding is focused on capturing CO₂ from gas projects. This is despite the disappointing experience of Australia’s only CCS project so far, Chevron’s Gorgon gas field off Western Australia.

Some 80% of emissions from the operation were meant to be captured from 2016. But the process was delayed for three years, allowing millions of tonnes of CO₂ to enter the atmosphere. As of January this year, the project was still facing technical issues.

CCS from gas will be expensive even if it can be made to work. Santos, which has proposed a CCS project at its Moomba gas plant in South Australia, suggests a cost of $A30 per tonne of CO₂ captured.

This money would need to come from the government’s Climate Solutions Fund, currently allocated about A$2 billion over four years. If Moomba’s projected emissions reduction of 20 million tonnes a year were realised, this project alone would exhaust the fund.

two men stand over equipment
Plans to capture carbon from Chevron’s Gorgon gas project have not gone to plan.
Chevron Australia

What about electric vehicles?

There is a striking contrast between the Morrison government’s enthusiasm for carbon capture, and its neglect of electric vehicles.

It ought to be obvious that if Australia is to achieve a target of net-zero emissions by 2050 – which Treasurer Josh Frydenberg this week reiterated was his government’s preference – the road transport sector must be decarbonised by then.

The average age of Australian cars is about 10 years. This implies, given fairly steady sales, an average lifespan of 20 years. This in turn implies most petrol or diesel vehicles sold after 2030 will have to be taken off the road before the end of their useful life.

In any case, such vehicles will probably be very difficult to buy within 15 years. Manufacturers including General Motors and Volvo have announced plans to stop selling petrol and diesel vehicles by 2035 or earlier.

But the Morrison government has ruled out consumer incentives to encourage electric vehicle uptake – a policy at odds with many other nations, including the US.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


Despite the “technology, not taxes” mantra, this week’s federal budget ignored electric vehicles. This includes a A$10 billion infrastructure spend which did not include charging stations as part of highway upgrades.

Unless the government takes action soon, Australian motorists will be faced with the choice between a limited range of second-rate petrol and diesel vehicles, or electric vehicles for which key infrastructure is missing.

It’s hard to work out why the government is so resistant to doing anything to help electric vehicles. Public support appears strong. There are no domestic carmakers left to protect.

The car retail industry is generally unenthusiastic about electric vehicles. Its business model is built on combining competitive sticker prices with a high-margin service and repair business, and electric vehicles don’t fit this model.

At the moment (although not for much longer), electric vehicles are more expensive than traditional cars to buy upfront. But they are cheaper to run and service.

There are fears of job losses in car maintenance as electric vehicle uptake increases. However, car dealers have adjusted to change in the past, and can do so in future.

electric vehicle on charge
The budget ignored electric vehicles.
Shutterstock

Wishful thinking

The Morrison government is still edging towards announcing a 2050 net-zero target in time for the United Nations Climate Change Conference in Glasgow this November. But as Prime Minister Scott Morrison himself has emphasised, there’s no point having a target without a strategy to get there.

Yet at this stage, the government’ emissions reduction strategy looks more like wishful thinking than a road map.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


John Quiggin, Professor, School of Economics, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Water markets are not perfect, but vital to the future of the Murray-Darling Basin



kaman985shu/Shutterstock

Neal Hughes, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

Water markets have come in for some bad press lately, fuelled in part by the severe drought of 2019 and resulting high water prices.

They have also been the subject of an Australian Competition and Consumer Commission inquiry, whose interim report released last year documented a range of problems with the way water markets work in the Murray-Darling Basin. The final report was handed to the treasurer last week.

While water markets are far from perfect, new research from the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) has found they are vital in helping the region cope with drought and climate change, producing benefits in the order of A$117 million per year.

To make the most of water markets, we will need to keep improving the rules and systems which support them. But with few “off-the-shelf” solutions, further reform will require both perseverance and innovation.

Water markets generate big benefits

Australia’s biggest and most active water markets are in the southern Murray-Darling Basin, which covers the Murray River and its tributaries in Victoria, NSW and South Australia.

Murray Darling Basin.
MDBA

Each year water right holders are assigned “allocations”: shares of water in the rivers’ major dams. These allocations can be traded across the river system, helping to get water where it is most needed.

Water markets also allow for “carryover”: where rights holders store rather than use their allocations, holding them in dams for use in future droughts.

Our research estimates that water trading and carryover generate benefits to water users in the southern Murray-Darling, of A$117 million on average per year (around 12% of the value of water rights) with even larger gains in dry years. Carryover plays a key role, accounting for around half of these benefits.

