Paying Australia’s coal-fired power stations to stay open longer is bad for consumers and the planet


Shutterstock

Daniel J Cass, University of Sydney; Joel Gilmore, Griffith University, and Tim Nelson, Griffith UniversityAustralian governments are busy designing the nation’s transition to a clean energy future. Unfortunately, in a misguided effort to ensure electricity supplies remain affordable and reliable, governments are considering a move that would effectively pay Australia’s old, polluting coal-fired power stations to stay open longer.

The measure is one of several options proposed by the Energy Security Board (ESB), the chief energy advisor to Australian governments on electricity market reform. The board on Friday released a vision to redesign the National Electricity Market as it transitions to clean energy.

The key challenges of the transition are ensuring it is smooth (without blackouts) and affordable, as coal and gas generators close and are replaced by renewable energy.

The redesign has been two years in the making. The ESB has done a very good job of identifying key issues, and most of its recommendations are sound. But its option to change the way electricity generators and retailers strike contracts for electricity, if adopted, would be highly counterproductive – bad both for consumers and for climate action.

Electricity lines at sunset
One proposed reform to Australia’s electricity market would be bad for consumers and climate action.
Shutterstock

The energy market dilemma

The National Electricity Market (NEM) covers every Australian jurisdiction except Western Australia and the Northern Territory. It comprises electricity generators, transmission and distribution networks, electricity retailers, customers and a financial market where electricity is traded.

Electricity generators in the NEM comprise older, polluting technology such as gas- and coal-fired power, and newer, clean forms of generation such as wind and solar. Renewable energy, which makes up about 23% of our electricity mix, is now cheaper than energy from coal and gas.

Wind and solar energy is “variable” – only produced when the sun is shining and the wind is blowing. Technology such as battery storage is needed to smooth out renewable energy supplies and make it “dispatchable”, meaning it can be delivered on demand.

Some say coal generators, which supply dispatchable electricity, are the best way to ensure reliable and affordable electricity. But Australia’s coal-fired power stations, some of which are more than 40 years old, are becoming more prone to breakdowns – and so less reliable and more expensive – as they age. This has led to some closing suddenly.

Without a clear national approach to emissions targets, there’s a risk these sudden closures will occur again.




Read more:
Explainer: what is the electricity transmission system, and why does it need fixing?


Wind farm near coast
Wind and solar energy is variable.
Shutterstock

So what’s proposed?

To address reliability concerns, the ESB has proposed an option known as the “physical retailer reliability obligation”.

In a nutshell, the change would require electricity retailers to negotiate contracts for a certain amount of “dispatchable” electricity from specific generators for times of the year when reliability is a concern, such as the peak weeks of summer when lots of people use air conditioning.

Currently, the Australian Energy Market Operator has reserve electricity measures it can deploy when market supply falls short.

But under the new obligation, all retailers would also have to enter contracts for dispatchable supply. This would likely require buying electricity from the coal generators that dominate the market. This provides a revenue source enabling these coal plants to remain open even when cheaper renewable energy makes them unprofitable.

The ESB says without the change, the closure of coal generators will be unpredictable or “disorderly”, creating price shocks and reliability risks.

hand turns off light switch in bedroom
The ESWB says the recommendation would address concerns over electricity reliability.
Shutterstock

A big risk

Even the ESB concedes the recommendation comes with considerable risks. In particular, the board says it may:

  • impose increased barriers to retail competition and product innovation
  • lead to possible overcompensation of existing coal and gas generators.

In short, the policy could potentially lock in increasingly unreliable, ageing coal assets, stall new investment in new renewable energy storage such as batteries and pumped hydro and increase market concentration.

It could also push up electricity prices. Electricity retailers are likely to pass on the cost of these new electricity contracts to consumers, no matter how much energy that household or business actually used.

The existing market already encourages generators to provide reliable supply – and applies strong penalties if they don’t. And in fact, the NEM experiences reliability issues for an average of just one minute per year. It would appear little could be added to the existing market design to make generators more reliable than they are.

Finally, the market is dominated by three large “gentailers” – AGL, Energy Australia and Origin – which own both generators and the retail companies that sell electricity. The proposed change would disadvantage smaller electricity retailers, which in many cases would be forced to buy electricity from generators owned by their competitors.

Australia’s gentailers are heavily invested in coal power stations. The proposed change would further concentrate their market power while propping up coal.




Read more:
‘Failure is not an option’: after a lost decade on climate action, the 2020s offer one last chance


warning sign on fence
The proposed change brings a raft of risks to the electricity market.
Kelly Barnes/AAP

What governments should do

If coal-fired power stations are protected from competition, it will deter investment in cleaner alternatives. The recommendation, if adopted, would delay decarbonisation and put Australia further at odds with our international peers on climate policy.

The federal and state governments must work together to develop a plan for electricity that facilitates clean energy investment while controlling costs for consumers.

The plan should be coordinated across the states. Without this, we risk creating a sharper shock later, when climate diplomacy requires the planned retirement of coal plants. Other nations have acknowledged the likely demise of coal, and it’s time Australia caught up.




Read more:
Spot the difference: as world leaders rose to the occasion at the Biden climate summit, Morrison faltered


The Conversation


Daniel J Cass, Research Affiliate, Sydney Business School, University of Sydney; Joel Gilmore, Associate Professor, Griffith University, and Tim Nelson, Associate Professor of Economics, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Labor proposes discounts for electric cars and ‘community batteries’ to store solar power


Michelle Grattan, University of CanberraAnthony Albanese will promise a Labor government would deliver a discount to cut the cost of electric cars and install community batteries, in modest initiatives costing $400 million over several years.

The announcement, to be made Wednesday, comes as Labor debates its platform at a “virtual” national conference involving some 400 participants.

At present only 0.7% of cars sold in Australia are electric – considerably under the global average of 4.2%. There are only about 20,000 electric cars registered in Australia.

Labor’s policy would cut taxes on non-luxury vehicles – the luxury threshold is $77,565 in 2020-21 – exempting them from tariffs and fringe benefits tax.

The Electric Vehicle Council has estimated a $50,000 model would be more than $2000 cheaper if the import tariff was removed. These tariffs are not on all the imported vehicles – there are exclusions where Australia has free trade agreements.

If a $50,000 vehicle was provided through employment, exempting it from the fringe benefits tax would save the employer (or employee, depending on how the FBT was arranged) up to $9000 annually, Labor says.

The opposition at the last election had a policy to promote electric cars, with a target of 50% per cent of new car sales being electric vehicles by 2030.

This came under heavy attack from the government, which cast it as a “war on the weekend”.

The government recently released a discussion paper on electric cars, and flagged it would trial models for the COMCAR fleet which transports politicians.

In a statement on the initiatives, Albanese and energy spokesman Chris Bowen said electric vehicles remain too expensive for most people, although a majority of Australians say they would consider buying one. There are no electric cars available in Australia for less than $40,000.

“By reducing upfront costs, Labor’s electric car discount will encourage uptake, cutting fuel and transport costs for households and reducing emissions at the same time,” Albanese and Bowen said.

The discount would begin on July 1 2022 and cost $200 million over three years.

The community batteries would help households who have solar panels but do not have their own battery storage, which is expensive.

Australia has one in five households with solar, but only one in 60 households has battery storage, which gives the capacity to draw overnight on the solar energy produced during the day.

Labor would spend $200 million over four years to install 400 community batteries across the country. This would assist up to 100,000 households.

Albanese and Bowen said the measure would cut power bills, reduce demands on the grid at peak times and lower emissions.

“Households that can’t install solar (like apartments and renters) can participate by drawing from excess energy stored in community batteries.”

A community battery is about the size of 4WD vehicle and provides about 500kWH of storage that can support up to 250 local households.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Electricity has become a jigsaw. Coal is unable to provide the missing pieces



Bohbeh/Shutterstock

Peter Martin, Crawford School of Public Policy, Australian National University

There’s something the energy minister said when they announced the early closure of Victoria’s second-biggest coal-fired power station last week that was less than complete.

Yallourn, in the Latrobe Valley, provides up to 20% of Victoria’s power. It has been operating for 47 years. Since late 2017 at least one of its four units has broken down 50 times. Its workforce doubles for three to four months most years to deal with the breakdowns. It pumps out 3% of Australia’s carbon emissions.

On Wednesday Energy Australia gave seven years notice of its intention to close it in mid-2028, four years earlier than previously announced, a possibility for which regulators had been preparing.

In what might have been a rhetorical flourish, Energy Minister Angus Taylor warned of “price spikes every night when the sun goes down”.