Together water trading and carryover act to smooth variability in water prices, while also slightly lowering average prices across the basin.

There’s room for improvement

One of many issues raised in the Australian Competition and Consumer Commission interim report was the design of the trading rules, including limits on how much water can move between regions.

These rules are intended to reflect the physical limits of the river system, however getting them right is extremely difficult.

The rules we have are relatively blunt, such that there is potential at different times for either too much water to be traded or too little.

National Electricity Market.
AGL

One possible refinement is a shift from a rules-based system to one with more central coordination.

For example, in electricity, these problems are addressed via so-called “smart markets”: centralised computer systems which balance demand and supply across the grid in real-time.

Such an approach is unlikely to be feasible for water in the foreseeable future.

But a similar outcome could be achieved by establishing a central agency to determine inter-regional trade volumes, taking into account user demands, river constraints, seasonal conditions and environmental objectives.

While novel in Australia, the approach has parallels in the government-operated “drought water banks” that have emerged in some parts of the United States.

Some of the good ideas are our own

Another possible refinement involves water sharing rules, which specify how water allocations are determined and how they are carried over between years.

At present these rules are often complex and lacking in transparency. This can lead to a perceived disconnect between water allocations and physical water supply, creating uncertainty for users and undermining confidence in the market.

Although markets in the northern Murray-Darling Basin are generally less advanced than the south, some sophisticated water sharing systems have evolved in the north to deal with the region’s unique hydrology (highly variable river flows and small dams).

Beardmore Dam at St George in Southern Queensland, where water markets operate under a capacity sharing system.
ABARES

There is potential for the southern basin to make use of these northern innovations (known as “capacity sharing” or “continuous accounting”) to improve transparency and carryover decisions.

Don’t throw the market out with the river water

Governance failures in the water market have led to understandable frustration.

But it is important to remember how vital trading and carryover are in smoothing variations in water prices and making sure water gets where it is needed, especially during droughts.

The ACCC’s final report (due soon) will provide an opportunity to take stock and develop a roadmap for the future.


Water markets will be discussed at Today’s ABARES Outlook 2021 conference in an online panel session at 3-4pm AEDT.The Conversation

Neal Hughes, Senior Economist, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Pumped hydro isn’t our energy future, it’s our past


Bruce Mountain, Victoria University and Steven Percy, Victoria University

It’s now beyond dispute that — for new electricity generation — solar, wind and other forms of renewable energy are cheaper than anything else: cheaper than new coal fired power stations, cheaper than new gas-fired stations and cheaper than new nuclear power plants.

The International Energy Association says so. Its latest World Energy Outlook describes solar as the cheapest electricity in history.

Solar costs 20% to 50% less than it thought it would two years ago.

Attention has turned instead to the ways to best meet demand when renewable resources are not available.

The government is a big supporter of gas, and as importantly, pumped hydro.

It has backed the $6 billion-plus Snowy Hydro 2.0 pumped hydro project (the world’s biggest) and Tasmania’s proposed $7 billion “battery of the nation”.

Pumped hydro is an old technology, as old as the electricity industry itself.

Pumped hydro is old technology

It became fashionable from the 1960s to 1980s as a complement to inflexible coal and nuclear generators.

When their output wasn’t needed (mainly at night) it was used to pump water to higher ground so that it could be released and used to run hydro generators when demand was high.

Australia’s three pumped hydro plants are old, built at least 40 years ago, and they operate infrequently, and sometimes not at all for years.




Read more:
Snowy 2.0 is a wolf in sheep’s clothing – it will push carbon emissions up, not down


Gas fired electricity generation, whether by turbines (essentially a bigger version of those found on aeroplanes) or by conventional reciprocating engines, has several advantages over pumped hydro including much smaller local environmental impacts and in many cases smaller greenhouse gas impacts.

They can be built quickly and, most importantly, if there is a gas supply they can be built close to electrical loads. There are 17 gas-fired peaking generators in the National Electricity Market, but none have been built over the past decade.

Batteries are cheaper

Batteries have advantages over both.

In 2017, Australia built the world’s biggest battery, but it since been overtaken by a Californian battery more than twice its size and may soon be overtaken by one 150 times the size as part of the Sun Cable project in the Northern Territory which will send solar and stored electricity to Singapore.

Part of Tasmania’s proposed Battery of the Nation project.