Then he drew attention to what had happened when two other coal-fired power stations closed down — Victoria’s Hazelwood and South Australia’s Northern (South Australia’s last-remaining coal-fired generator).

He said “wholesale prices skyrocketed by 85%”.

And there he finished, without going on to detail what really mattered. South Australia and Victoria now have the lowest wholesale power prices in the National Electricity Market — that’s right, the lowest.

Coal-fired plants close, then prices fall

Before Northern closed, South Australia had Australia’s highest price.

Five years after the closure of Northern in 2016, and four years after the closure of Hazelwood in 2017, South Australia and Victorian have wholesale prices one-third lower than those in NSW and two-fifths lower than those in Queensland.

Something happened after the closure (largely as a result of the closure) that forced prices down.

South Australia became a renewables powerhouse.

South Australian wind projects congregate around power lines.
AEMO

The Australian National University’s Hugh Saddler points out that renewable-sourced power — wind and grid solar — now accounts for 62% of power supplied to the South Australian grid, and at times for all of it.

Much of it is produced near Port Augusta, where the Northern and Playford coal-fired power stations used to be, because that’s where the transmission lines begin.

Being even cheaper than the power produced by the old brown-coal-fired power stations, there is at times so much it that it sends prices negative, meaning generators get paid to turn off in order to avoid putting more power into the system than users can take out.

It’s one of the reasons coal-fired plants are closing: they are hard to turn off. They are just as hard to turn on, and pretty hard to turn up.

Coal can’t respond quickly

There are times (when the wind doesn’t blow and there’s not much sun, such as last Friday in South Australia) when prices can get extraordinarily high.

But coal-fired plants, especially brown-coal-fired plants such as Victoria’s Hazelwood and Yallourn and Victoria’s two remaining big plants, Loy Yang A and B, are unable to quickly ramp up to take advantage of them.

Although “dispatchable” in the technical meaning of the term used by the minister, coal-fired stations can’t fill gaps quickly.




Read more:
The death of coal-fired power is inevitable — yet the government still has no plan to help its workforce


Batteries can respond instantly to a loss of power from other sources (although not for very long), hydro can respond in 30 to 70 seconds, gas peaking plants can respond within minutes.

But coal can barely move. As with nuclear power, coal-fired power needs to be either on (in which case it can only slowly ramp up) or off, in which case turning it on from a standing start would be way too slow.

What was a feature is now a bug

That’s why coal-fired generators operate 24-7, to provide so-called base-load, because they can’t really do anything else.

Snowy Hydro generators can be turned on and off at will.
Alex Ellinghausen/AAP

Brown coal generators are the least dispatchable. Brown coal is about 60% water. To make it ignite and keep boiling off the water takes sustained ultra-high temperatures. Units at Yallourn have to keep burning coal at high output (however low or negative the prices) or turn off.

In the days when the other sources of power could be turned on and off at will, this wasn’t so much of a problem.

Hydro or gas could be turned on in the morning when we turned on our lights and heaters and factories got down to business, and coal-fired power could be slowly ramped up.

At night, when there was less demand for coal-fired power, some could be created by offering cheap off-peak water heating.

But those days are gone. Nationwide, wind and solar including rooftop solar supplies 20% of our needs. It turns on and off at will.

Wind often blows strongly at night. What was a feature of coal — its ability to provide steady power rather than fill gaps – has become a bug.

Gas and batteries can fill gaps coal can’t

It’s as if our power system has become a jigsaw with the immovable pieces provided by the wind and the sun. It’s our job to fill in the gaps.

To some extent, as the prime minister says, gas will be a transition fuel, able to fill gaps in a way that coal cannot. But gas has become expensive, and batteries are being installed everywhere.

Energy Australia plans to replace its Yallourn power station with Australia’s first four-hour utility-scale battery with a capacity of 350 megawatts, more than any battery operating in the world today. South Australia is planning an even bigger one, up to 900 megawatts.




Read more:
Huge ‘battery warehouses’ could be the energy stores of the future


Australia’s Future Fund and AGL Energy are investing $2.7 billion in wind farms in NSW and Queensland which will fill gaps in a different way — their output peaks at different times to wind farms in South Australia and Victoria.

Filling the gaps won’t be easy, and had we not gone down this road there might still have been a role for coal, but the further we go down it the less coal can help.

As cheap as coal-fired power is, it is being forced out of the system by sources of power that are cheaper and more dispatchable. We can’t turn back.The Conversation

Peter Martin, Visiting Fellow, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Renewables need land – and lots of it. That poses tricky questions for regional Australia



Shutterstock

Bonnie McBain, University of Newcastle

Renewable energy capacity in Australia is expected to double, or even triple, over the next 20 years. There is one oft-overlooked question in this transition: where will it all be built?

Many renewable energy technologies need extensive land area. Wind turbines, for instance, cannot be located too close together, or they won’t work efficiently.

Some land will be in urban areas. But in the transition to 100% renewable energy, land in the regions will also be needed. This presents big challenges, and opportunities, for the farming sector.

Two important factors lie at the heart of a smooth transition. First, we must recognise that building renewable energy infrastructure in rural landscapes is a complex social undertaking. And second, we must plan to ensure renewables are built where they’ll perform best.

Aerial view of solar farm
Australia’s renewable energy expansion will require plenty of space – most of it in the regions.
Shutterstock

Bringing renewables to the regions

My research has examined how much land future energy generation will require, and the best way to locate a 100% renewable electricity sector in Australia.

A National Farmers Federation paper released last week called for a greater policy focus on renewable energy in regional Australia. It said so-called renewable energy zones should “be at the centre of any regionalisation agenda” and that this would give the technology a competitive advantage.

Hosting renewable energy infrastructure gives farmers a second income stream. This can diversify a farming business and help it withstand periods of financial pressure such as drought. An influx of new infrastructure also boosts regional economies.

But successfully integrating renewables into the agricultural landscape is not without challenges.

A wicked problem

Renewable energy enjoys widespread public support. However its development can lead to social conflicts. For example, opposition to wind wind farms, often concentrated at the local level, can be motivated by concerns about:

  • perceived health impacts
  • changes to the landscape
  • damage to wildlife
  • loss of amenity
  • reduced property values
  • procedural fairness.

A proposed A$2 billion wind energy development on Tasmania’s King Island shows the difficulties involved in winning community support. The project was eventually scrapped in 2014, for economic reasons.

Research showed how despite the proponents TasWind using a “best practice” mode of community engagement, the proposal caused much social conflict. For example, the holding of a vote served to further polarise the community, and locals were concerned that the community consultation process was not impartial.




Read more:
Against the odds, South Australia is a renewable energy powerhouse. How on Earth did they do it?


The local context was also significant: the recent closure of an abattoir, and associated job losses, had increased the community’s stress and sense of vulnerability. This led some to frame the new proposal as an attempt by a large corporation to capitalise on the island’s misfortune.

The King Island experience has all the hallmarks of a “wicked problem” – one that is highly complex and hard to resolve. Such problems are common in policy areas such as land-use planning and environmental protection.

People protest against wind farm proposal
Achieving community consensus on wind farm developments can be challenging.
Daniel Mariuz/AAP

Wicked problems typically involve competing perspectives and interests. Often, there is no single, correct solution that works for everyone. For example at King Island, the abattoir closure did not mean all locals considered the wind energy proposal to be the answer.

When seeking to address complex policy problems, such as building renewable energy in regional areas, the best approach involves:

  • collaboration between all affected parties, including people beyond the property where the infrastructure will be located
  • relationship-building between all those involved, to allow each to see the other’s perspective
  • shared decision-making on whether the infrastructure will be built, and where.

Competition for land is intensifying around the world, especially as the population grows. High consumption levels in the West require ever-more land for resources such as food, and land degradation is rife.

To help alleviate this pressure, renewable energy developments may need to co-exist with other land uses, such as cattle grazing around wind turbines. And in many cases, renewable energy should not be built on the most productive cropping land.

Cows graze in front of wind turbines
Cattle grazing and wind turbines can co-exist.
Mick Tsikas/AAP

Recipe for success

A successful energy transition will require strategic, long-term planning to determine where renewable generation is best located.

Our research indicates that while many places in Australia have renewable energy potential, some are far better than others. Wind energy is usually best located near the coast, solar farms in arid inland regions and rooftop solar power in densely-populated eastern Australia.




Read more:
Explainer: what is the electricity transmission system, and why does it need fixing?


Traditionally, Australia’s electricity grid infrastructure, such as high-voltage transmission lines, has been located around coal-fired generators and large population centres. Locating renewables near this infrastructure might make it cheaper to connect to the grid. But those sites may not be particularly windy or sunny.