In a study commissioned by the Bob Brown Foundation, we have compared the pumped hydro “battery of the nation” project to actual batteries and to gas turbines.

The battery of the nation (BoTN) is a proposal instigated by the Australian and Tasmanian governments to add more pumped hydro to Tasmania’s hydro power system and used enhanced interconnectors to provide electricity on demand to Victoria.

We sought to determine what could most cost-effectively provide Victoria with 1,500 megawatts — the BoTN, gas turbines or batteries.

Partly this depends on how long peak demand for dispatchable power last. BoTN would be able to provide sustained power for 12 hours, but we found that in practice, even when our system becomes much more reliant on renewables, it would be unusual for anything longer than four hours to be needed.

Less than half the cost

We could easily dismiss gas turbines — the Australian Energy Market Operator’s costings have batteries much cheaper than gas turbines to build and operate now and cheaper still by the time the Battery of the Nation would be built.

And batteries are able to respond to instructions in fractions of a second, making them useful in ways gas and pumped hydro aren’t.

They are also able to be placed where they are needed, rather than where there’s a gas connection or an abandoned mine, cliff or hill big enough to be used for pumped hydro.




Read more:
NSW has approved Snowy 2.0. Here are six reasons why that’s a bad move


We found batteries could supply 1,500 megawatts of instantly-available power for less than half of the cost of the enhanced Tasmania to Victoria cable alone, meaning that even if the rest of the BoTN cost little, batteries would still be cheaper.

Pumped hydro projects are being pulled

Origin Energy recently gave up on expanding the Shoalhaven pumped hydro scheme in NSW after finding it would cost more than twice as much to build as first thought.

Similarly, investor-owned Genex has repeatedly deferred its final investment decision on one of the cheapest pumped hydro options in Australia — using depleted gold mine pits in Queensland — despite being offered concessional loans from the Australian Government to cover the entire build cost.




Read more:
Snowy 2.0 threatens to pollute our rivers and wipe out native fish


The final barrier seems to be obtaining subsidies from the Queensland Government to fund the necessary transmission lines.

Snowy 2.0 is proceeding, for now

Snowy 2.0 seems to be proceeding after the Australian Government pumped in $1.4 billion to get it going, and paid a king’s ransom to New South Wales and Victoria for their shares in Snowy Hydro.

Yet even before the main works are to start, credit rating agency S&P has down-graded Snowy Hydro’s stand-alone debt to “junk” and suggested the government will need to pump more money into Snowy Hydro to protect its debt.

Prime Minister Morrison has said recently that batteries can’t compete with gas generators , yet a couple of days later, his government announced support for a 100 megawatt battery in Western Australia, where gas is less than half the price it is on the east coast.




Read more:
Enough ambition (and hydrogen) could get Australia to 200% renewable energy


Our analysis suggests neither gas nor pumped hydro can compete with batteries, and if the prime minister wants more of either, he will have to dip his hands deeply into tax payer’s pockets to get it.The Conversation

Bruce Mountain, Director, Victoria Energy Policy Centre, Victoria University and Steven Percy, Senior Research Fellow, Victoria University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We modelled the future of Leadbeater’s possum habitat and found bushfires, not logging, pose the greatest threat



Rohan Clarke, Author provided

Craig Nitschke, University of Melbourne; Andrew Robinson, University of Melbourne; Melissa Fedrigo, University of Melbourne; Patrick Baker, University of Melbourne, and Raphael Trouve, University of Melbourne

The Federal Court recently ruled that a timber harvesting company couldn’t log potential habitat of the critically endangered Leadbeater’s possum.

This decision led to the immediate protection of more Leadbeater’s possum habitat and will lead to further habitat set aside over the next ten years as native timber harvesting is phased out in Victoria.

But these short-term, site-based measures will not guarantee the long-term conservation of this iconic Victorian species.




Read more:
The Leadbeater’s possum finally had its day in court. It may change the future of logging in Australia


Our new study modelled changes in forests over the next 250 years, focusing on 280,000 hectares of Victoria’s Central Highlands, home to the majority of remaining Leadbeater’s possums.

We looked at different scenarios of how both climate change and timber harvesting might play out. And we identified three important findings.

First, Leadbeater’s possum habitat is dynamic. It’s transient across the landscape over time as disturbances, such as bushfires, continually change the spatial distribution of hollow-bearing trees and young forests.

Second, while timber harvesting poses a local-scale threat, at a larger scale – across hundreds of thousands of hectares – bushfire poses the greatest threat to the species’ habitat.

Last, we found less than half of the area within current parks, reserves, and timber harvest exclusion zones provided stable long-term habitat for Leadbeater’s possum over the next century.

The Black Saturday bushfires razed almost half of the Leadbeater’s possum habitat in 2009.
Shutterstock

Future habitat scenarios

Leadbeater’s possums live in ash and snow gum forests. They depend on two key habitat features: hollow-bearing trees for nesting and dense understorey for moving around the forest.

We used a set of four scenarios to explore how climate change and timber harvesting impact long-term habitat availability by focusing on the where and when hollow-bearing trees and dense understorey are found in the landscape.




Read more:
Comic explainer: forest giants house thousands of animals (so why do we keep cutting them down?)


The scenarios included projecting current climate conditions, and projecting a 2℃ rise in average annual temperature with a 20% reduction in yearly rainfall.

For each of these climate scenarios, timber harvesting at current harvesting rates was either excluded or allowed in areas zoned for timber production.

Bushfires drive long-term habitat loss

Our simulations showed bushfire, not logging, is the biggest threat to habitat availability for Leadbeater’s possum in the Central Highlands. As the cumulative area burnt by fire increased, the quantity and quality of Leadbeater’s possum habitat decreased.

Tthe 2009 Black Saturday fires burned almost half of its habitat, causing its conservation status to jump from endangered to critically endangered.




Read more:
After the bushfires, we helped choose the animals and plants in most need. Here’s how we did it


Bushfires have always been part of Australian landscapes and many species, including Leadbeater’s possum, have evolved alongside them. Eleven years later, Leadbeater’s possum are now recolonising areas burned in the 2009 bushfires.

But as climate change increases the frequency and scale of bushfires, our models suggest the Central Highlands landscape may support less suitable habitat.

Timber harvesting is less of a threat

While timber harvesting compounds the impacts of bushfires on Leadbeater’s possum habitat, across the landscape the effect is small in comparison. Timber harvesting reduced suitable habitat by only 1.4% to 2.3% over 250 years compared to scenarios without harvesting.

Within a coupe (the area of forest harvested in one operation), timber harvesting immediately reduces nesting and foraging habitat. But foraging habitat returns within 10 to 15 years and can be recolonised by Leadbeater’s possum – as long as nesting sites are nearby.




Read more:
Logging is due to start in fire-ravaged forests this week. It’s the last thing our wildlife needs


Protecting vegetation around waterways, in particular, was critical for the development and survival of hollow-bearing trees in an increasingly fire-prone landscape.

But while timber harvesting had much smaller impacts than bushfires, the two did interact. Over time, the cumulative impacts of timber harvesting and bushfire homogenised forest structure across the landscape, leading to smaller patches of habitat that were less connected.

This increases the risk of local extinction for populations of Leadbeater’s possum living in these patches.

We need dynamic conservation areas

A core question for the conservation of any threatened species is: how well does the network of protected areas protect the species?

Our modelling framework meant we could test whether current areas set aside for Leadbeater’s possum conservation actually provide long-term protection.

Over the next 100 years, less than 50% of existing parks, reserves and timber-harvest exclusion zones will provide continuous habitat for Leadbeater’s possum due to climate change.

Distribution of Leadbeater’s possum habitat in the Central Highlands landscape modelled in our paper. Stable zones provided suitable habitat throughout the scenarios. Loss and gain were areas that lost or became habitat over the scenario.
Author provided

However, we also identified approximately 30,000 hectares of forest outside the current network of protected areas that can provide stable habitat for Leadbeater’s possum over the next century.

It’s vital we put protection zones into the areas possums are likely to migrate to as the climate changes. These areas should be a priority for conservation efforts.

A new conservation strategy

Historically, conservation planning has taken a static, site-based approach to protecting species.

This approach is doomed to fail in dynamic landscapes – particularly in fire-prone landscapes in a warming climate. For conservation planning to be successful, we need coordinated forest, fire, and conservation management that accounts for these dynamics across the whole landscape, not just in individual locations.




Read more:
Climate explained: what caused major climate change in the past?


We need a vision for how to make our landscapes more resilient to the growing threat of climate change and provide better protection for the unique flora and fauna that inhabit them.