Australia’s electricity grid should be upgraded and expanded to ensure renewables generators are located where they can perform best. Such strategic planning is just what the National Farmers Federation is asking for. Improved connectivity will also help make electricity supplies more reliable, allowing electricity to be transferred between regions if needed.

Making renewables do-able

The economic and environmental benefits of renewable energy are well known. But without social acceptance by communities hosting the infrastructure, the clean energy transition will be slowed. There is more work to be done to ensure new renewables projects better respond to the needs of regional communities.

And to ensure Australia best fulfils its renewable energy potential, electricity grid technology must be upgraded and expanded. To date, such planning has not featured prominently enough in public conversation and government policy.

If Australia can overcome these two tricky problems, it will be well on the way to ensuring more reliable electricity, the best return on investment and a low-carbon energy sector.




Read more:
People need to see the benefits from local renewable energy projects, and that means jobs


The Conversation


Bonnie McBain, Lecturer, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Forget about the trade spat – coal is passé in much of China, and that’s a bigger problem for Australia



Greg Baker/AP

Hao Tan, University of Newcastle; Elizabeth Thurbon, UNSW; John Mathews, Macquarie University, and Sung-Young Kim, Macquarie University

Australian coal exports to China plummeted last year. While this is due in part to recent trade tensions between Australia and China, our research suggests coal plant closures are a bigger threat to Australia’s export coal in the long term.

China unofficially banned Australian coal in mid-2020. Some 70 ships carrying Australian coal have reportedly been unable to unload in China since October.

This is obviously bad news for Australia’s coal exporters. But even if the ban is lifted, there’s no guarantee China will start buying Australian coal again – at least not in huge volumes.

China is changing. It’s announced a firm date to reach net-zero emissions, and governments in eastern provinces don’t want polluting coal plants taking up prime real estate. It’s time Australia faced reality, and reconsidered its coal export future.

Coal ship unloads at Chinese port
China’s coal import quotas are hurting Australian exporters.
Wang Kai/AP

First, the coal ban

In May last year, China’s government effectively banned the import of Australian coal, by applying stringent import quotas. As of last month coal exports to China from Newcastle, Australia’s busiest coal exporting port, had ceased.

In 2019, Australia exported A$13.7 billion worth of coal to China. This comprised A$9.7 billion in metallurgical coal for steel making and A$4 billion in thermal coal for electricity generation.

The latest official Australian data shows these export levels fell dramatically between November 2019 and November 2020. Comparing the two months, metallurgical and thermal coal exports to China were down 85% and 83% respectively.




Read more:
China just stunned the world with its step-up on climate action – and the implications for Australia may be huge


Several Chinese provinces experienced power blackouts in late 2020. China’s state-backed media said the shortages were unrelated to the ban on Australian coal. Instead, they blamed cold weather and the recovery in industrial activity after the pandemic.

We dispute this claim. While Australian coal accounts for only about 2% of coal consumption in China, it helps maintain reliable supply for many power stations in China’s southeast coastal provinces.

Coal mining in China mostly occurs in the western provinces. Southeast coastal provinces are largely economically advanced and no longer produce coal. Instead, power stations in those provinces import coal from overseas.

This coal is cheaper than domestic coal, and often easier to access; transport bottlenecks in China often hinder the movement of domestic coal.

Coal mine at Gunnedah in NSW
Australian thermal coal helps supplement China’s domestic supply.
Rob Griffith/AP

Beyond the trade tensions

Experience suggests trade tensions between Australia and China will eventually ease. But in the long run, there is a more fundamental threat to Australian coal exports to China.

Data from monitoring group Global Coal Tracker shows between 2015 and 2019, China closed 291 coal-fired power generation units in power plants of 30 megawatts (MW) or larger, totalling 37 gigawatts (GW) of capacity. For context, Australia decommissioned 5.5 GW of coal-fired power generation units between 2010 and 2017, and currently has 21 GW of coal-fired power stations.

The closures were driven by factors such as climate change and air pollution concern, excess coal power capacity, and China’s move away from some energy-intensive industries.

Our recently published paper revealed other distinctive features of the coal power station closures.




Read more:
The Paris Agreement 5 years on: big coal exporters like Australia face a reckoning


First, China’s regions are reducing coal power capacity at different rates and scales. In the nation’s eastern provinces, the closures are substantial. But elsewhere, and particularly in the western provinces, new coal plants are being built.