This will require government agencies responsible for land management and conservation to coordinate current management activities across tenures, while simultaneously implementing future-focused conservation planning. Our landscape-modelling approach provides a first step in that direction.The Conversation

Craig Nitschke, Associate Professor – Forest and Landscape Dynamics, University of Melbourne; Andrew Robinson, Managing Director for Biosecurity Risk Research, University of Melbourne; Melissa Fedrigo, Remote Sensing Scientist and Ecological Modeller, University of Melbourne; Patrick Baker, ARC Future Fellow and Professor of Silviculture and Forest Ecology, University of Melbourne, and Raphael Trouve, Post-Doctoral Research Fellow Ecosystem And Forest Sciences, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Really Australia, it’s not that hard: 10 reasons why renewable energy is the future


Lucy Nicholson/Reuters

Andrew Blakers, Australian National University

Australia’s latest greenhouse gas figures released today show national emissions fell slightly last year. This was by no means an economy-wide effort – solar and wind energy did most of the heavy lifting.

Emissions fell 0.9% last year compared to 2018. The rapid deployment of solar and wind is slashing emissions in the electricity sector, offsetting increases from all other sectors combined.




Read more:
How an Aussie invention could soon cut 5% of the world’s greenhouse gas emissions


Renewables (solar, wind and hydro) now comprise 26% of the mix in the National Electricity Market. In 2023, renewables will likely pass black coal to become the largest electricity source.

In an ideal world, all sectors of the economy – transport, agriculture, manufacturing and others – would pull in the same direction to cut emissions. But hearteningly, these figures show the huge potential for renewables.

Here are 10 reasons why renewable energy makes perfect sense for Australia.

Australia leads the world in rooftop solar installations.
David Mariuz/AAP

1. It can readily eliminate fossil fuels

About 15 gigawatts of solar and wind farms will probably start operating over 2018-2021. That’s on top of more than 2 gigawatts of rooftop solar to be added each year.

It averages out at about 6 gigawatts of additional solar and wind power annually. Research from the Australian National University, which is under review, shows the rate only has to double to about 12 gigawatts to eliminate fossil fuels by 2050, including from electricity, transport, heating and industry.

Fossil fuel mining and use causes 85% of total national emissions – and doubling the renewables deployment rate would eliminate this.

The task becomes more than achievable when you consider the continual fall in renewables prices, which helped treble solar and wind deployment between 2017 and 2020.

2. Solar is already king

Solar is the top global energy technology in terms of new generation capacity added each year, with wind energy in second spot. Solar and wind energy are already huge industries globally, and employ 27,000 people in Australia – a doubling in just three years.

3. Solar and wind are getting cheaper

Solar and wind electricity in Australia already costs less than it would from new coal and gas plants.

The price is headed for A$30 per megawatt hour in 2030. This undercuts most existing gas and coal stations and competes with gas for industrial heating.

Renewable electricity is becoming cheaper than coal-fired power.
Petr Josek/Reuters

4. Stable renewable electricity is not hard

Balancing renewables is a straightforward exercise using existing technology. The current high voltage transmission network must be strengthened so projects in regional areas can deliver renewable electricity into cities. And if wind and sun is not plentiful in one region, a stronger transmission network can deliver electricity from elsewhere. Electricity storage such as pumped hydro and batteries can also smooth out supplies.

5. There’s enough land

To eliminate all fossil fuel use, Australia would need about 60 square metres of solar panel per person, and one wind turbine per 2,000 people. Panels on rooftops take up no land, and wind turbines use very little. If global energy consumption per person increased drastically to reach Australian levels, solar farms on just 0.1% of Earth’s surface could meet this demand.

6. Raw materials won’t run out

A solar panel needs silicon, a glass cover, plastic, an aluminium panel frame, copper and aluminium electrical conductors and small amounts of other common materials. These materials are what our world is made of. Recycling panel materials at the end of their life adds only slightly to larger existing recycling streams.

Solar panel materials are relatively easy to obtain.
Tim Winbourne/Reuters

7. Nearly every country has good sun or wind

Three-quarters of the global population lives in the planet’s sunbelt (lower than 35 degrees of latitude). This includes most developing countries, where most of the growth in energy consumption and greenhouse emissions is occurring.

8. We will never go to war over sunshine

Solar and wind power make energy systems much more robust in the face of a pandemic, disasters or war. They are difficult to misuse in any significant way for military, terrorist or criminal activities. And it is hard to destroy billions of solar panels spread over millions of square kilometres.




Read more:
A single mega-project exposes the Morrison government’s gas plan as staggering folly


9. Solar accidents and pollution are small

Solar panel accidents pale in comparison to spilled radioactive material (like Fukushima or Chernobyl), an oil disaster (like BP’s Deepwater Horizon), or a coal mine fire (like Hazelwood in Victoria). Wind and solar electricity eliminates oil imports, oil-related warfare, fracking for gas, strip mining for coal, smokestacks, car exhausts and smog.

10. Payback time is short

For a sunny country like Australia, the time required to recover the energy invested in panel manufacture is less than two years, compared with a panel lifetime of 30 years. And when the world is solar powered, the energy required to produce more panels is non-polluting.

Renewable energy can do they heavy lifting on emissions reduction.
Vincent West/Reuters

The future is bright

While COVID-19 triggered a significant fall in global emissions so far this year, they may bounce back. But if solar and wind deployment stay at current levels, Australia is tracking towards meeting its Paris target.

The Reserve Bank of Australia says investment in renewables may moderate in the near term, but “over the longer term, the transition towards renewable energy generation is expected to continue”.

But there are hurdles. In the short term, more transmission infrastructure is needed. Electrifying transport (with electric vehicles) and urban heating (with electric heat pumps) is straightforward. More difficult is eliminating fossil fuels from industries such as steel and fertilisers. This is a task for the 2030s.

But it’s clear that to get to net-zero carbon emissions by mid century, solar and wind are far and away Australia’s best option.




Read more:
Australia is the runaway global leader in building new renewable energy


The Conversation


Andrew Blakers, Professor of Engineering, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

In fact, there’s plenty we can do to make future fires less likely



It’s in our power to influence the climate by influencing the nations who help determine the climate.
Victorian government

Peter Martin, Crawford School of Public Policy, Australian National University

One of the dominant ideas buzzing around the internet is that there’s little we can do to escape the prospect of more frequent and worse bushfires – ever.

That’s because there’s little we can do to slow or reverse the change in the climate.

Australia accounts for just 1.3% of global emissions. That’s much more than you would expect on the basis of our share of world’s population, which is 0.33%. But even if we stopped greenhouse gas emissions as soon as we could and started sucking carbon back in (as would be possible with reafforestation) it’d make little difference to total global emissions, which is what matters – or so the argument goes.

But this argument ignores the huge out-of-proportion power we have to influence
other countries.

There’s no better indicator of that than in Ross Garnaut’s new book Super-power: Australia’s low-carbon opportunity.




Read more:
The bushfires are horrendous, but expect cyclones, floods and heatwaves too


We’re more important than we think

The cover of ‘Super-power’ by Ross Garnaut.
Supplied

Garnaut conducted two climate change reviews for Australian governments, the first in 2008 for the state and Commonwealth governments, and the second in 2011 for the Gillard government.

In the second, he produced two projections of China’s emissions, based on what was known at the time.

One was “business as usual”, which showed continued very rapid increases. The other took into account China’s commitments at the just-completed 2010 United Nations Cancun climate change conference.

China’s annual emissions matter more than those of any other country – they account for 27% of the global total, which is a relatively new phenomenon.

The bulk of the industrial carbon dioxide already in the atmosphere was put there by the United States and the Soviet Union, who have been big emitters for much longer.

Egged on by the US Obama administration and by governments including Australia’s under Julia Gillard, China agreed at Cancun to slow its growth in emissions, and at the Paris talks in 2015 hardened this into a commitment to stabilise them by 2030.

The extraordinary graph

Garnaut’s 2011 projections showed growth moderating as a result of China’s commitment, which was at the time a cause for optimism.

When he returned to the numbers in 2019 to prepare his book, he was stunned. Egged on by the example of countries including the US and Australia, China had done far, far better than either “business as usual” or its Cancun commitments. Instead of continuing to grow rapidly, or less rapidly as China had said they would, they had almost stopped growing.

The graph, produced on page 29 of Garnaut’s book, is the most striking I have seen.



Since 2011, China’s emissions have been close to spirit-level flat. They climbed again only from 2017 when, under Trump in the US and various Coalition prime ministers in Australia, the moral pressure eased.

From the start of this century until 2011, China’s consumption of coal for electricity climbed at double-digit rates each year. From 2013 to 2016 (more than) every single bit of China’s extra electricity production came from non-emitting sources such as hydro, nuclear, wind and sun.

There are many potential explanations for the abrupt change. Pressure from nations including the US and Australia is only one.

What happened once could happen again

And there are many potential explanations for China’s return to form after Trump backslid on the Paris Agreement and Australia started quibbling about definitions.
An easing of overseas pressure is only one.

But, however brief, the extraordinary pause gives us cause for hope.