In fact, China’s coal power capacity increased by about 18% between 2015 and 2019. It currently has more than 1,000 GW of coal generation capacity – the largest in the world.

Second, we found retired coal power stations in China had much shorter lives than the international average. Guangdong, an economically developed region of comparable economic size to Canada, illustrates the point. According to our calculation, the stations in that region had a median age of 15 years at closure. In contrast, coal plants that closed in Australia between 2010 and 2017 had a median age of 43 years.

coal plant in China
Coal plant closures have been most marked in China’s east.
AP

This suggests coal power stations in China are usually retired not because they’ve reached the end of their productive lives, but rather to achieve a particular purpose.

Third, our study showed decisions to decommission coal power stations in China were largely driven by government, especially local governments. This is in contrast to Australia, where the decision to close a plant is usually made by the company that owns it. And this decomissioning in China is usually driven by a development logic.

Coal plant closures there have been faster and bigger than elsewhere in the country, as governments replace energy- and pollution-intensive industries with advanced manufacturing and services.

And as these regions become richer, the value of land occupied by coal power plants and transmission facilities grows. This gives governments a strong incentive to close the plants and redevelop the sites.

In coming years, southeast China will increasingly shift to renewable-based electricity and electric power transmitted from western provinces.

Man covers mouth
Air pollution concerns are helping drive China’s move away from coal-burning for power.
Ng Han Guan/AP

Securing our energy future

Coal power stations in China’s eastern coastal regions will continue to close in coming years, and power generation capacity will be redistributed to western provinces. For reasons outlined above, that means power generation in China will increasingly rely on domestic coal rather than that from Australia.

China’s coal exit is in part due to its strategy to peak its carbon emissions before 2030 and achieve net-zero by 2060. Australia must realistically appraise its coal export prospects in light of the long-term threat posed by shifts in China and other East Asian nations.

The Morrison government, and industry, should re-double efforts to rapidly expand renewable energy in Australia. Then we can leave coal behind, and emerge as a renewable energy superpower.




Read more:
Want an economic tonic, Mr Morrison? Use that stimulus money to turbocharge renewables


The Conversation


Hao Tan, Associate professor, University of Newcastle; Elizabeth Thurbon, Scientia Associate Professor in International Relations / International Political Economy, UNSW; John Mathews, Professor Emeritus, Macquarie Business School, Macquarie University, and Sung-Young Kim, Senior Lecturer in International Relations, Discipline of Politics & International Relations, Macquarie School of Social Sciences, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Solar panel fire season is all year round and it’s getting more intense in Australia



FRNSW, Author provided

Timothy O’Leary, University of Melbourne and David Michael Whaley, University of South Australia

2020 was a bumper year for solar power in Australia. More solar PV systems were installed in the first nine months than in all of any previous year.

Almost one in four Australian houses now have rooftop solar panels. But the number of solar panel incidents reported by fire and emergency services has increased too.

Fire and Rescue NSW reportedly put out 30 blazes sparked by panels in just three months late last year.




Read more:
Australian building codes don’t expect houses to be fire-proof – and that’s by design


The exponential growth in solar PV and associated problems has attracted media and political attention.

In 2018, federal Energy Minister Angus Taylor warned his state counterparts lives were at risk from substandard solar panel installations. An audit of the Clean Energy Regulator by the Australian National Audit Office found there were potentially tens of thousands of badly installed and even unsafe rooftop systems. The regulator had inspected just 1.2% of rooftop installations.

It’s a nationwide problem

State and territory regulators are responsible for electrical safety. Only Victoria mandates an inspection of each installed system.

Taylor announced an inquiry into the industry last August.

Last October, Fire and Rescue NSW Superintendent Graham Kingland said:

Over the last five years we have seen solar panel related fires increase five-fold. It is not uncommon to see solar panels cause house and building fires.

On Christmas day, ACT Fire & Rescue attended a fire at a home in Theodore where the solar panels caught alight. Coincidentally, the location was Christmas Street!

Last month, Energy Safe Victoria warned the public to get solar systems serviced.

And Queensland Fire and Emergency Services attended at least 16 incidents caused by solar panels in the first half of 2017 and 33 in 2016.

9 News reports on the fire risks of poorly installed solar panel systems in Queensland.

Components such as DC isolators and inverters, rather than the actual panels, are the cause of most solar-related fires. A DC isolator is a manually operated switch next to a solar panel array that shuts off DC current between the array and the inverter. It was intended as an extra safety mechanism, but the switches have caused more problems than they have solved – particularly when not installed correctly or when poor-quality components are used.

Solar is cheaper in Australia but poorly regulated

A recent report rated Australia as one of the cheapest per kilowatt for solar PV, but it questioned our safety standards. Most solar systems sold in Australia use DC voltages that can pose a serious fire risk.

Unfortunately, Australia has been slow to adopt safer solar regulations. In contrast, the United States has had safety standards preventing the installation of conventional DC solar systems since as early as 2014.

It’s more difficult for lower-voltage, microinverter-based systems (requiring no DC isolator switch) to catch fire, but it’s not impossible.

An amendment to the DC isolator standard (AS/NZS 5033:2014) to improve product datasheets and ensure isolators can withstand the harsh Australian climate took effect on June 28 2019. By then, over 2 million systems had been installed on Australian rooftops.

Added to issues such as flammable cladding, dodgy electrical cable and other “grey imports” (products not sourced from approved manufacturers) in the building industry, we are now playing a game of catch-up.




Read more:
Cladding fires expose gaps in building material safety checks. Here’s a solution


Poor-quality solar rooftop components have led to an expanding list of product recalls. The latest Australian Competition and Consumer Commission (ACCC) recall list includes installations managed by industry giants such as Origin and AGL.

One notable recall in 2014 reported a risk of “arcing” and “eventual catastrophic failure, resulting in fire”. It listed no fewer than nine traders operating nationally as having used this failed product. The recall noted that the product supplier, Blueline Solar Pty Ltd, was insolvent.

What should consumers do? The ACCC said:

Owners should immediately shut down the PV system following the standard shutdown procedure.

If a consumer suspects they have one of the affected units, they should have an electrician inspect and replace the DC isolators.

Solar systems do not fall under the National Construction Code unless an ancillary structure is being created. Most systems are simply fixed with rails to an existing roof. If the code covered rooftop solar, this would require private certification and a compliance check on any system, as is the case overseas.




Read more:
Australia has a new National Construction Code, but it’s still not good enough


Know what is on your roof

Research has shown consumers’ knowledge of solar systems is poor. Many owners have little idea if their system is working properly, or even at all.

And how would a consumer know what kind of DC isolator is on their roof or how to shut down the system in the event of a fire?

Solar panel systems are a growing incident category for firefighters. Yet even among firefighters there is some confusion on procedures to deal with a fire on live solar panels.

Firefighters put out a solar panel fire
Even some firefighters aren’t clear about how to deal with fires on live solar panels.
riopatuca/Shutterstock

Solar panel fires have yet to make it onto a top 10 list of domestic fire causes (statistically, your Christmas tree lights are a greater risk). But the sheer volume of installations and ageing components in uninspected older systems are increasing the risks.

One Aussie inventor has developed a product PVStop — “a spray-on solution to mitigate solar panel risks by reducing DC output to safe levels to offer homeowners and emergency personnel peace of mind”.

The latest update on Clean Energy Regulator inspections completed to June 30 2020 shows a negligible 0.05% decrease in substandard systems. Roughly one in 30 systems (3.1%) have been deemed unsafe and another 17.9% substandard.

Chart showing causes of unsafe and potentially unsafe solar PV installations

The Conversation. Data: Clean Energy Regulator SRES report

Without adequate solar PV industry standards, tools, inspection regimes, procedures or training, dangerous scenarios may increasingly put lives at risk. The high uptake of solar is very good news for reducing household electricity bills and carbon emissions, but safety issues undermine these positives.




Read more:
Making every building count in meeting Australia’s emission targets


The surge in installations, the introduction of batteries, the ageing of panels and components together with more extreme weather events mean solar panel incidents are likely to continue increasing.

Australia prides itself on being a world leader in household solar but until now we have not fully appreciated the safety risks. Fire authorities would do well to update fire safety guides that omit specific information on solar. And system owners should ensure they understand the risks and shut-down procedures.The Conversation

Timothy O’Leary, Lecturer in Construction and Property, University of Melbourne and David Michael Whaley, Lecturer, University of South Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Up to 90% of electricity from solar and wind the cheapest option by 2030: CSIRO analysis



Shutterstock

Paul Graham, CSIRO

With the cost of energy generated from wind and solar now less than coal, the share of Australia’s electricity coming from renewables has reached 23%. The federal government projects the share will reach 50% by 2030.