Australia can matter, in part because it is hugely respected in international forums for its technical expertise in accounting for carbon emissions, and in part because of its special role as one of the world’s leading energy exporters.

Garnaut’s book is about something else – an enormous and lucrative opportunity for Australia to produce and export embedded energy sourced from wind and the sun at a cost and scale other nations won’t be able to match.




Read more:
Australia could fall apart under climate change. But there’s a way to avoid it


Some of it can be used to convert water into hydrogen. That can be used to turn what would otherwise be an intermittent power supply into a continuous one that enables around-the-clock production of the green steel, aluminium, and other zero-emission products Japan, Korea, the European Union and the United Kingdom are going to be demanding.

It’s a vision backed by Australia’s chief scientist.

It wouldn’t have been possible before. It has been made possible now by the extraordinary fall in the cost of solar and wind generation, and by something just as important – much lower global interest rates. Solar and wind generators cost money upfront but cost very little to operate. Interest rates are the cost of the money upfront.

At least three consortia are drawing up plans.

There’s not much to lose

There’s much that needs to be done, including establishing the right electricity transmission links. But Garnaut believes it can all be done within the government’s present emissions policy, helping it achieve its emission reduction targets along the way.

What’s relevant here is that moving to ultra-low emissions would do more. It could give us the kind of outsized international influence we are capable of. It could help us make a difference.The Conversation

Peter Martin, Visiting Fellow, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Labor’s climate and resources spokesmen at odds over future policy


Michelle Grattan, University of Canberra

Opposition resources spokesman Joel Fitzgibbon has had his proposal to bring Labor’s climate change target into line with the government’s immediately torpedoed by the party’s climate spokesman Mark Butler.

In a speech to the Sydney Institute made public ahead of its Wednesday evening delivery Fitzgibbon suggested the ALP offer “a political and policy settlement” to match the higher end of the government’s 26-28% target for reducing emissions on 2005 levels by 2030.

Labor’s controversial election policy was for an ambitious 45% reduction.

Fitzgibbon said the change he advocated would mean “the focus would then be all about actual outcomes, and the government would finally be held to account and forced to act.

“A political settlement would also restore investment confidence and for the first time in six years, we could have some downward pressure on energy prices,” Fitzgibbon said.

But Butler rejected the proposal saying the government’s target “is fundamentally inconsistent with the Paris agreement and would lead to global warming of 3℃.

“Labor remains committed to implementing the principles of the Paris Agreement, which are to keep global warming well below 2℃ and pursue efforts around 1.5℃,” he said.

“Labor’s commitment to action on climate change is unshakeable. We will have a 2050 target of net zero emissions and medium-term targets which are consistent with the agreement,” Butler said.

Despite dismissing Fitzgibbon’s idea, Butler has acknowledged that Labor’s climate change policy must be up for grabs in the party’s review of all its policies between now and the 2022 election.

But revising the climate policy will be one of its major challenges, because the party is caught between its inner city progressive constituency and its traditional blue collar voters. Its ambivalent position on the planned Adani coal mine cost it votes in Queensland at the election.

Apart from the politics, the 45% target for 2030 would be more unrealistic at the next election because emissions at the moment are increasing, meaning ground is being lost.

Fitzgibbon, who takes a more pro-coal attitude than many of his colleagues, had a big swing against him in his NSW coal seat of Hunter.

He said in his speech that a 28% reduction would be a “meaningful achievement” and could be built on later. He also pointed out bluntly that Labor couldn’t achieve anything if perpetually in opposition.

“If we could get to 28% by 2030, and also demonstrate that we could do so without destroying blue collar jobs or damaging the economy, then we would have a great foundation from which to argue the case for being more ambitious on the road to 2050,” he said.

Shadow treasurer Jim Chalmers, who is from Queensland, refused to be pinned down when pressed on Fitzgibbon’s proposal.

“My view is we can take real action on climate change without abandoning our traditional strengths, including in regional Queensland,” he said.

The Victorian minister for energy, environment and climate change, Lily D’Ambrosio, asked at the Australian Financial Review’s national energy summit about Fitzgibbon’s comments, said she wasn’t much interested in what a federal opposition did.

“We have a very strong and ambitious policy and we took that to the last state election, and we all know the result of that election, so we will continue to implement our policies and get them done,” she said.

Federal energy minister Angus Taylor pointed to the divisions in the opposition but welcomed that there were “people in Labor who are making sensible suggestions about dropping their policies from the last election.