It is at this point that integrating renewables into the energy system becomes more costly.

We can add wind and solar farms at little extra cost when their share is low and other sources – such as coal and gas generators now – can compensate for their variability. At a certain point, however, there comes a need to invest in supporting infrastructure to ensure supply from mostly renewable generation can meet demand.

But by 2030, even with these extra costs, adding new variable renewable generation (solar and wind) to as high as a 90% share of the grid will still be cheaper than non-renewable options, according to new estimates from the CSIRO and Australian Energy Market Operator.

Calculating energy costs

International research, including from the International Renewable Energy Agency, suggests solar and wind power are now the cheapest new sources of electricity in most parts of the world.

Our estimates, made for the third annual “GenCost” report (short for generation cost), confirm this is also now the case in Australia.

We compare the cost of new-build coal, gas, solar photovoltaics (both small and large scale), solar-thermal, wind and a number of speculative options (such as nuclear).

What we’ve been able to more accurately estimate in the new report is the cost of integrating more and more renewable energy into the energy system, as coal and gas generators are retired.

The two key extra integration costs are energy storage and more transmission lines.




Read more:
Sure, no-one likes a blackout. But keeping the lights on is about to get expensive


Storage costs

For any system dominated by renewables, storing energy is essential.

Storage means renewable energy can be saved when it is overproducing relative to demand – for example, in the middle of the day for solar, or during extended windy conditions. Stored energy can then be used when renewables cannot meet demand – such as overcast days or at night for solar.

Among options being considered for large-scale investment in Australia are batteries and pumped hydro energy storage (using excess renewable power to pump water back up to dams to again drive hydroelectric turbines).


Capital costs of storage technologies in $/kWh (total cost basis). Aurecon and Entura are engingeering businesses who publish project cost estimates. AEMO ISP is the Australian Energy Market Operator’s Integrated System Plan, which also includes technology cost estimates.
CSIRO

Pumped hydro sites can provide storage for hours or days. There are three schemes in Australia: Talbingo and Shoalhaven in New South Wales, and Wivenhoe near Brisbane.

Battery costs have been falling steadily and tend to be most competitive for storage electricity for less than eight hours. South Australia’s big battery (officially known as the Hornsdale Power Reserve) is the most obvious example.

Transmission costs

The other key cost to integrate more renewable energy generation into the electricity grid is building more transmission lines. Right now those lines mostly run from coal and gas power stations near coal mines.

But this not where new large-scale renewable generation will be. Solar farms are best placed inland, where there is less cloud cover, and in the mid to northern regions of Australia. Wind farms are generally better located in elevated areas and in the southern regions. We’ll need to build new transmission links to these “renewable energy zones”.

Transmission links between the states in the National Electricity Market (Queensland, New South Wales, Australian Capital Territory, Victoria, Tasmania and South Australia) will need to be improved so they can better support each other if one or more are experiencing low renewable energy output.




Read more:
After two decades, the national electricity market is on its way out, and that’s alright


Total integration costs

So how much extra will it cost for Australia to have a higher share (up to 90%) of electricity from wind and solar (variable renewable energy)? The following graph summarises our findings based on 2030 cost projections.


Projected renewable generation and integration costs by variable renewable energy share in 2030.
Projected renewable energy generation and integration costs by variable renewable energy share in 2030.
CSIRO

The cost of generating energy from wind and solar (shown in light blue) is about A$40 per megawatt-hour (MWh). This is is slightly below current average market prices.

A higher share of renewable energy adds storage costs (in black) and transmission costs (grey and dark blue). These integration costs increase from A$4/MWh to A$20/MWh as the variable renewable energy share increases from 50% to 90%.

At 90% renewable energy, the total cost is A$63/MWh. But that’s still cheaper than the cost of new coal and gas-fired electricity generation, which is in the range of A$70 to A$90/MWh (under ideal assumptions of low fuel pricing and no climate policy risk).


The 2020-21 GenCost report is now in the formal consultation period with stakeholders including industry, government, regulators and academia. The final report is due to be published in March 2021.The Conversation

Paul Graham, Chief economist, CSIRO energy, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.