“What we saw happen there was Labor went to the election with policies – 45% emissions reduction target, 50% renewable energy target – where they weren’t able to or willing to detail the costs and impacts of those policies,” he said.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Children are our future, and the planet’s. Here’s how you can teach them to take care of it



Contact with nature is a crucial part of sustainability education in preschool.
from shutterstock.com

Wendy Boyd, Southern Cross University and Ann-Christin Furu, University of Helsinki

As the global climate crisis accelerates, early childhood teachers and researchers are considering whether and how to approach the issue with children. Should we talk openly about the crisis and encourage children to change their daily practices? Or is there a risk that in doing so, we are inflicting anxiety on young minds, still in critical and early stages of development?

The UN sustainable development goals note that children are

critical agents of change and will find in the new goals a platform to channel their infinite capacities for activism into the creation of a better world.

Australia’s quality standards on early childhood education and care call for childcare services to support children to become environmentally responsible. But how can this policy be turned into a living practice?

Contact with nature is a crucial part of sustainability education in early childhood education and care. This helps children develop an appreciation for the Earth and all its inhabitants. Educators in childcare settings can provide a learning culture where children develop skills to take care of nature through play and creativity, without inflicting mass anxiety on them.

Children could build a scarecrow together, which would engage them in caring for the garden.
from shutterstock.com

Programs to helps kids learn

There are many ways play can help children love the world around them. For instance, the nursery rhyme about Dingle Dangle Scarecrow could help engage children in vegetable gardening. Children can pretend the scarecrow will keep the garden safe.

They could build a scarecrow themselves, which would inspire creativity and educate them about the living environment at the same time.

Our recent research (not yet published) explored an educational program with 200 children between the ages of three and five. The children learnt how to sort, reduce and recycle waste into different colour-coded bins. As they sorted food waste, the children also fed chickens and compost worms.

Educators expanded on these activities by telling the children how living things are connected, which the children had themselves witnessed when feeding the chickens and worms. This new knowledge carried over into the children’s home environments, where we found children reminded families about sorting household waste. This then impacted on parents’ recycling practices.




Read more:
Being in nature is good for learning, here’s how to get kids off screens and outside


In New South Wales a program helped children learn about water. Children in three pre-schools (aged three to five) were asked to report dripping taps, taught about half-flush toilets and told to advise families to take shorter showers. An evaluation of this program found children had developed courage and agency when it came to water awareness, because their feelings, thoughts, and questions were taken seriously and met with empathy and interest by adults.

From despair to hope

Adults are strong role models for the way children understand the importance of the world around them. If adults act in a respectful way towards animals, and even creatures such as spiders, children will receive the message these creatures are entitled to care and protection.

If you’re quick to swipe a spider in front of a child, this may create biophobia, where creatures are considered as fearsome pests.

Studies have found including sustainability practices into early childhood education may make educators uncomfortable. Studies show educators may have a limited understanding of sustainability issues, and little confidence in teaching such a values-laden topic.

But teachers don’t need to know the ins and outs of climate change to teach children how to respect the planet. They could simply encourage children to play in nature and role model behaviours that show appreciation for the environment.

Teaching children we’re all connected can help them understand their role in nature.
from shutterstock.com

Finland’s approach to early childhood education and care offers a good case study for how to incorporate sustainability practice into preschool education. The Finnish curriculum is based on a playful learning approach where respectful dialogue between children and adults supports learning.

The curriculum gives teachers tools to meet children´s worries with approaches that encourage actions, which create hope. Young children see themselves as more a natural part of the environment than older children. Teachers can support young children’s actions from this position.

For example, an adult could relocate a spider to a position where it won’t be trod on. Children could then watch to ensure it is safe, which gives them a sense of agency in their environment. In this way, children can feel they have control over the smaller elements of nature and that they can have an effect on it. This gives them a sense of empowerment rather than feeling overwhelmed and helpless, which leads to despair and anxiety.




Read more:
Hug a tree – the evidence shows it really will make you feel better


Sustainability education for children can best be approached by helping them understand their place in the web of life, which supports their existence in terms of clean air and water, food and clothes, and other necessities for a decent life.

It’s about fostering a sense of belonging, respect and care for all living creatures, and an understanding of how to handle material resources in a limited world. Sustainability education is about fostering the world-view that we are in this together. Only through our common actions can despair be turned into hope.The Conversation

Wendy Boyd, Senior Lecturer, School of Education, Southern Cross University and Ann-Christin Furu, Lecturer, University of Helsinki

This article is republished from The Conversation under a Creative Commons license. Read the original article.